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Abstract

Quantum many-body systems exhibit an extremely diverse ran ge of
phases and physical phenomena. Here, we prove that the entire physics
of any other quantum many-body system is replicated in certa in simple,
\universal" spin-lattice models. We �rst characterise pre cisely what it
means for one quantum many-body system to replicate the entire physics
of another. We then show that certain very simple spin-latti ce models are
universal in this very strong sense. Examples include the Heisenberg and
XY models on a 2D square lattice (with non-uniform coupling s trengths).
We go on to fully classify all two-qubit interactions, deter mining which are
universal and which can only simulate more restricted classes of models.
Our results put the practical �eld of analogue Hamiltonian s imulation on
a rigorous footing and take a signi�cant step towards justif ying why error
correction may not be required for this application of quant um information
technology.
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Part I

Extended overview
The properties of any physical system are captured in its Hamiltonian, which
describes all the possible energy con�gurations of the system. Amongst the
workhorses of theoretical many-body and condensed matter physics are spin-
lattice Hamiltonians, in which the degrees of freedom are quantum spins ar-
ranged on a lattice, and the overall Hamiltonian is built up from few-body in-
teractions between these spins. Although these are idealised, toymodels of real
materials, di�erent spin-lattice Hamiltonians are able to model a wide variety of
di�erent quantum phases and many-body phenomena: phase transitions [Sac07],
frustration [ Die13], spontaneous symmetry-breaking [ADZ12], gauge symme-
tries [Kog79], quantum magnetism [SRFB08], spin liquids [ZKN16], topological
order [Kit03 ], and more. In this work, we prove that there exist particular, sim-
ple spin models that are universal: they can replicate to any desired accuracy
the entire physics of any other quantum many-body system (including systems
composed not only of spins, but also bosons and fermions). This implies, in
particular, that the ground state, full energy spectrum and associated excited
states, all observables, correlation functions, thermal properties, time-evolution,
and also any local noise processes are reproduced by the universal model.

Note that this is a very di�erent notion of \universality" from that o f univer-
sality classes in condensed matter and statistical physics [Car96]. Universality
classes capture the fact that, if we repeatedly \zoom out" or course-grain the mi-
croscopic degrees of freedom of a many-body system, models that are microscop-
ically di�erent become increasingly similar (converge to the same limit under
this \renormalisation group 
ow"), and their macroscopic propert ies turn out
to fall into one of a small handful of possible classes. The \universality" we are
concerned with here [lCC16] has a completely di�erent and unrelated meaning.
It is closer to the notion of universality familiar from computing. A univ ersal
computer can carry out any possible computation, including simulating com-
pletely di�erent types of computer. Universal models are able to produce any
many-body physics phenomena, including reproducing the physics of completely
di�erent many-body models.

One might expect that universal models must be very complicated for their
phase diagram to encompass all possible many-body physics. In fact, some of
the models we show to be universal are amongst the simplest possible. In partic-
ular, we prove that allowing only the strengths of the local interactions to vary,
the Heisenberg model on a 2D square lattice of spin-1/2 particles (qubits) with
nearest-neighbour interactions and non-uniform coupling strengths is universal.
This is an important and somewhat surprising example, as it is a 2D model with
the simplest possible local degrees of freedom (qubits), short-range, two-body in-
teractions, and the largest possible local symmetry (fullSU(2) invariance). Yet
our results prove that by varying only the coupling strengths, the 2D Heisen-
berg model can replicate in a complete and rigorous sense the entirephysics of
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any other many-body model, including models with higher spatial dimensions,
long-range interactions, other symmetries, higher-dimensional spins, and even
bosons and fermions.

In addition to the new relationships this establishes between apparently very
di�erent quantum many-body models, with implications for our funda mental
understanding of quantum many-body physics, there are also potential prac-
tical applications of our results in the �eld of analogue quantum simulation.
There is substantial interest nowadays in using one quantum many-body sys-
tem to simulate the physics of another, and one of the most important appli-
cations of quantum computers is anticipated to be the simulation of quantum
systems [BMK10, GAN14, CZ12].

Two quite di�erent notions of Hamiltonian simulation are studied in the lit -
erature. The �rst concerns simulating the time-dynamics of a Hamiltonian on a
quantum computer using an algorithm originally proposed by Lloyd [Llo96], and
re�ned and improved in the decades since [BACS07, BCC+ 14, BCK15, LC16].
This is the quantum computing equivalent of running a numerical simulation
on a classical computer. However, it requires a scalable, fault-tolerant, digital
quantum computer. Except for small-scale proof-of-principle demonstrations,
this is beyond the reach of current technology.

The second notion, called \physical" or \analogue" { in the sense of \analo-
gous" { Hamiltonian simulation, involves directly engineering the Hamilto nian
of interest and studying its properties experimentally. (Akin to build ing a
model of an aerofoil and studying it in a wind tunnel.) This form of Hamil-
tonian simulation is already being performed in the laboratory using a variety
of technologies, including optical lattices, ion traps, superconducting circuits
and others [STH+ 99, Nat12, GAN14]. Just as it is easier to study a scale model
of an aerofoil in a wind tunnel than an entire aeroplane, the advantage of ar-
ti�cially engineering a Hamiltonian that models a material of interest, r ather
than studying that material directly, is that it is typically easier to me asure
and manipulate the arti�cially-engineered system. It is possible to measure the
state of a single atom in an optical lattice [SWE+ 10, BGP+ 09, GZHC09]; it
is substantially harder to measure e.g. the state of a single electronspin in a
particular 2D layer within a cuprate superconductor.

Many important theoretical questions regarding analogue quantum simula-
tion remain open, despite its practical signi�cance and experimental success [STH+ 99,
Nat12, GAN14]. Which systems can simulate which others? How can we char-
acterise the e�ect of errors on an analogue quantum simulator? (Highlighted in
the 2012 review article [CZ12] as one of the key questions in this �eld.) On a
basic level, what should the general de�nition of analogue quantum simulation
itself be? The notion of universality we develop here enables us to answer all
these questions.

1 Background and previous work
This computationally-inspired notion of physical universality has its origins in
earlier work on \completeness" of the partition function of certain classical

7



statistical mechanics models [VdNDB08, KZ12a, DlCDVdNB09 , DlCDBMD09 ,
KZ12b, XDlCD + 11]. Recent results by one of us and De las Cuevas built on
those ideas to establish the more stringent notion of universality for classical
spin systems [lCC16]. Related, more practically-focused notions have also been
explored in recent work motivated by classical Hamiltonian engineering experi-
ments [LHZ15]. Here we consider the richer and more complex setting of quan-
tum Hamiltonians, which requires completely di�erent techniques.

