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Mobility Data Mining for Rural and Urban Map-Matching 

Abstract: 

The functionality of gathering spatio-temporal data has seen increasing usage in various 

applications and devices. The Global Positioning System (GPS) is a satellite navigation 

system which is mostly used for gathering location information. Map-matching is the 

procedure of matching trajectories from a sequence of raw GPS data points to the 

appropriate road networks. GPS data errors are one of the biggest problems and correcting 

them is a big challenge. The main goal of this thesis work is to build a data pipeline and 

visualization framework for turning raw GPS data to trajectories and correcting erroneous 

GPS points by new map-matching approach. For achieving the goal a new approach for 

trajectory pattern mining is introduced. 

Keywords: 

Map-matching, GPS trajectories, GPS, visualization, space-time cube, temporal spatial 

data, movement, routing 

CERCS: P170 

Liikumisandmete andmekaeve meetodite kasutamine kaardipunktide 

vastavusse seadmiseks 

Lühikokkuvõte: 

Ajaliste ja ruumiliste andmete kogumine on hoogustunud erinevates rakendustes ja sead-

metes. Globaalne positsioneerimise süsteem (GPS) on kõige populaarsem viis asukohatea-

be saamiseks. Kaardipunktide vastavusse seadmine on kontseptsioon, mis püüab GPS 

andmeid trajektooris viia vastavusse reaalse teedevõrguga. GPS andmete suurim probleem 

tuleneb andmete mõõtmis- ja kogumise vigadest ja nende parandamine on suur väljakutse. 

Käesoleva lõputöö eesmärk on arendada andmete töötlusvoo ja visualiseerimise raamistik, 

et muuta GPS punktid loogilisteks trajektoorideks ja parandada vigaste GPS punktide asu-

kohad. Selle eesmärgi saavutamiseks tutvustatakse uut lähenemist trajektooride mustrite 

leidmiseks. 

Võtmesõnad: 

GPS trajektoorid, GPS, visualiseerimine, ajaline-ruumiline andmestik, liikumine, marsruu-

timine 

CERCS: P170 

 

 

  



3 

 

LIST OF FIGURES 

Figure 1. Map-matching task ................................................................................................ 9 

Figure 2. Paradigm of trajectory data mining [11] .............................................................. 10 

Figure 3. Space-time cube for representing the trajectory of a car [14].............................. 11 

Figure 4. MobCollector application .................................................................................... 13 

Figure 5. GPS points sampling time distribution ................................................................ 14 

Figure 6. Road network from OpenStreetMap .................................................................... 15 

Figure 7. Methodology overview ........................................................................................ 16 

Figure 8. Spatio-Temporal Kernel Window (STKW) principle [17] .................................. 18 

Figure 9. GPS points selection principle per road segment ................................................ 19 

Figure 10. Dynamic grid cell generation principle ............................................................. 20 

Figure 11. Step 1 of grid system creation ........................................................................... 20 

Figure 12. Step 2 of grid system creation: adding node buffers ......................................... 21 

Figure 13. Step 3 of grid system creation: removing intersections ..................................... 21 

Figure 14. Step 4 of grid system creation: add cells for roundabout .................................. 22 

Figure 15. Trajectory start/end point is outside grid cell .................................................... 23 

Figure 16. Different road segment cell types ...................................................................... 24 

Figure 17. Point inside the node cell ................................................................................... 25 

Figure 18. Points on wrong road segment ........................................................................... 25 

Figure 19. Wrongly matched GPS point ............................................................................. 26 

Figure 20. Orthogonal projection to closest point ............................................................... 27 

Figure 21. GPS data inside spatial filter .............................................................................. 29 

Figure 22. driving-type trajectories on the left;walking-type trajectories on the right ....... 30 

Figure 23. Trajectory visualization ..................................................................................... 31 

Figure 24. Errors in data source .......................................................................................... 31 

Figure 25. GPS error distribution by point .......................................................................... 32 

Figure 26. GPS error distribution by segment average ....................................................... 33 

Figure 27. Generated road segments grid system ............................................................... 34 

Figure 28. Example of two similar trajectories ................................................................... 35 

Figure 29. Comparison of original (in red) and matched (in green) trajectories ................ 36 

Figure 30. View for comparing matched trajectories .......................................................... 37 

Figure 31. K-shortest routes between two points ................................................................ 38 

Figure 32. Left - original trajectory; right - 500 alternative routes for origin-destination 

pair ............................................................................................................................... 39 

 



4 

 

Table of Contents 

1 Introduction ..................................................................................................................... 6 

1.1 General View and Motivation .................................................................................. 6 

1.2 Research Questions and Objectives ......................................................................... 6 

1.3 Scope ........................................................................................................................ 6 

1.4 Contributions ............................................................................................................ 7 

1.5 Road Map ................................................................................................................. 7 

2 State of the art ................................................................................................................. 8 

2.1 Introduction .............................................................................................................. 8 

2.1.1 GPS ................................................................................................................... 8 

2.1.2 Map-matching ................................................................................................... 8 

2.2 Related Work ........................................................................................................... 9 

2.2.1 Map-matching ................................................................................................... 9 

2.2.2 Trajectory Data Mining ................................................................................... 10 

2.2.3 Visualization ................................................................................................... 11 

