4,005 research outputs found

    Multi-node approach for map data processing

    Get PDF
    OpenStreetMap (OSM) is a popular collaborative open-source project that offers free editable map across the whole world. However, this data often needs a further on-purpose processing to become the utmost valuable information to work with. That is why the main motivation of this paper is to propose a design for big data processing along with data mining leading to the obtaining of statistics with a focus on the detail of a traffic data as a result in order to create graphs representing a road network. To ensure our High-Performance Computing (HPC) platform routing algorithms work correctly, it is absolutely essential to prepare OSM data to be useful and applicable for above-mentioned graph, and to store this persistent data in both spatial database and HDF5 format.Web of Science8971049

    Mobility Data Mining for Rural and Urban Map-Matching

    Get PDF
    Ajalis-ruumiliste andmete kogumine on hoogustunud erinevates rakendustes ja seadmetes. Globaalne positsiooneerimise suĢˆsteem (GPS) on koĢƒige populaarsem viis asukoha teave saamiseks. Kaardipunktide vastavusse seadmine on konseptsioon, mis puĢˆuĢˆab GPS andmeid trajektooris viia vastavusse reaalse teedevoĢƒrguga. GPS andmete suurim probleem tuleneb andmete moĢƒoĢƒtmis-ja kogumisvigadest ja nende parandamine on suur vaĢˆljakutse. KaĢˆesoleva loĢƒputoĢˆoĢˆ eesmaĢˆrk on arendada andmete toĢˆoĢˆtlusvoo ja visualiseerimise raamistik muutmaks GPS punktid loogilisteks trajektoorideks ja vigaste GPS punktide asukohtade parandamiseks. Selle eesmaĢˆrgi saavutamiseks tutvustatakse uut laĢˆhenemist trajektooride mustrite leidmiseks.The functionality of gathering spatio-temporal data has seen increasing usage in various applications and devices. The Global Positioning System (GPS) is a satellite navigation system which is mostly used for gathering location information. Map-matching is the procedure of matching trajectories from a sequence of raw GPS data points to the appropriate road networks. GPS data errors are one of the biggest problems and correcting them is a big challenge. The main goal of this thesis work is to build a data pipeline and visualization framework for turning raw GPS data to trajectories and correcting erroneous GPS points by new map-matching approach. For achieving the goal a new approach for trajectory pattern mining is introduced

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    Get PDF
    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints

    Modelling blue-light ambulance mobility in the London metropolitan area

    Get PDF
    Actions taken immediately following a life-threatening incident are critical for the survival of the patient. In particular, the timely arrival of ambulance crew often makes the difference between life and death. As a consequence, ambulance services are under persistent pressure to achieve rapid emergency response. Meeting stringent performance requirements poses special challenges in metropolitan areas where the higher population density results in high rates of life-threatening incident occurrence, compounded by lower response speeds due to traffic congestion. A key ingredient of data-driven approaches to address these challenges is the effective modelling of ambulance movement thus enabling the accurate prediction of the expected arrival time of a crew at the site of an incident. Ambulance mobility patterns however are distinct and in particular differ from civilian traffic: crews travelling with ashing blue lights and sirens are by law exempt from certain traffic regulations; and moreover, ambulance journeys are triggered by emergency incidents that are generated following distinct spatial and temporal patterns. We use a large historical dataset of incidents and ambulance location traces to model route selection and arrival times. Working on a road routing network modified to reflect the differences between emergency and regular vehicle traffic, we develop a methodology for matching ambulances Global Positioning System (GPS) coordinates to road segments, allowing the reconstruction of ambulance routes with precise speed data. We demonstrate how a road speed model that exploits this information achieves best predictive performance by implicitly capturing route-specific patterns in changing traffic conditions. We then present a hybrid model that achieves a high route similarity score while minimising journey duration error. This hybrid model outperforms alternative mobility models. To the best of our knowledge, this study represents the first attempt to apply data-driven methodologies to route selection and estimation of arrival times of ambulances travelling with blue lights and sirens

    Review of current practices in recording road traffic incident data: with specific reference to spatial analysis and road policing policy