Pinning down precisely what it means for one many-body model to simu-
late the complete physics of another requires applying mathematical theory of
spectrum-preserving maps and Jordan algebras developed between the 1950s
and 80s, which has to our knowledge not arisen before in quantum information
theory. Using this, we are able to derive from basic operational considerations
the precise conditions under which one quantum many-body Hamiltonian ex-
hibits exactly the same physics as another. This is a necessary precursor to
establishing our main result { showing for the �rst time that there ex ist univer-
sal quantum Hamiltonians { and allows us to prove these new physics results
with full mathematical rigour (see part II for full technical details). However,
to our knowledge no general understanding { or even de�nition { of when one
Hamiltonian simulates the complete physics of another existed in the literature.
Thus this precursor to our main result may be of signi�cance in itself.

For our explicit constructions that establish the existence of universal Hamil-
tonians, we are able to draw on a long literature in the �eld of Hamiltonian
complexity [KKR06, OT08, AGIK09 , BL08, CM16, BH17], studying the compu-
tational complexity of estimating ground state energies by mappingthe problem
to ever-simpler quantum many-body systems. The computationalcomplexity of
the ground state energy problem for the Heisenberg model with arbitrarily vary-
ing local �elds was shown to be the maximum possible (QMA-complete [KSV02])
by Schuch and Verstraete [SV09]. The availability of local �elds breaks the
symmetry of the model, simplifying the analysis. The complexity of the pure
Heisenberg model without local �elds was not known until very recently, when
it was shown by two of us [CM16] to also be QMA-complete.

These results per se only concern the ground state energy, and moreover only
the computational complexity aspects of this single quantity; theydo not need to
address any of the physics of the resulting Hamiltonians beyond theground state
energy. Nonetheless, the \perturbative gadget" techniques developed to prove
Hamiltonian complexity results [KKR06, OT08] turn out to be highly useful in
constructing the full physical simulations required for our results. By combining
our new and precise understanding of physical Hamiltonian simulationwith
these perturbative gadget techniques, we are able to design new \gadgets" that
transform one many-body Hamiltonian into another whilst preserving its entire
physics and local structure, as required to construct universalmodels.

In this way, we are able to show how certain quantum many-body mod-
els can be transformed step-by-step into any other many-body Hamiltonian,
thereby establishing that these models are universal. On a high level,as dis-
cussed in [lCC16] for the classical case, this process can in some sense be viewed
as the \opposite" of a renormalisation group 
ow: depending on the initial
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microscopic parameter settings, universal Hamiltonians can \
ow" under this
sequence of transformations to any other many-body Hamiltonian, which can
have very di�erent physical characteristics. Note that our result is construc-
tive: it provides an e�ciently computable algorithm that, given a desc ription of
any quantum many-body Hamiltonian, produces the parameter settings of the
universal model that simulate this Hamiltonian.

In fact, we go beyond exhibiting individual examples, and completely clas-
sify the simulation power of all two-qubit interactions. From this, we see that
essentially all many-body models in 2D (or higher) with two-qubit inter actions
and individually tunable coupling strengths are universal (see partII ). The 2D
Heisenberg model, and also the 2D XY model (which has localU(1) invariance),
arise as important speci�c cases of this.

2 Hamiltonian simulation
We start by establishing precisely what it means for one quantum many-body
system to simulate another. Any non-trivial simulation of one Hamiltonian H
with another H 0 will involve encoding the �rst within the second in some way.
We want this encoding H 0 = E(H ) to \replicate all the physics" of the original
H system. To reproduce all static, dynamic and thermodynamic properties of
H , the encodingE needs to ful�l a long list of operational requirements:

(i). Clearly E(H ) should be a valid Hamiltonian: E(H ) = E(H )y.

(ii). E should reproduce the complete energy spectrum ofH : spec(E(H )) =
spec(H ). More generally, E(M ) should preserve the outcomes (eigenval-
ues) of any measurementM : spec(E(M )) = spec(M ).

(iii). Individual interactions in the Hamiltonian should be encoded separately:
E(

P
i � i hi ) =

P
i � i E(hi ). Otherwise, one would have to solve the full

many-body Hamiltonian in order to encode it, in which case there is little
point simulating it in the �rst place.

(iv). There should exist a corresponding encoding of states,Estate , such that
measurements on states are simulated correctly: for any observable A,
Tr( E(A)Estate (� )) = Tr( A� ).

(v). E should preserve the partition function (potentially up to a physically
unimportant constant rescaling): ZH 0(� ) = Tr( e� � E(H ) ) = cTr( e� �H ) =
c ZH (� ).

(vi). Time-evolution according to E(H ) should simulate time-evolution accord-
ing to H .

(vii). Errors or noise on the E(H ) system should correspond to errors or noise
on the H system.

We prove (see part II ) that, remarkably, the very basic requirements (i)
to (iii) already imply that all other operational requirements are satis�ed too.

9
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Figure 1: Simulating one Hamiltonian within the low-energy space of another.
H 0 (on right) simulates H (on left) to precision (�; � ) below energy cut-o� �.

Furthermore, any encoding mapE that satis�es them must have a particularly
simple mathematical form:

E(H ) = U(H � p � �H � q)Uy (1)

for some unitary U and non-negative integersp, q such that p + q � 1. ( �H
denotes complex conjugation ofH .)

This characterisation of Hamiltonian encodings holds if the simulation isto
exactly replicate all the physics of the original. But in practice no simulation
will ever be exact. What if the simulator Hamiltonian H 0 only replicates the
physics of the original Hamiltonian H up to some approximation? As long as
this approximation can be made arbitrarily accurate, H 0 will be able to replicate
the entire physics ofH to any desired precision.

Furthermore, it is clearly su�cient if H 0 replicates the physics ofH for
energies below some energy cut-o� � if that cut-o� can be made arb itrarily
large (see Figure1). Due to energy conservation, any initial state with energy
less than the energy cut-o� will not be a�ected by the high-energy sector. Indeed,
as long as the cut-o� is larger than the maximum energy eigenvalue ofH , this
means that H 0 can simulate all possible states ofH . This also holds for all
thermodynamic properties; any error in the partition function due to the high-
energy sector is exponentially suppressed as a function of the cut-o�. In practice,
one is often only interested in low-temperature properties of a quantum many-
body Hamiltonian, as these are the properties relevant to quantumphases and
quantum phase transitions. In that case, the energy cut-o� does not even need
to be large, merely su�ciently above the lowest excitation energy. We therefore
want to simulate H in the low-energy subspace ofH 0.