2.3 Conclusion .............................................................................................................. 11 

3 Methodology ................................................................................................................. 13 

3.1 Introduction ............................................................................................................ 13 

3.1.1 GPS Data ............................................................................................................ 13 

3.1.2 Geographic Information System (GIS) Data ...................................................... 14 

3.2 Problem Statement ................................................................................................. 15 

3.3 System Design and Architecture ............................................................................ 15 

3.4 Adopted Methodology ........................................................................................... 16 

3.4.1 Data Pre-processing ........................................................................................... 17 

3.4.2 Trajectory Segmentation .................................................................................... 17 

3.4.3 Trajectory Classification .................................................................................... 18 

3.4.4 Dynamic Road Segments Grid System .............................................................. 18 

3.4.5 Trajectory Similarities ........................................................................................ 22 

3.4.6 Routing ............................................................................................................... 23 

3.4.7 Map-matching Process ....................................................................................... 23 

3.5 Conclusion .............................................................................................................. 27 

4 Results and Analysis ..................................................................................................... 29 

4.1 Introduction ............................................................................................................ 29 

4.2 Trajectory Pre-processing ...................................................................................... 29 



5 

 

4.2.1 Visualization ...................................................................................................... 30 

4.3 Dynamic Road Segments Grid System Creation ................................................... 32 

4.4 Trajectory Similarities ............................................................................................ 34 

4.5 Map-matching ........................................................................................................ 35 

4.5.1 Visualization ................................................................................................... 37 

4.6 Conclusion .............................................................................................................. 38 

5 Conclusions and Future Perspectives ............................................................................ 40 

5.1 Conclusion .............................................................................................................. 40 

5.2 Future Perspectives ................................................................................................ 40 

References ........................................................................................................................... 41 

Appendix ............................................................................................................................. 43 

I. Licence ...................................................................................................................... 43 

 

  



6 

 

1 Introduction 

1.1 General View and Motivation 

The functionality of gathering spatiotemporal data has seen increasing usage in various 

applications and devices. The Global Positioning System (GPS) is a satellite navigation 

system, which is mostly used for gathering location information. Different Intelligent 

Transportation Systems require navigation and location information and it is important 

that gathered trajectory data could be matched to spatial road networks. Map-matching is 

the procedure of matching trajectories from a sequence of raw GPS data points to the ap-

propriate road network segments. GPS data errors are one of the biggest problems and 

correcting them is a big challenge. There are multiple factors influencing GPS data accu-

racy: quality of GPS device, the position of satellites and the surrounding landscape. A 

good map-matching process needs to take into account the logic of the trajectory, high 

variance of road dynamics and the behaviour of the drivers. Analysing and mining the data 

from spatiotemporal aspect will be very helpful in the achievement of solving this prob-

lem. The current state of the art regarding map-matching problem has been moving to-

wards multi-track map-matching, which considers multiple trajectories instead of only 

one. This improves the matching accuracy when the GPS sampling rate is low or sampling 

error is high. Applying extra data feeds to multiple trajectories has shown promising re-

sults. 

1.2 Research Questions and Objectives 

The main goal of this thesis work is to build a data pipeline and visualization framework 

for turning raw GPS data to trajectories and correcting erroneous GPS points by new map-

matching approach. 

Research questions are the following: 

1. How to solve trajectory pattern extraction? 

2. How similar trajectories could help with map-matching process? 

3. How to validate trajectory correctness? 

 

Based on the research questions the objectives for the thesis are: 

 Designing a workflow for gathering and cleaning geospatial data for creating tra-

jectories for map-matching purposes 

 Extracting similarity patterns from trajectory data  

 Applying extracted similar routes for map-matching process 

 Using possible routing paths for validating trajectory paths 

 Implementing a visual framework to aid implementation and understanding 

1.3 Scope 

The need for matching sensor-gathered location data to correct map positions has existed 

for a long time for different Intelligent Transportation System applications. But in recent 

years the rise of location-tracking capable devices and technology-based business models 

like ridesharing has created even more demand for precise and scalable solutions. 
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1.4 Contributions 

As the outcome of the thesis a data pipeline for turning raw GPS data to trajectories and 

visualization framework will be created. A new approach for trajectory pattern mining is 

introduced based on GPS errors for map-matching purposes. 

 

1.5 Road Map 

In section 2 the state of the art in map-matching techniques and approaches will be intro-

duced. An overview of related research and future directions is given. Section 3 presents 

applied methodologies and technical implementation details. Section 4 gives an overview 

of results and analysis outcomes. Conclusions and future work ideas are discussed in sec-

tion 5.  
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2 State of the art 

The following chapter will introduce the domain and theoretical contributions of related 

research. 

2.1 Introduction 

The increasing popularity of different sensors gathering large spatiotemporal datasets (e.g. 

GPS tracks from navigation devices or call detail records from mobile phones) has made 

possible to extract more useful and diverse knowledge from it, which can be used in Loca-

tion Based Services (LBS). Some of the use cases of LBS are: fleet management, traffic 

monitoring, vehicle tracking, navigation, logistics and mobile commerce [1]. The main 

positioning technologies are Global Positioning System (GPS) and network-based (cellular 

or Wi-Fi networks). In this thesis the focus will be on GPS measurements. 