    Get PDF
    Road safety involves three major components: the road system, the human factor and the vehicle element. These three elements are inter-linked through geo-referenced traffic events and provide the basis for road safety analyses and attempts to reduce the number of road traffic incidents and improve road safety. Although numbers of deaths and serious injuries are back to approximately the 1950s levels when there were many fewer vehicles on the road, there are still over 100 fatalities or serious injuries every day, and this is a considerable waste of human capital. It is widely acknowledged that the location perspective is the most suitable methodology by which to analyse different traffic events, where by in this paper, I will concentrating on the relationship between road traffic incidents and traffic policing. Other methods include studying road and vehicle engineering and these will be discussed later. It is worth noting here that there is some division within the literature concerning the definitions of ā€˜accidentā€™ and ā€˜incidentā€™. In this paper I will use ā€˜incidentā€™ because it is important to acknowledge a vast majority of ā€˜road accidentsā€™ are in fact crimes. However I will use the term ā€˜accidentā€™ where it is referred to in the literature or relevant reports. It is important to mention here that a road traffic accident can be defined as ā€˜the product of an unwelcome interaction between two or more moving objects, or a fixed and moving objectā€™ (Whitelegg 1986). Road safety and road incident reduction relates to many other fields of activity including education, driver training, publicity campaigns, police enforcement, road traffic policing, the court system, the National Health Service and Vehicle engineering. Although the subject of using GIS to analyse road traffic incidents has not received much academic attention, it lies in the field of crime mapping which is becoming increasingly important. It is clear that studies have been attempted to analyse road traffic incidents using GIS are increasingly sophisticated in terms of hypotheses and statistical technique (for example see Austin, Tight and Kirby 1997). However it is also clear that there is considerable blurring of boundaries and the analysis of road accidents sits uncomfortably in crime mapping. This is due to four main reasons: - Road traffic incidents are associated with road engineering, which is concerned with generic solutions while road traffic analysis is about sensitivity to particular contexts. - Not all road traffic incidents are crimes - It is not just the police who have an interest in reducing road traffic incidents, other partners include local authorities, hospitals and vehicle manufacturers - The management of road traffic incidents is not just confined to the police GIS has been used for over thirty years however it has only been recently been used in the field of transportation. The field of transportation has come to embrace Geographical Information Systems as a keytechnology to support its research and operational need. The acronym GIS-T is often employed to refer to the application and adaptation of GIS to research, planning and management in transportation. GIS-T covers a broad arena of disciplines of which road traffic incident detection is just one theme. Others include in vehicle navigation systems. Initially it was only used to ask simple accident enquiries such as depicting the relative incidence of accidents in wet weather or when there is no street lighting, or to flag high absolute or relative incidences of accidents (see Anderson 2002). Recently however there has been increased acknowledgement that there is a requirement to go beyond these simple questions and to extend the analyses. It has been widely claimed by academics and the police alike that knowing where road accidents occur must lead to better road policing, in order to ensure that road policing becomes better integrated with other policing activities. This paper will be used to explore issues surrounding the analysis of road traffic accidents and how GIS analysts, police and policy makers can achieve a better understanding of road traffic incidents and how to reduce them. For the purpose of this study I will be trying to achieve a broader overview of the aspects concerning road accident analysis with a strong emphasis on data quality and accuracy with concern to GIS analysis. Data quality and accuracy are seen as playing a pivotal role in the road traffic management agenda because they assist the police and Local Authorities as to the specific location whereby management can be undertaken. Part one will consider the introduction to road incidents and their relationship with geography and spatial analysis and how this were initially applied to locating ā€˜hotspotsā€™ and the more recent theory of ā€˜accident migrationā€™. Part two will address current data issues of the UK collection procedure. This section will pay particular reference to geo-referencing and the implication of data quality on the procedure of analysing road incidents using GIS. Part three addresses issues surrounding the spatial analysis of road traffic incidents, including some techniques such as spatial autocorrelation, time-space geography and the modifiable area unit problem. Finally part four looks at the role of effective road traffic policing and how this can be achieved due to better understanding of the theory and issues arising from analysing road traffic incidents. It will also look at the diffusion and use of GIS within the police and local authorities
    • ā€¦
    corecore