Finally, for a good simulation we would also like the encoding to belocal,
in the sense that each subsystem of the original Hamiltonian corresponds to
a distinct subset of particles in the simulator Hamiltonian. This will enable
us to map local observables on the original system to local observables on the
simulator system, as well as to e�ciently prepare states of the simulator system.

10



By making all the above mathematically precise, we show that this neces-
sarily leads to the following rigorous notion of Hamiltonian simulation (also see
Figure 1):

De�nition 1 (Analogue Hamiltonian simulation) A many-body Hamilto-
nian H 0 simulates a Hamiltonian H to precision (�; � ) below an energy cut-o� �
if there exists a local encodingE(H ) = V (H 
 P + �H 
 Q)V y, where V =

N
i Vi

for some isometriesVi acting on 0 or 1 qudits of the original system each, and
P and Q are locally orthogonal projectors, such that:

(i). There exists an encoding eE(H ) = eV (H 
 P + �H 
 Q) eV y such that eE( 1 ) =
P� �( H 0) and keV � V k � � ;

(ii). kH 0
� � � eE(H )k � � .

Here, P� �( H 0) denotes the projector onto the subspace spanned by eigenvectors
of H 0 with eigenvalues below �, and we write H 0

� � = P� �( H 0) H 0.
The �rst requirement in De�nition 1(i) states that, to good approximation

(within error � ), the local encoding E approximates an encoding eE onto low-
energy states ofH 0. The second requirement,1(ii) , says that the map eE gives a
good simulation of H to within error � .

This de�nition, which we show follows from physical requirements, turns out
to be a re�nement of a de�nition of simulation introduced in prior work [BH17]
in the context of Hamiltonian complexity theory. There are two impor tant
di�erences. We allow the encoding mapE to be anything that satis�es the
physical requirements(i) to (iii) from the previous section, which can be more
complicated than a single isometry. On the other hand, we restrictE to be local,
since we require simulations to preserve locality. Note that if� = � = 0 and
� ! 1 , the simulation is exact. Increasing the accuracy of the simulation will
typically require expending more \e�ort", e.g. by increasing the energy of the
interactions.

We are usually interested in simulating entire quantum many-body models,
rather than individual Hamiltonians. By \model", we mean very gener ally here
any family of Hamiltonians. In the many-body models usually encountered in
physics, these Hamiltonians are typically related to one another in some way.
For example, the 2D Heisenberg model consists of all Hamiltonians with nearest-
neighbour Heisenberg interactions on a 2D square lattice of some given size.

When we say that a modelA can simulate another modelB , we mean it
in the following strong sense: any HamiltonianH on n qudits (d-dimensional
spins) from model B can be simulated by some HamiltonianH 0 on m qudits
from model A, and this simulation can be done toany precision �; � with as
large an energy cut-o� � as desired. The simulation is e�cient if each qudit of
the original system is encoded into a constant number of qudits in the simulator
(eachVi in De�nition 1 maps to O(1) qudits), H 0 is e�ciently computable from
H , and the energy overhead and number of qubits of the simulation scales at
most polynomially (kH 0k = poly( n; 1=�; 1=�; �) and m = poly( n; 1=�; 1=�; �)).
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Figure 2: Schematic illustrating simulation of one Hamiltonian with another.
Each logical (red) qubit is encoded within 4 physical (blue) qubits, forced into
their ground space by strong pairwise interactions. Interactionsbetween the
physical qubits implement e�ective interactions between the logicalqubits. An
error on a physical qubit only a�ects one logical qubit.

3 Implications of simulation
We arrived at a rigorous notion of Hamiltonian simulation by requiring th e sim-
ulation to approximate the entire physics to arbitrary accuracy. T his is clearly
very strong. Just as exact simulation preserves all physical properties perfectly,
approximate simulation preserves all physical properties approximately. First,
all energy levels are preserved up to any desired precision� . Second, by locality
of E, for any local observableA on the original system there is a local observ-
able A0 on the simulator and a local map Estate (� ) such that applying A0 to
Estate (� ) perfectly reproduces the e�ect of A applied to � . This applies to all
local observables, all order parameters (including topological order), and all cor-
relation functions. Thus all these static properties of the original Hamiltonian
are reproduced by the simulation.

Third, Gibbs states of the original system correspond to Gibbs states of
the simulator, and the partition function of H is reproduced by H 0, up to a
physically irrelevant constant rescaling and an error that can be exponentially
suppressed by increasing the energy cut-o� � and improving the precision � .
More precisely, if the original and simulator Hamiltonians have local dimension
d, then

jZ H 0(� ) � (p + q)ZH (� )j
(p + q)ZH (� )

�
dm � n e� � �

(p + q)e� � kH k
+ ( e�� � 1): (2)

Since it is able to reproduce the partition function to any desired precision, all
thermodynamic properties of the original Hamiltonian are reproduced by the
simulation.

Finally, all dynamical properties are also reproduced to any desiredprecision.
More precisely, the error in the simulated time-evolution grows only linearly in
time (which is optimal without active error correction), and can be suppressed
to any desired level by improving the approximation accuracy� and � :

ke� iH 0t Estate (� )eiH 0t � E state (e� iHt �e iHt )k1 = O(t� + � ): (3)

We can also derive some important consequences for simulation errors and
fault-tolerance. A recurring criticism of analogue Hamiltonian simulation is that,
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because it does not implement any error-correction, errors will accumulate over
time and swamp the simulation. A common counter-argument is that any real
physical system is itself always subject to noise and errors. If theproperties
of its Hamiltonian are sensitive to noise, the behaviour of the real physical
system will also include the e�ects of the noise, and it is that which we wish
to simulate. There is truth to both sides. In the absence of error-correction,
errors will accumulate over time. It is also true that the same will happen in the
original physical system, so this may not matter. But only if noise and errors
in the simulation mimic the noise and errors experienced by the real physical
system we are trying to simulate.

Fully justifying this would require modelling the noise and error processes
in the physical system, and showing that the natural noise and error processes
occurring in the particular simulator being used do indeed faithfully reproduce
the same e�ects. Even then, the validity of this argument rests onthe validity of
the noise model. Ultimately, determining whether or not a simulation is accurate
always comes down to testing its predictions in the laboratory. But with our
precise de�nition of Hamiltonian simulation in hand, we can take a signi�cant
step towards justifying generally why lack of error correction maynot be an issue.
Most natural noise models are local: physical errors tend to act onneighbouring
particles, not across the entire system. The de�nition of Hamiltonian simulation
arrived at in the previous section immediately implies that local errors in the
original system correspond to local errors in the simulator.