2.1.1 GPS 

Global Positioning System (GPS
1
) is capable of determining position on Earth. The system 

has at least 24 operational satellites orbiting the Earth at 20000 km. GPS requires 4 satel-

lites and distances between them and target position for determining latitude and longi-

tude. The moving-point trajectories are inherently imprecise, which is caused by the used 

measurement process and by the sampling approach. Measurements errors are caused by 

inaccurate GPS measurements. Sampling error is the uncertainty of the point movement 

between the times samples are taken. Current GPS technology allows determining position 

of a moving object with an accuracy of 2 meters. Determining the position every 2.5 sec-

onds has the worst-case error of 50 meters as measurement error. In practice these could 

be even 200 meters [2]. The distance between two GPS points is mostly bigger than the 

true distance because of the GPS measurement errors [3]. 

GPS devices are capable of collecting data about current location, time, speed, heading 

and other attributes. Due to GPS errors the raw trajectories do not align correctly with re-

al-world road networks.  

2.1.2 Map-matching 

Map matching is the procedure of matching trajectories from a sequence of raw GPS data 

points to the appropriate road network on the map. Figure 1 illustrates the map-matching 

task of finding the correct road segment from multiple options. The main map-matching 

approaches are: 

 Incremental: trajectories will be constructed on arrival of new data. Can generate 

vehicle paths on the fly. Used in navigation, where sampling rate is high.  

 Global: finds the globally optimal path after reading in complete trajectories. Fo-

cus on accuracy and robustness. 

 

                                                 
1
 http://www.gps.gov/   

http://www.gps.gov/
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Figure 1. Map-matching task 

 

2.2 Related Work 

2.2.1 Map-matching 

In the following section detailed overview of map-matching algorithms will be given. 

Map-matching algorithms can be categorized into groups [4,5]: 

 Geometric map-matching - only the shape of the road segments are considered 

and not the way these are connected. Like point-to-point (matching closest road 

network node to given GPS point), point-to-curve (matching closest road network 

segment to given GPS point), curve-to-curve. 

 Topological map-matching - map-matching uses the connectivity, geometry and 

contiguity of the links. 

 Probabilistic map-matching - such road segments are selected as candidates that 

intersect with the confidence region.  

 Advanced map-matching - usually combines both topological and probabilistic 

approaches. Concepts like probabilistic theory, Kalman Filter, fuzzy logic 

 

Purely geometric approaches are sensitive to measurement noise and sampling rate. A 

map-matching algorithm based on Hidden Markov Model (HMM) was developed focus-

ing on improving accuracy of noisy and sparse GPS data. HMM models the connectivity 

of the road network and considers multiple path hypotheses simultaneously [6]. A multi-

track map-matching algorithm called UrbMatch [7] was implemented for improving accu-

racy of map-matching by considering also additional urban area properties like high vol-

ume of road segments, diverse functionality of roads. The entire road network will be di-

vided into multiple smaller sub-networks to speed up the map matching through concur-

rent execution [7]. Common trajectories have usually many regularity patterns. The usual 

trajectory consists mostly only small number of all possible connected k-segments on the 

road network. Multi-track map-matching algorithm was developed to recover regularity 

patterns. The process starts with initialization of all road segments in the map. Each trajec-

tory sample point will be assigned to a segment (the optimization is determined by regu-

larity, proximity and consistency between segments). And those selected segments will be 
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stitched to a projected path. The problem can be divided to sub-problems, which allows 

analyzing a lot of data thanks to parallel work [8]. 

Different sampling rates require alternative approaches. For low sampling (one GPS point 

per 2 minutes or more) GPS data a global map-matching algorithm called ST-Matching [9] 

was implemented. It uses topological information about the road network and tem-

poral/speed constraints of road segments. A candidate will be constructed based on spatio-

temporal analysis and best path identified. It was based on the observations [9]: 

 Correct paths are more likely to be direct than roundabout 

 Correct paths are more likely to be inside the speed constraints of the road. 

2.2.2 Trajectory Data Mining 

The following chapter will give an overview of data mining techniques when dealing with 

trajectory data. 

Spatial data mining tries to discover new and useful patterns from spatial datasets. Spatial 

objects have implicit relationships (e.g. intersections, overlapping) between objects [10]. 

In a systematic approach (figure 2) to describe the field of trajectory data mining different 

steps were defined [11]: 

 Trajectory data requiring 

 Trajectory data preprocessing: noise filtering, segmentation, compression and map-

matching 

 Trajectory indexing and retrieval 

 Uncertainty in a trajectory 

 Trajectory pattern mining 

 Trajectory classification 

 Anomalies detection 

 
Figure 2. Paradigm of trajectory data mining [11] 
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Inside the system M-Atlas [12], which is a mobility data mining tool for storing, querying 

and mining trajectory data, basic mobility patterns were described [12]: 

 T-Flock - representing a spatiotemporal coincidence of a group of moving points. 

It represents the common behavior of vehicles using the same routes during same 

time intervals 

 T-Cluster - representing a group of similar trajectories. Multiple similarity func-

tions are available.  