But we go further than this. We prove that, under a reasonable physical as-
sumption, a local error a�ecting the simulator system approximates arbitrarily
well the encoded version of some local error on the original system. More pre-
cisely, if we take the energy cut-o� � to be large enough, errors on the simulator
system are unlikely to take the simulated state out of the low-energy space of
H 0. Assume that this happens with probability at most � , for some� � � . Then
for any noise operationN 0 acting on ` qudits of the simulator system, there is
always some noise operationN on at most ` qudits of the original system (which
we can easily write down) such that, for any state� , the e�ect of N 0 on the
simulator approximates (again, to any desired precision) the e�ectof N on the
system being simulated. Or, to state this mathematically:

Estate (N (� )) = N 0(Estate (� )) + O(
p

� ) (4)

where N and N 0 are superoperators. The fact we can prove the result this way
around is crucial: it shows that any local noise and errors that might occur in
our simulator simply reproduce the e�ects of local noise and errorsin the original
physical system. This is much stronger than merely showing that errors on the
original system can be simulated.

4 Universal Hamiltonians
The notion of Hamiltonian simulation we have arrived at is extremely demand-
ing. It is not a priori clear whether any interesting simulations exist at all. In
fact, not only do such simulations exist, we prove that there are even universal
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quantum simulators. A model is \universal" if it can simulate any Hamiltonian
whatsoever, in the strong sense of simulation discussed above. Depending on
the target Hamiltonian, this simulation may or may not be e�cient. In g eneral,
the simulation will be e�cient for target Hamiltonians with local interac tions
in the same (or lower) spatial dimension. Whereas, whilst universal models
can also simulate Hamiltonians in higher spatial dimensions with only modest
(polynomial) system-size overhead, this comes at an exponential cost in energy.

Remarkably, even certain simple 2D quantum spin-lattice models are uni-
versal. To show this, we in fact prove a still stronger result. We completely
classify all two-qubit interactions (i.e. nontrivial interactions betw een two spin-
1/2 particles) according to their simulation ability. This classi�cation t ells us
which two-qubit interactions are universal. The universal class turns out to
be identical to the class of QMA-complete two-qubit interactions from quan-
tum complexity theory [ CM16], where QMA is the quantum analogue of the
complexity class NP [KSV02].

The classi�cation also shows that there are two other classes of two-qubit
interaction, with successively weaker simulation ability. Combining our Hamil-
tonian simulation results with previous work [BH17], we �nd that there is a
class of two-qubit interactions that can simulate any stoquastic Hamiltonian,
i.e. any Hamiltonian whose o�-diagonal entries in the standard basis are non-
positive. This is the class of Hamiltonians believed not to su�er from the sign-
problem in numerical Monte-Carlo calculations. Another class is able,by previ-
ous work [lCC16], to simulate any classical Hamiltonian, i.e. any Hamiltonian
that is diagonal in the standard basis.

The 2D Heisenberg- and XY-models (with non-uniform coupling strengths)
are important examples which we show fall into the �rst category, hence are uni-
versal simulators. The 2D (quantum) Ising model with transverse�elds falls into
the second category, so can simulate any other stoquastic Hamiltonian [BH17].
The 2D classical Ising model with �elds falls into the third category, so is an
example of a universal classical Hamiltonian simulator [lCC16].

The universality proof involves chaining together a number of steps, some
of which are shown in Figure 3. In fact, most of the technical di�culty lies
in proving universality of the Heisenberg and XY interactions. Once these are
shown to be universal, it is relatively straightforward to use recently developed
techniques [CM16, PM17] to show that any other Hamiltonian from the uni-
versal category can simulate one of these two. Hence, by universality of the
Heisenberg or XY interactions, such Hamiltonians can also simulate any other
Hamiltonian. We now sketch the universality proof for these two interactions.
(See part II for full technical details.)

The Heisenberg interactionhHeis = � x 
 � x + � y 
 � y + � z 
 � z (where � x;y;z

are the Pauli matrices) has full local rotational symmetry. Mathematically, this
is equivalent to invariance under arbitrary simultaneous local unitary rotations
U 
 U. The XY interaction hXY = � x 
 � x + � y 
 � y is invariant under
arbitrary rotations in the z-plane, i.e. U 
 U with U = ei�� z for any angle � .
Any Hamiltonian composed of just one of these types of interactioninherits
the corresponding symmetry. Thus all its eigenspaces also necessarily have this
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Heisenberg interactions XY interactions

2-local Pauli interactions with no� y 's

Arbitrary (2k + 1) -local terms with no� y 's

Arbitrary real 2k-local qubit Hamiltonian

Arbitrary k-local qubit Hamiltonian

Bosons Fermions

Figure 3: Part of the sequence of simulations used in this work. An arrow from
one box to another indicates that a Hamiltonian of the �rst type can simulate
a Hamiltonian of the second type.

symmetry. Yet if it is to be universal, it must simulate Hamiltonians that do
not have this symmetry.

Before addressing symmetry, however, there is a more elementary obstacle
to overcome. All matrix elements of hHeis or hXY are real numbers (in the
standard basis). Thus any Hamiltonian built out of these interactions is also
real. Yet if it is to be universal, it must simulate Hamiltonians with complex
matrix elements.

A simple encoding overcomes this restriction, by adding an additionalqubit
and encoding the real and imaginary parts ofH separately, controlled on the
state of the ancilla qubit. The Hamiltonian H 0 = Re( H ) � Im(H ) is clearly real
and is easily seen to be an encoding ofH , sinceH 0 = H 
j + y ih+ y j+ �H 
j� y ih� y j,
where j� y i = ( j0i � i j1i )=

p
2. To make this encoding local, it can be adjusted

to a simulation where there is an ancilla qubit for each qubit of the system, but
these ancillas are forced by additional strong local interactions tobe in the two
dimensional subspace spanned byj+ y i 
 n ; j� y i 
 n .

To overcome the symmetry restriction, we develop more complicated simu-
lations based around the use of \perturbative gadgets" (a technique originally
introduced to prove QMA-completeness results in Hamiltonian complexity the-
ory [KKR06, OT08]). In a perturbative gadget, a heavily weighted term CH0

(for some large constantC) dominates the overall Hamiltonian H 0 = CH0 + H1

such that the low-energy part of H 0 is approximately just the ground space of
H0. Within this low-energy subspace, an e�ective Hamiltonian is generated by
H1 and can be calculated using a rigorous version of perturbation theory [BH17].
The �rst-order term in the perturbative expansion is given by H1 projected into
the ground space ofH0, as one might expect. But if this term vanishes, then
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the more complicated form of higher order terms may be exploited togenerate
more interesting e�ective interactions.

For most of our simulations, H0 is used to project a system of ancilla qubits
into a �xed state, such that the e�ective Hamiltonian that this gene rates cou-
ples the remaining qubits. This type of gadget is known in the Hamiltonian
complexity literature as a mediator qubit gadget [OT08], because the ancilla
qubits are seen to \mediate" an e�ective interaction between the other qubits
in the system.

But in order to break the symmetry of the Heisenberg and XY interactions, it
is necessary for the encoded Hamiltonian to act not on the physicalqubits of the
system, but on qubits encoded into a subspace of multiple physical qubits. To
achieve this, we design a four-qubit gadget where the strongH0 term, consisting
of equally weighted interactions across all pairs of qubits, has a two-fold degen-
erate ground space. This two-dimensional space can be used to encode a qubit.
This gadget is used repeatedly to encode all qubits of the systems separately, as
illustrated in Figure 2. We then add less heavily weighted interactions acting
between qubits in di�erent gadgets, in order to generate e�ective interactions
between the encoded qubits. These interactions are calculated using a precise
version of second-order perturbation theory, which accounts rigorously for the
approximation errors resulting from neglecting the higher-order terms [BH17].
Combined with a new mediator gadget, together with previously known gad-
gets [OT08] which allow many-body interactions to be simulated using two-body
interactions, this su�ces to show that the Heisenberg and XY inter actions can
simulate all real local Hamiltonians, and hence all local Hamiltonians using the
complex-to-real encoding described above.

In order to show that Hamiltonians with arbitrary long-range intera ctions
can be simulated with a 2D lattice model, there is a �nal step: embedding an
arbitrary interaction pattern within a square lattice. This can be ac hieved by
e�ectively drawing the long-range interactions as lines on the lattice, and using
further perturbative gadgets to remove crossings between lines[OT08]. This
step requires multiple rounds of perturbation theory, which can result in the
�nal Hamiltonian containing local interaction strengths that scale e xponentially
in the number of particles. Thus the �nal simulation, whilst e�cient in t erms
of the number of particles and interactions, is not necessarily e�cient in terms
of energy cost for arbitrary Hamiltonians. For example, we do not know how
to construct an energy-e�cient simulation of a 3D lattice Hamiltonian using a
2D lattice model, nor do we necessarily expect it to be possible. However, full
e�ciency is recovered when the original Hamiltonian is spatially sparse[OT08]
(a class which encompasses all 2D lattice Hamiltonians). Finally, if we want to
simulate indistinguishable particles, one can verify that standard techniques for
mapping fermions or bosons to spin systems give the required simulations. (See
part II for details.)
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5 Conclusions
We close by highlighting some of the limitations of our results, and possible
future directions. One should note that whilst our strong notion of simulation
preserves locality in the sense that a few-particle observable in theoriginal
system will correspond to a few-particle observable in the simulator, simulating
e.g. a 3D system in a 2D system necessarily means that the corresponding
observables in the simulation will not always be on nearby particles. Also, to
simulate higher-dimensional systems in 2D, our constructions require very large
coupling strengths.

From the analogue Hamiltonian engineering perspective, our resultsshow
that surprisingly simple types of interactions su�ce for building a univ ersal
Hamiltonian simulator. Together with the ability to prepare simple initial states,
these would even su�ce to construct a universal quantum computer, or to per-
form universal adiabatic quantum computation. (However, error correction and
fault-tolerance, which are essential for scalable quantum computation, would re-
quire additional active control.) The converse point of view is that, as these ap-
parently restrictive models turn out to be universal, simulating them on a quan-
tum computer may be more di�cult than previously thought. Furthe rmore, our
mathematical constructions require extremely precise control over the strengths
of individual local interactions across many orders of magnitude. Though some
degree of control is possible in state-of-the-art experiments [Nat12, GAN14],
the requirements of our current universal models are beyond what is currently
feasible. On the other hand, it is already possible to engineer more complex
interactions than those we have shown to be universal. Now we haveshown
for that universal models exist, and need not be extremely complex, it may be
possible to construct other universal models tailored to particularexperimental
setups.

From the fundamental physics perspective, an important limitation of our
current results is that the models we show to be universal are not translation-
ally invariant. (The same is also true of the earlier classical results [lCC16].)
Although we show there are universal models in which all interactionshave
an identical form, our proofs rely heavily on the fact that the strengths of
these interactions can di�er from site to site. Classic results showing that
local symmetries together with translational-invariance can restrict the possi-
ble physics [MW66, Hoh67] suggest breaking translational-invariance may be
crucial for universality. On the other hand, much of the intuition be hind our
proofs comes from Hamiltonian complexity, where recent results have shown
that translational-invariance is no obstacle [GI09, BCO16].

In light of our results, determining the precise boundary between simplic-
ity and universality in quantum many-body physics is now an important open
question for future research.
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Part II

Technical content

6 Notation and terminology
As usual, B(H) denotes the set of linear operators acting on a Hilbert space
H. For conciseness, we sometimes also use the notationM n for the set of all
n � n matrices with complex entries. Hermn denotes the subset of alln � n
Hermitian matrices. 1 denotes the identity matrix. For integer n, [n] denotes
the set f 1; : : : ; ng.

If R; R0 are rings, a ring homomorphism � : R ! R0 is a map that is
both additive and multiplicative: 8a; b 2 R : � (ab) = � (a)� (b) and � (a + b) =
� (a) + � (b). Similarly, a ring anti-homomorphism is an additive map that is
anti-multiplicative: � (ab) = � (b)� (a). If � ( 1 ) = 1 , we say the map isunital .

For a ring R, the correspondingJordan ring Rj is the ring obtained from R
by replacing multiplication with Jordan multiplication f abg := ab+ ba. A Jordan
homomorphism � on R is an additive map such that 8a; b 2 R : � (ab+ ba) =
� (a)� (b) + � (b)� (a). If R is not of characteristic 2, this is equivalent to the
constraint that 8a 2 R : � (a2) = � (a)2. Note that any ring homomorphism is a
Jordan homomorphism, but the converse is not necessarily true.

spec(A) denotes the spectrum ofA 2 M n , i.e. the set of values� 2 C such
that A� � 1 is not invertible. (This of course coincides with the set of eigenvalues,
ignoring multiplicities.) We say that � : M n ! M m is invertibility-preserving if
� (A) is invertible in M m for all invertible A 2 M n . We say that � is spectrum-
preserving if spec(� (A)) = spec(A) for all A 2 M n .