 T-Pattern - representing trajectory segments that visit same regions with same se-

quence and with similar transition times. 

 

2.2.3 Visualization 

Using right visual analytics tools helps humans in understanding mobility patterns. Purely 

visual analytics methods are not enough for complex and large data. The combination of 

interactive visualisation tools and data manipulation tasks are considered essential [13]. 

When trying to visualize both spatial and temporal aspects of the trajectories, then space-

time cube is often used as representation view (figure 3). It represents geospatial attributes 

and time in a view of three dimensions. It is also considered to be important to support 

additional filters (e.g. time filter) to apply restictions on dataset when the amount of data is 

making it unreadable [14]. 

 
Figure 3. Space-time cube for representing the trajectory of a car [14] 

 

2.3 Conclusion 

Spatiotemporal datasets are gathered by more sensors than ever and used in different Lo-

cation Based Services. GPS is the most popular solution for gathering location infor-

mation. GPS errors are caused by inaccurate measurements, urban canyon effect or sam-

pling errors. Map-matching is the procedure of matching trajectories from a sequence of 



12 

 

raw GPS data points to the appropriate road network on the map. The main categories of 

map-matching algorithms are: geometric, topological, probabilistic and advanced. From 

trajectory data different knowledge can be extracted by mining the data. Trajectory data 

mining consists of multiple steps and different visualization options for combining tem-

poral and spatial data are used for better understanding of the underlying data. 
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3 Methodology 

The following chapter will describe applied methodology and technical implementation 

details. 

3.1 Introduction 

3.1.1 GPS Data 

The input dataset consists of GPS points collected from March 2015 to April 2016 by 13 

different devices. The total number of collected points is 601829. For data collection a tool 

called MobCollector (figure 4) is used, which was developed by the Distributed System 

Group
2
 from University of Tartu. It is an Android

3
 application, which is capable of keep-

ing track of GPS positions with configurable sampling rate. 
 

 
Figure 4. MobCollector application 

 

                                                 
2
 http://ds.cs.ut.ee/  

3
 https://www.android.com/  

http://ds.cs.ut.ee/
https://www.android.com/
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The input CSV has the following structure: 
 

imei;t_ascii;ev_type;lat;lon;speed;acc;heading 
1;2015-03-21 14:50:54.0;5;58.37712602;26.72358884;1.41421353817;8.0;266.8999938 

 

A subset of imported attributes is used. The attributes with significance in the context of 

the methodology are the following: 

 imei - stands for International Mobile Station Equipment Identity. The value is 

anonymized in the system. 

 t_ascii - date and time value in local time zone of the device. 

 lat - latitude is the part of geographical coordinate representing north-south posi-

tion of the Earth. Is in EPSG:4326 projection
4
. 

 lon - longitude is the part of geographical coordinate representing east-west posi-

tion of the Earth. Is in EPSG:4326 projection. 

 speed - speed value returned by GPS sensor. This attribute is not used in further 

analyze phases, because only 15% of GPS points have it defined. 

 

The collected GPS points have various sampling rates (figure 5) and 75% of measure-

ments have sampling rate less than 6 seconds.  

 
Figure 5. GPS points sampling time distribution 

3.1.2 Geographic Information System (GIS) Data 

As the source of geospatial data OpenStreetMap
5
 data is exported. OpenStreetMap is 

probably the most popular example from the field of Volunteered Geographic Information 

(VGI). It is user-generated spatial data. Although there have not been any studies yet about 

the data quality of OpenStreetMap in Estonia, but in other areas the studies have conclud-

ed that the data is fairly accurate [15]. For the proposed methodology the road network 

(figure 6) is exported from OpenStreetMap. The tool called osm2pqsql
6
 is used for the 

data import. The main elements of OpenStreetMap data are:  

 Nodes - represents a specific point on the earth's surface defined by its id, latitude 

and longitude values.  

                                                 
4
 http://spatialreference.org/ref/epsg/wgs-84/  

5
 https://www.openstreetmap.org/  

6
 http://wiki.openstreetmap.org/wiki/Osm2pgsql  

http://spatialreference.org/ref/epsg/wgs-84/
https://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osm2pgsql
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 Ways - represent linear features (e.g. roads) and area boundaries. It’s an ordered 

list of nodes. Ways must share a node if they intersect at the same altitude.   

 Relations - defines the relationship between two or more data elements. E.g. route 

relation, which connects roads to highway. 
 

All the elements can have tags, which describe the element. A tag consists of key-value 

pair. The key describes the feature type (e.g. highway, maxpeed, name) and the value spec-

ifies the type. 

 
Figure 6. Road network from OpenStreetMap 

 

3.2 Problem Statement 

The process of mapping raw GPS points to road segments involves multiple steps. After 

GPS data import, points must be validated and outliers filtered out. Individual points must 

be grouped by different characteristics to trajectories and classified by movement type. 

Map-matching involves two steps: finding the most probabilistic road segment and fixing 

the point location by moving it to the selected road segment. The applied methodology 

performs the preprocessing steps from raw GPS data to vehicle trajectories, locates possi-

ble matching road segments and fixes the GPS measurement errors by re-locating the er-

roneous points.  