For an arbitrary Hamiltonian H 2 B (Cd), we let P� �( H ) denote the orthog-
onal projector onto the subspaceS� �( H ) := spanfj  i : H j i = � j i ; � � � g.
We also letH 0j � �( H ) denote the restriction of some other arbitrary Hamiltonian
H 0 to S� �( H ) , and write H j � � := H j � �( H ) and H � � := HP � �( H ) .

We say that a Hamiltonian H 2 B ((Cd)
 n ) is k-local if it can be written as
a sum of terms such that eachhi acts non-trivially on at most k subsystems
of (Cd)
 n . That is, hi 2 B ((Cd)
 k ) and H =

P
i hi 
 1 where the identity

in each term in the sum acts on the subsystems where thathi does not. An
operator on a composite Hilbert space \acts trivially" on the subsystems where
it acts as identity, and \acts non-trivially" on the remaining subsyst ems. We
will often employ a standard abuse of notation, and implicitly exend operators
on subsystems to the full Hilbert without explicitly writing the tensor product
with identity, allowing us e.g. to write simply H =

P
hi . We say that H is local

if it is k-local for somek that does not depend onn1.
We let X , Y , Z denote the Pauli matrices and often follow the condensed-

matter convention of writing XX for X 
 X etc. For example,XX + Y Y + ZZ
is short for X 
 X + Y 
 Y + Z 
 Z and is known as the Heisenberg (exchange)

1Technically, this makes sense only for families of Hamilton ians H , where we consider n
to be growing.
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interaction. The XY interaction is XX + Y Y.
Let M be a k-qudit Hermitian matrix. We say that U 2 SU(d) locally

diagonalisesM if U 
 k M (Uy)
 k is diagonal. We say that a setS of Hermitian
matrices is simultaneously locally diagonalisable if there existsU 2 SU(d) such
that U locally diagonalisesM for all M 2 S. Note that matrices in S may act
on di�erent numbers of qudits, so can be of di�erent sizes.

We will often be interested in families of Hamiltonians. For a subsetS of
interactions (Hermitian matrices on a �xed number of qudits), we de�ne the
family of S-Hamiltonians to be the set of Hamiltonians which can be written
as a sum of interaction terms where each term is either picked fromS, with an
arbitrary positive or negative real weight, or is an arbitrarily weight ed identity
term. For example, H is a f ZZ g-Hamiltonian if it can be written in the form
H = � 1 +

P
i<j � ij Z i Z j for some �; � ij 2 R. A model is a (possibly in�nite)

family of Hamiltonians. Typically the Hamiltonians in a model will be related in
some way, e.g. all Hamiltonians with nearest-neighbour Heisenberg interactions
on an arbitrarily large 2D lattice (the \2D Heisenberg model").

7 Hamiltonian encodings
Any non-trivial simulation of one Hamiltonian with another will involve en -
coding the �rst within the second in some way. Write H 0 = E(H ) for some
\encoding" map E that encodes a Hamiltonian H into some Hamiltonian H 0.
Any such encoding should ful�l at least the following basic requirements. First,
any observable on the original system should correspond to an observable on
the simulator system. Second, the set of possible values of any encoded ob-
servable should be the same as for the corresponding original observable. In
particular, the energy spectrum of the Hamiltonian should be preserved. Third,
the encoding of a probabilistic mixture of observables should be the same as a
probabilistic mixture of the encodings of the observables.

To see why this last requirement holds, imagine that we are asked to encode
observableA with probability p, and observableB with probability 1 � p. Then,
for any state � on the simulator system, the expected value of the encoded
observable acting on� should be the same as the corresponding probabilistic
mixture of the expected values of the encoded observablesA and B acting on
� . In order for this to hold for all states � , we need the mixture of observables
pA + (1 � p)B to be encoded as the corresponding probabilistic mixture of
encodings ofA and B .

These operational requirements correspond to the following mathematical
requirements on the encoding mapE:

1. E(A) = E(A)y for all A 2 Hermn .

2. spec(E(A)) = spec(A) for all A 2 Hermn .

3. E(pA + (1 � p)B ) = pE(A) + (1 � p)E(B ) for all A; B 2 Hermn and all
p 2 [0; 1].
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Of course, there are many other desiderata that we would likeE to sat-
isfy, such as preserving the partition function, measurement outcomes, time-
evolution, local errors, and others. For the Hamiltonian itself, we almost cer-
tainly want E to not only be convex, but also real-linear:E(

P
i � i hi ) =

P
i � i E(hi ),

so that a Hamiltonian expressed as a sum of terms can be encoded byencoding
the terms separately. However, we will see later that meeting justthe above
three basic requirements necessarily implies also meeting all these other opera-
tional requirements (which we will make precise).

It turns out there is a simple and elegant characterisation of what such
encodings have to look like. To prove this, we will need the following theorem
concerning Jordan ring homomorphisms.

Theorem 2 (follows from [ JR52 ], Theorem 4 and [ Mar67 ], Theorem 2)
For any n � 2, any Jordan homomorphism of the Jordan ringHermn can be
extended in one and only one way to a homomorphism of the matrix ring M n .

Theorem 2 was shown by Jacobson and Rickart forn � 3 [JR52], and by
Martindale for n = 2 [Mar67], in each case in a far more general setting than
we need here.

Lemma 3 Any unital, invertibility-preserving, real-linear map � : Hermn !
Hermm is a Jordan homomorphism.

Proof The argument is standard (see e.g. [H�S03]).
� (H � � 1 ) = � (H ) � � 1 , thus spec(� (H )) � spec(H ) since � is invertibility-

preserving. In particular, spec(� (P)) 2 f 0; 1g for every projector P. Since� (P)
is also Hermitian, this implies � (P) is a projector.

By the spectral decomposition, any H 2 Hermn can be decomposed as
H =

P
i � i Pi wherePi are mutually orthogonal projectors and� i 2 R. For i 6= j ,

Pi + Pj is a projector, thus � (Pi + Pj ) is a projector and (� (Pi + Pj ))2 = � (Pi )+
� (Pj ), so that � (Pi )� (Pj ) + � (Pi )� (Pj ) = 0. Therefore, � (H )2 =

P
i � 2

i � (Pi )2 +P
i 6= j � i � j � (Pi )� (Pj ) =

P
i � 2

i � (Pi ) = � (H 2). �

Theorem 4 (Encodings) For any map E : Hermn ! Hermm , the following
are equivalent:

(i). For all A; B 2 Hermn , and all p 2 [0; 1]:

1. E(A) = E(A)y

2. spec(E(A)) = spec(A)

3. E(pA + (1 � p)B ) = pE(A) + (1 � p)E(B ).

(ii). There exists a unique extensionE0 : M n ! M m such that E0(H ) = E(H )
for all H 2 Hermn and, for all A; B 2 M n and x 2 R:

a. E0( 1 ) = 1

b. E0(Ay) = E0(A)y
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c. E0(A + B ) = E0(A) + E0(B )

d. E0(AB ) = E0(A)E0(B )

e. E0(xA ) = xE0(A).