3.3 System Design and Architecture 

For data import and manipulation mostly Ruby
7
 (with library pg

8
), Python

9
 (with libraries 

pandas
10

, matplotlib
11

, psycopg
12

) and Bash
13

 are used. PostgreSQL
14

 is used as the data-

                                                 
7
 https://www.ruby-lang.org/en/  

8
 https://rubygems.org/gems/pg/  

https://www.ruby-lang.org/en/
https://rubygems.org/gems/pg/
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base engine. PostGIS
15

 is the extension for PostgreSQL that provides support for spatial 

data types and spatial operations. All the spatial data in the system is converted to Geome-

try
16

 data type and spatial indexes added, which improves significantly the performance of 

working with spatial data. Geometry types are stored in “EPSG:4326” projection. PgRout-

ing
17

 is the extension for PostgreSQL that provides routing options directly in SQL. Visu-

alization application is built on top of Node.js
18

 (with libraries express
19

, pg-promise
20

) for 

the backend and in the frontend Angular.js
21

, OpenLayers
22

, d3.js
23

 and Bootstrap
24

 are 

used. 

3.4 Adopted Methodology 

The methodology consists of three main building blocks (figure 7). In the preprocessing 

stage raw GPS data is read from CSV files and stored in spatial database. Pre-filtering will 

find outliers; in the segmentation phase GPS points are grouped to trajectories and later 

classified by movement type. During trajectory data mining phase a grid system based on 

GPS errors is constructed, which is used to find per trajectory the intersecting grid cells. 

Based on the intersections similar trajectories will be found. For map-matching it’s im-

portant to determine the matching road segment and later fixing the location of GPS points 

with measurement errors. For finding the best candidate road segment for each GPS point 

matching grid cells are used and the order of road segments is checked for correctness. For 

validation the confidence of correct matching is found based on trajectory similarity pat-

terns and possible routes between origin-destination pairs. 

 

 
Figure 7. Methodology overview 

                                                                                                                                                   
9
 https://www.python.org/  

10
 http://pandas.pydata.org/  

11
 http://matplotlib.org/  

12
 http://initd.org/psycopg/  

13
 https://www.gnu.org/software/bash/  

14
 http://www.postgresql.org/  

15
 http://postgis.net/  

16
 http://postgis.net/docs/geometry.html  

17
 http://pgrouting.org/  

18
 https://nodejs.org/en/  

19
 http://expressjs.com/  

20
 https://github.com/vitaly-t/pg-promise  

21
 https://angularjs.org/  

22
 http://openlayers.org/  

23
 https://d3js.org/  

24
 http://getbootstrap.com/  

https://www.python.org/
http://pandas.pydata.org/
http://matplotlib.org/
http://initd.org/psycopg/
https://www.gnu.org/software/bash/
http://www.postgresql.org/
http://postgis.net/
http://postgis.net/docs/geometry.html
http://pgrouting.org/
https://nodejs.org/en/
http://expressjs.com/
https://github.com/vitaly-t/pg-promise
https://angularjs.org/
http://openlayers.org/
https://d3js.org/
http://getbootstrap.com/
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3.4.1 Data Pre-processing 

Geospatial filtering will be performed to flag all points that are outside the region of inter-

est. The selected bounding box is defined as  

ST_BBOX = { (latmin, lonmin), (latmin, lonmax), (latmax, lonmax), (latmax, lonmin) }. 

 

All the GPS points will be enriched with additional attributes: the distance to next position 

in meters and the time to next position in seconds. And all the points are flagged with the 

information if they are on top of the building and on top of the road network. 

 

3.4.2 Trajectory Segmentation 

Trajectory segmentation is the process of splitting a trajectory into smaller parts called 

segments. Points inside each segment share some movement characteristic (e.g. speed, 

spatial closeness)[16]. These segments will be called trips. 

Trajectory segmentation is implemented in multiple steps. The first step is to split the 

global trajectories per unique user by time interval defined as 

ST_TIME_THRESHOLD_FOR_CUT. If the time between two consecutive GPS points is 

longer than the threshold value, those points will be classified as trip end and start points 

accordingly. 

Next steps are splitting the existing trips to multiple trips by identifying a change in the 

spatiotemporal aspect of the trajectory. Stop points cause the most common spatiotem-

poral change. For that the Spatio-Temporal Kernel Window (STKW) statistics value is 

calculated for each point [17]. All points per trip are ordered by timestamp and for each 

point in both directions the number of points were counted having distance smaller than 

ST_SEGMENTATION_POINT_THRESHOLD (figure 8). When the differences of the sum 

to both directions differ significantly, it indicates that the point is a stop point and the trips 

are split. 
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Figure 8. Spatio-Temporal Kernel Window (STKW) principle [17] 

3.4.3 Trajectory Classification 

The trajectory movement classes in our context are vehicle and pedestrian movements. For 

each trajectory median speed is calculated as it handles outliers better compared to average 

speed [17]. If the median speed is higher than the value 

ST_DRIVING_SPEED_THRESHOLD, trip will be classified as ‘driving’ type. Otherwise 

the trip will be classified as ‘walking’. 