(iii). There exists a unique extension E0 : M n ! M m such that E0(H ) = E(H )
for all H 2 Hermn with E0 of the form

E0(M ) = U
�
M � p � �M � q�

Uy (5)

for some non-negative integersp, q and unitary U 2 M m , where M � p :=L p
i =1 M and �M denotes complex conjugation.

We call a map E satisfying (i) to (iii) an encoding.

Note that (iii) is basis-independent, despite the occurrence of complex con-
jugation; taking the complex conjugation with respect to a di�erent basis is
equivalent to modifying U, which just gives another encoding. Given thatE0 is
unique, for the remainder of the paper we simply identifyE0 with E. In partic-
ular, this allows us to assume thatE is of the form speci�ed in part (iii) . The
characterisation (5) can equivalently be written as

E0(M ) = U
�
M 
 P + �M 
 Q

�
Uy (6)

for some orthogonal projectorsP and Q such that P + Q = 1 ; this alternative
form will sometimes be useful below. We think of the system on whichP and
Q act as an ancilla, and often label this \extra" subsystem by the letter E .

Proof (i) ) (ii) :
We �rst show that E is a Jordan homomorphism. Condition (i)1 states that E
preserves Hermn , and condition (i)2 implies that E is unital and invertibility-
preserving on Hermn , with E(0) = 0. We next check that E(0) = 0 together
with condition (i)3 are equivalent to real-linearity of E. For any � < 0, setting
p = �= (� � 1), B = pA=(p � 1) and using condition (i)3 gives

0 = E(0) = pE(A) + (1 � p)E(pA=(p � 1)) , � E(A) = E(�A ): (7)

Apply ( 7) to �A to get E(� 2A) = � 2E(A), showing that E is homogeneous for all
real scalars. Additivity follows by combining condition (i)3 and homogeneity:
E(A + B ) = E(2A)=2 + E(2B )=2 = E(A) + E(B ). Therefore E is also real-linear
so by Lemma3 E is a Jordan homomorphism.

By Theorem 2, there exists a unique homomorphismE0 : M n ! M m such
that E0(H ) = E(H ) for all H 2 Hermn . As E0 agrees with E on Hermn , it
satis�es (ii)a . As E0 is a homomorphism, it satis�es (ii)c and (ii)d by de�nition;
this also implies that E0(xA ) = E0(x 1 )E0(A) = E(x 1 )E0(A) = xE0(A) for any
x 2 R, so (ii)e holds.

We �nally prove (ii)b . It is su�cient to show that E0(i 1 )y = �E 0(i 1 ), because
if this holds we can expand any matrix A 2 M n as A = B + iC for some
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Hermitian matrices B and C to obtain

E0(Ay) = E0(B � iC ) = E0(B ) � E 0(C)E0(i 1 ) = E0(B )y + E0(C)yE0(i 1 )y (8)

= E0(B + iC )y = E0(A)y : (9)

To show E0(i 1 )y = �E 0(i 1 ), we �rst write i 1 as a linear combination of products
of Hermitian matrices. That this can be done is an immediate consequence of
the fact that M n is the enveloping associative ring of Hermn . However, it can
also be seen explicitly by writing

i jj ihj j = jj ihj j (i jj ihkj � i jkihj j)( jj ihkj + jkihj j) (10)

for any j , and somek 6= j ; summing this product over j , we obtain i 1 . Thus
we can write i 1 =

P
j A j B j Cj for Hermitian matrices A j , B j , Cj . By taking

adjoints on both sides, it follows that � i 1 =
P

j Cj B j A j . So we have

E0(i 1 )y = E0
� X

j

A j B j Cj

� y
=

� X

j

E(A j )E(B j )E(Cj )
� y

(11)

=
X

j

E(Cj )E(B j )E(A j ) = E0
� X

j

Cj B j A j

�
(12)

= E0(� i 1 ) = �E 0(i 1 ): (13)

(ii) ) (iii) :
Existence and uniqueness ofE0 were already shown in the previous part. In
the proof of the remaining claim, for readability we just use E to denote this
unique extension. First de�ne the complex structure J := E(i 1 ) � E (i ) (where
the latter notation is a convenient shorthand). We have

J 2 = E(i )E(i ) = E(i 2) = E(� 1) = � 1 ; (14)

thus J has eigenvalues� i . Furthermore,

J y = E(i )y = E(i y) = �E (i ) = � J; (15)

so J is anti-Hermitian, hence diagonalisable by a unitary transformation.
For any A 2 Hermn , we have

J E(A) = E(i )E(A) = E(iA ) = E(Ai ) = E(A)J; (16)

so that [E(A); J ] = 0. Thus E(A) and J are simultaneously diagonalisable for all
A. H = H + � H � therefore decomposes into a direct sum of the� i eigenspaces
of J , on which E(A) = A+ � A � acts invariantly.

Now, restricting to either of these invariant subspaces,

E(A)j � = A � (17)

E(iA )j � = JA � = � iA � (18)

E(AB )j � = E(A)E(B )j � = A � B � (19)

E(Ay)j � = E(A)y j � = Ay
� : (20)
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Thus E = E+ � E � decomposes into a direct sum of a *-representationE+ (A) :=
E(A)j+ and an anti-*-representation1 E� (A) := E(A)j � . Since for any vector
j i 2 Cm , E� ( 1 ) j i = 1 j i = j i , these (anti-)*-representations are necessarily
non-degenerate.

By a standard result on the representations of �nite-dimensionalC*-algebras
[Dav91, Corollary III.1.2], any non-degenerate *-representation ofM n is uni-
tarily equivalent to a direct sum of identity representations. If � is an anti-
*-homomorphism, let ' (A) := � (A). Then ' (iA ) = � (iA ) = � i� (A) = i' (A),
' (A + B ) = ' (A) + ' (B ), ' (Ay) = ' (A)y , and ' (AB ) = ' (A)' (B ). Thus
� (A) = ' (A) where ' is a *-homomorphism. Therefore, any non-degenerate
anti-*-representation is unitarily equivalent to a direct sum of complex conju-
gates of identity representations, which completes the argument.