3.4.4 Dynamic Road Segments Grid System 

In geospatial analysis often grid-based layers are used for indexing and for clustering. The 

most common grid cell creation patterns are rectangles and hexagonal figures. In the con-

text of using cells for road segments the problem with rectangles and hexagonal is that 

they are noisy. Depending on the situation it can be that some cells have many intersecting 

roads and in some cases one road segment is in many cells. 

We are introducing an alternative grid creation approach, which takes into account possi-

ble GPS errors and builds cells for every road network segment. The process iterates 

through all road segments and finds all GPS points around the segment inside the defined 

ST_SEGMENT_BUFFER_THRESHOLD threshold value (figure 9). Only those GPS 

points are taken into account that are part of some trajectory with type ‘driving’. 
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Figure 9. GPS points selection principle per road segment 

The length of the cell will be the length of the road network segment. The width of the cell 

will be calculated with the following formula (figure 10): 

 ST_GRID_WIDTH = max (distance (POINTS_IN_BUFFER)) + ε,  

where 

ε = avg (distance (POINTS_IN_BUFFER)), 

POINTS_IN_BUFFER = {(lat1,lon1), …, (latn,lonn)},  

where (lati, loni) was inside ST_SEGMENT_BUFFER_THRESHOLD. 
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Figure 10. Dynamic grid cell generation principle 

As the end result after iterating through all the segments and calculating grid cell sizes 

based on GPS errors, segments will have intersecting cells, which do intersect with each 

other (figure 11). 

 

 
Figure 11. Step 1 of grid system creation 

For the intersections of road segments round cell will be generated (figure 12). Overlap-

ping cells with be cut off (figure 13). Additionally special cell for all the roundabouts are 

added (figure 14) and all overlapping cells cut off (figure 15). 
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Figure 12. Step 2 of grid system creation: adding node buffers 

 

 
Figure 13. Step 3 of grid system creation: removing intersections 
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Figure 14. Step 4 of grid system creation: add cells for roundabout 

 

3.4.5 Trajectory Similarities 

The generated dynamic road segment grid is used for trajectory pattern extraction. For 

every trajectory point and trajectory line segment intersecting grid cells will be found. 

There can be only up to 1 cell per point, but up to multiple cells per line segment. Special 

attention will be given for trajectory start and end points. In case start and end points will 

not have corresponding grid cell (figure 15), the first and last intersecting grid cell will be 

set correspondingly as start and end grid cells. 
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Figure 15. Trajectory start/end point is outside grid cell 

 

After the intersecting cells have been found for all trajectories, similarity weights between 

the trajectories are calculated. The value is in the range 0 - 1 with the following semantics: 

 0 - trajectories have no common cells 

 1 - trajectories have all the same cells 

 0 < x < 1 - trajectories have some cells the same 

3.4.6 Routing 

pgRouting extends Postgres with routing functionalities. It supports multiple routing algo-

rithms (e.g. Shortest Path Dijkstra, Shortest Path A*). In this thesis K-Shortest Path algo-

rithm was applied. K-Shortest Path algorithm finds k shortest paths between two nodes 

[18]. We have defined a system-wide parameter ST_K_SHORTEST_PATH and in the next 

map-matching phase as many routes will be constructed. 

3.4.7 Map-matching Process 

For the map-matching process it is first required to determine the corresponding road seg-

ments for every point. After the most likely road segment is determined, fixing the GPS 

error to the road is performed.  



24 

 

In the previous steps for every GPS point corresponding road segment grid cell was found. 

There can be up to one cell, as the grid cells do not interleave with each other. Grid cells 

can have multiple types: 

 Road segment based – polygon cell representing the segment of the road network. 

Is directly matched to a road segment (figure 16). 

 Road intersection based – round cell representing the node of the road network. 

There can be multiple road segments inside the cell (figure 16). 

 Roundabouts based – round cell with a hole representing roundabouts. There can 

be multiple road segments inside the cell. 

 

 

Figure 16. Different road segment cell types 

Finding the corresponding road segment cell is an iterative algorithm, which starts from 

the first point of the trajectory. For each point the following rules are applied based on the 

grid cell type: 

 GPS point is inside the intersection grid cell. The road segment is chosen between 

the two segments connected to node. Those segments are selected based on other 

points in the trajectory before and after the current point. Closest node is selected 

(figure 17). If it’s a start or an end point, only one candidate segment will be found. 

 GPS point is inside the road segment grid cell. In the first phase nothing else is 

checked, validation will be done later. 

 GPS point does not have corresponding cell. If it’s a start or an end point, the first 

point on the trajectory matching a cell will be chosen. For other points adjacent tra-

jectory points will be checked for matching cells and closest one is selected. 
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 GPS point is inside other cell because of the measurement error (figure 18). The is-

sue will be found and fix in another step. 

 

 

Figure 17. Point inside the node cell 

 

Figure 18. Points on wrong road segment 

 

The second phase is validating the correctness of matched trajectories. For all origin-

destination pairs k alternative routing paths are generated. Those generated paths will be 

mapped to the road segment grid and the corresponding list of cells is generated. Every 
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trajectory grid cells will be compared to the generated path cells. In case the order of cell 

matches, it can be concluded that the GPS points belong to the road segments related to 

the corresponding grid cells. If no matching path will be found among the generated can-

didate paths, trajectory will be checked for topological correctness. In most cases the 

points near the intersection can be wrongly matched (figure 19). Based on the underlying 

road network rules and restrictions such errors will be checked. In case of invalid order of 

segments, alternative valid segments are chosen as candidates and based on trajectory and 

other matched points one valid segment is selected if possible. But there can be issues of 

wrong road network data, which makes matching not possible. 

 

 

Figure 19. Wrongly matched GPS point 

 

For all matched trajectories a confidence score is calculated, which is based on topological 

correctness and regularity determined by similar routes. It’s a value, which should help 

decision-makers to find data errors and anomalies. For example if regular trajectories (tra-

jectories that have other similar ones) do not have any possible matching routing paths, it 

may be cause by missing or wrong topological data. Confidence score is defined in the 

range 0.0 – 1.0 with the following semantics: 

 1.0 – matched trajectory is topologically correct and there exist other similar trajec-

tories 

 0.0 – no points could be matched at all 
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 0.0 < x < 1.0 – trajectory is partly matched correctly; trajectory is matched topo-

logically correctly, but no similar trajectories exist; because of data errors correct 

trajectory could not be matched correctly to road network 

 

After the best candidate for the road segment is selected the location of GPS points with 

errors can be corrected. All the points that are flagged with the information about being 

not on the road network, will get orthogonal projection to closest point on the selected 

road segment (figure 20). 

 
Figure 20. Orthogonal projection to closest point 

 

3.5 Conclusion 

In the preprocessing stages different known practices for managing raw GPS data are 

used. For global trajectories segmentation and classification processes are applied. We 

presented also our new approach in tilted dynamic grid method for creating GPS error 

zones based on the GPS error distribution observed from the collected data. The grid is 

used for finding similar trajectories in a precise and computationally effective way. 

For all the trajectories k different routes will be generated as reference data. As those gen-

erated routes are topologically correct, it is highly probable that vehicle trajectories should 

follow same paths. The routing results will be used for fixing GPS errors on wrong road 
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segments. For the measurement errors inside the correct road segment orthogonal projec-

tion to closest point approach is applied for fixing them. 
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4 Results and Analysis 

In the following chapter the results of the chosen methodology are introduced.  

4.1 Introduction 

A web application was built to aid the methodology implementation process. The main 

goals for the functionality were the following: data search and filtering capabilities, 

visualization of raw GPS points and trajectories in both time and space dimensions, 

combination of different data layers, possibility to validate routing paths and provide 

visual comparisons for GPS errors and the fixes. 

4.2 Trajectory Pre-processing 

Preprocessing and data cleaning were the most time-consuming tasks in the applied data 

manipulation pipeline. 

For the geospatial filtering the bounding box was defined as 

ST_BBOX = { (latmin, lonmin), (latmin, lonmax), (latmax, lonmax), (latmax, lonmin) },  

where latmin = 58.3291, latmax = 58.4233,  lonmin = 26.5759 and lonmax = 26.8942. As the result 

70% out of the initial 601829 GPS points were inside the target area (figure 21), points 

outside the defined area were not used. 19% of the points inside the spatial filter were on 

the road network. 

 

 
Figure 21. GPS data inside spatial filter 

 

All data pipeline tasks were implemented as individual scripts developed in Python, Ruby 

or Bash. The implementation idea was to keep those scripts small and focused on concrete 

tasks. There were 13 different scripts that were representing some step in the data pipeline.  



30 

 

For the segmentation phase the following system parameters were used: 

 ST_TIME_THRESHOLD_FOR_CUT - was set to 60 seconds. It defined the maxi-

mum allowed difference in time of sequential GPS points. As the outcome of time-

based segmentation 3967 individual trips were generated. 

 ST_SEGMENTATION_POINT_THRESHOLD - was set to 30 meters. Minimum 

number of points for a trip was set to 10. As the results there was 2164 trips gener-

ated.  

 

Those extracted trips were classified to two types based on calculated mean speed. The 

results (figure 22): 

 532 ‘driving’-type trajectories 

 1632 ‘walking’-type trajectories 

Only ‘driving’-type trajectories are used for further analysis. 

 

 

Figure 22. driving-type trajectories on the left;walking-type trajectories on the right 

4.2.1 Visualization 

The developed application has different visualization options for trajectories (figure 23). 

It’s possible to select existing trip from the list of all existing trips and display its spatial 

representation on the map and attributes in a list. Additionally there are options for filter-

ing the global trajectory by timestamp and user to generate trajectories on the fly for visual 

check. Interactive 3-dimensional space-time cube allows visualizing the trajectory in space 

and in time. 
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Figure 23. Trajectory visualization 

With the aid of visualization options data errors were found. For some imei values multi-

ple user trajectories were combined, which caused the following erratic back and forth 

jumping of the trajectory (figure 24). This data was extracted to multiple users and prob-

lem was solved. 

 

 

Figure 24. Errors in data source 
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4.3 Dynamic Road Segments Grid System Creation 

The process started defining the system parameter 

ST_SEGMENT_BUFFER_THRESHOLD, which defines the threshold in meters for find-

ing GPS points around every road segment. Only points that belong to a trajectory with 

type ‘driving’ are considered. In figure 25 it’s possible to see GPS error distribution for 

points distances from the road segment center and in figure 26 the distribution of point 

distances from the road segment per segment average.  As the result 3951 grid cells were 

created (figure 27). 