(iii) ) (i) can readily be veri�ed directly. �

The above theorem characterises encodings of observables. Thisimmediately
tells us how to encode physical systems themselves, expressed asHamiltonians:
since the Hamiltonian itself is an observable, the encoding map must have the
same characterisation.

It is easy to see from the characterisation in part(iii) of the Theorem that any
encoding preserves all interesting physical properties of the original Hamiltonian.
For example, the set of eigenvalues is preserved, up to possibly duplicating each
eigenvalue the same number of times, implying preservation of the partition
function (up to an unimportant constant factor). It is also easy t o see that any
encodingE properly encodes arbitrary quantum channels: iff Ek :

P
k E y

k Ek =
1 g are the Kraus operators of the channel, then

X

k

E(Ek )yE(Ek ) = 1 : (21)

7.1 A map on states, Estate

We now show that, for any encodingE, there exists a corresponding mapEstate

that encodes quantum states� such that encoded observablesE(A) applied to
encoded statesEstate (� ) have correct expectation values.

First, note that for any observable A and any state � 0 on the simulator
system, we have

Tr( E(A)� 0) = Tr[ U(A 
 P + �A 
 Q)Uy� 0] (22)

= Tr[( A 
 1 )( 1 
 P)Uy� 0U)] + Tr[( �A 
 1 )( 1 
 Q)Uy� 0U] (23)

= Tr[ AF (� 0)] + Tr[ �A B (� 0))] = Tr( A� ) (24)

where

F (� 0) = Tr E [( 1 
 P)Uy� 0U]; B (� 0) = Tr E [( 1 
 Q)Uy� 0U]; (25)

� = F (� 0) + B (� 0) (26)

1By \anti-*-representation" we mean an anti-linear algebra homomorphism, not a
*-antihomomorphism (which would be a linear map preserving adjoints that reverses the order
of multiplication).
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and we label the second subsystemE as discussed after (6). Note that F (� 0)
and B (� 0) are both positive but not necessarily normalised, but� is normalised.

Therefore any mapEstate (� ) on states� such that � = F (Estate (� ))+ B (Estate (� ))
will preserve measurement outcomes appropriately. One naturalchoice is

Estate (� ) =

(
U(� 
 � )Uy for some� such that P � = � if P 6= 0

U(�� 
 � )Uy for some� such that Q� = � otherwise.
(27)

Then in the former caseF (Estate (� )) = � , B (Estate (� )) = 0; and in the latter
case the roles ofF and B are reversed.

We now show that Estate simulates time-evolution correctly too. We have

F (e� i E(H ) t � 0ei E(H ) t ) = e� iHt F (� 0)eiHt ; (28)

B (e� i E(H ) t � 0ei E(H ) t ) = eiHt B (� 0)e� iHt : (29)

This is why they are labelled with the letters F and B : the F part evolves
forwards in time while the B part evolves backwards in time. Taking � 0 =
Estate (� ), we have proven the following result.

Proposition 5 For any encoding E, the corresponding mapEstate satis�es the
following:

(i). Tr ( E(A)Estate (� )) = Tr( A� )

(ii). For any time t,

e� i E(H ) t Estate (� )ei E(H ) t =

(
Estate (e� iHt �e iHt ) if p � 1
Estate (eiHt �e � iHt ) if p = 0 .

(30)

It is worth highlighting the last point. We see that if p � 1, evolving ac-
cording to E(H ) for time t simulates evolving according toH for time t, as we
would expect; but that if p = 0, we simulate evolution according to H for time
� t. That is, if our encoding only includes copies of �H , we simulate evolution
backwards in time. To avoid this issue, we de�ne the concept of astandard
encoding as one wherep � 1, and hence which is able to simulate evolution
forward in time.

De�nition 6 (Standard encoding) An encodingE(M ) = U(M � p � �M � q)Uy

is a standard encodingif p � 1.

7.1.1 Gibbs-preserving state mappings
The choice ofEstate in (27) is convenient, as it allows us to use the same mapping
E for both the Hamiltonian and for observables. However, it does notmap Gibbs
statese� �H =Tr( e� �H ) of the original system to Gibbs statese� � 0H 0

=Tr( e� � 0H 0
)

of the simulator. If we have limited ability to manipulate or prepare sta tes of the
simulator, it may be di�cult to prepare a state of the form ( 27). At equilibrium,
the system will naturally be in a Gibbs state. From this perspective, it would be
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more natural if the state mapping identi�ed Gibbs states of the original system
with Gibbs states of the simulator.

An alternative choice of Estate does map Gibbs states to Gibbs states:

Estate (� ) =
E(� )

Tr[ E(� )]
=

1
p + q

U(� 
 P + �� 
 Q)Uy (31)

where p = Tr( P) and q = Tr( Q). However, to obtain the correct measurement
outcome probabilities, we now need to choose a slightly di�erent mapping for
observables:1

Emeas(A) =

(
p+ q

p U(A 
 P)Uy if P 6= 0
p+ q

q U( �A 
 Q)Uy otherwise.
(32)

For simplicity, in the remainder of the paper we will state and prove our re-
sults for the choice of state mappingEstate from (27), so that both Hamiltonians
and observables are encoded byE. However, our results also go through with
the appropriate minor modi�cations for the choice of Gibbs-preserving Estate

from (31), where the simulator Hamiltonian is still constructed using E but
observables are encoded by theEmeas from (32).

Note that Emeas has been chosen so that measuringEmeas(A) will only pick
up the F (� 0) part of a state � 0 on the simulator. We therefore include results
concerning the behaviour ofF , in order to cover the choice ofEstate given in
(31), as well other mappings on states.

7.2 The complex-to-real encoding
The only nontrivial encoding (as opposed to simulation, q.v.) that we will need
to use is an encoding of complex Hamiltonians as real Hamiltonians.

Lemma 7 There exists an encoding' such that for any Hamiltonian H 2
B(Cd), the encoded HamiltonianH 0 = ' (H ) 2 B (R2d) is real.

Proof This follows from the canonical Hilbert space isomorphismCd ' R2d

where the latter is endowed with a linear complex structureJ .
Concretely, let

J :=
�

0 1 d

� 1 d 0

�
= iY 
 1 d (33)

where where1 d is the d � d identity matrix, and de�ne the mapping

' : B(Cd) ! B (R2d)

' (M ) = Re M � ReM + J Im M � Im M:
(34)

1The Hamiltonian is of course also an observable. With this ch oice of state mapping, to
construct the simulator Hamiltonian we must still use the ma pping H 0 = E(H ). But if we
want to measure the Hamiltonian { i.e. carry out the measurement on the simul ator that
corresponds to measuring the energy of the original system { we must measure Emeas (H ).
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