 

 

Figure 25. GPS error distribution by point 
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Figure 26. GPS error distribution by segment average 
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Figure 27. Generated road segments grid system 

4.4 Trajectory Similarities 

For all the trips with type ‘driving’ the following connected grid cells were found: 

 For every point in the trajectory corresponding grid cell was found if there existed 

such 

 For every trajectory segment the list of corresponding grid cells were found if there 

existed such. 

If start and end points or start and segments of a trajectory didn’t have any corresponding 

grid cells, the first intersecting cell for a point or a trajectory segment was selected as the 

start or end grid cell accordingly. In figure 28 it’s visible 2 similar trajectories. 
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Figure 28. Example of two similar trajectories 

4.5 Map-matching 

For all the trajectories matching road segments were found and re-locating the coordinates 

of the point to the corresponding road segment was performed (figure 29). For the 

validation phase route correctness was checked. For every origin-destination pair in trajec-

tories ST_K_SHORTEST_PATH candidate paths were found. ST_K_SHORTEST_PATH 

was set to 15. The process started finding the closest road segments for trajectory start and 

end points. Based on the road segment a node was found. The node that is closest is cho-

sen if the road segment is not one-way street and the segments reverse cost is too high. In 

such case target node of the segment was taken. When no global paths were found, trajec-

tories were checked segment by segment for the correctness and when possible alternative 

road segment was found. After validation phase moving the GPS points to matched road 

segments was performed again. 

To give a score of the probability of matched trajectory being correct, confidence score 

was calculated for all trajectories. 
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Figure 29. Comparison of original (in red) and matched (in green) trajectories 

For validating the correctness of the results reference trajectories were selected for which 

the trajectories were known. There does not exist any good automated verification process 

for map-matching results. And the result of matched GPS points was compared to those 

known paths. The characterics of reference trajectories are listed in Table 1 and in Table 2 

the outcome of map-matching is described. 

Table 1. Characterics of reference trajectories 

Description Value 

Number of trajectories 15 

Number of GPS points 976 

Number of driving trajectories 15 

Average points per trajectory 66 

Minimum points per trajectory 12 

Maximum points per trajectory 140 

 

Table 2. Results of map-matching reference trajectories 

Description Value 

Percentage of correctly segmented 

trajectories 

100% 

Percentage of correctly classified 

trajectories 

100% 
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Percentage of trajectories matched correctly 

for all points  

47% 

Percentage of trajectories matched partly 53% 

Percentage of correctly matched GPS points 98.5% 

The pre-processing steps were successfull of creating individual trajectories and 

classifying those by movement type. When comparing the map-matching results than 

among all the points 98.5% were matched correctly, out of the trajectories 47% were 

matched correctly for all points.  

4.5.1 Visualization 

For visual aid a view (figure 30) was added to the application, which displays original tra-

jectory, shows corresponding grid segments and allows showing also the fixed trajectory 

in the same view. 

 

Figure 30. View for comparing matched trajectories 

In the visualization application it’s possible to define any two points on the map and calcu-

late k routes between them and visualize them all (figure 31). 
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Figure 31. K-shortest routes between two points 

4.6 Conclusion 

The applied methodology introduced a data pipeline for turning raw GPS points into tra-

jectories by removing outliers, extracting global trajectories to segments and classifying 

found segment by movement type. The new grid system based on GPS errors was used for 

matching points to road segments. For every trajectory a confidence score was given based 

on its topological correctness and regularity. 

For validation 15 reference trajectories were selected for which the real trajectory was 

known. And the outcome of the map-matching was compared to those paths. The results:  

 Those 15 trajectories had 976 combined GPS points 

 Average points per trajectory was 66, minimum was 12 and maximum 140 

 47% of trajectories were correctly matched for all points 

 53% of trajectories were matched partly, out of those 37.5% had 2 wrongly 

matched point and 62.5 had only 1 wrongly matched point 

 From all points 98.5% were correctly matched 

 

Some of the shortcomings were found: 

 Errors in underlying GIS data. The road network layer from OpenStreetMap had 

multiple roads with wrong restrictions, which complicated fixing the topological 

correctness of the trajectory. It is an issue with all map-matching algorithms. For 

that the confidence score was introduced to find out more unlikely trajectories in 

some other way. 

 For more unlikely and long trajectories finding alternative routes for origin-

destination pairs does not provide hoped results (figure 32). It’s necessary to apply 

routing partially. 
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Figure 32. Left - original trajectory; right - 500 alternative routes for origin-destination 

pair 
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5 Conclusions and Future Perspectives 

5.1 Conclusion 

With the applied data pipeline and visualization application we have shown how raw GPS 

data can be turned into trajectories and matched to the underlying road network. Here are 

some of the conclusion based on the methodology and results: 

 Dynamic grid system based on GPS measurement errors provides good way of 

matching points to road network. 

 Bigger dataset with more regular trajectories would be beneficial for pattern ex-

traction 

 Better underlying geospatial data provides better results. Extracted trajectory regu-

larity patterns could help make correction to road network. 

5.2 Future Perspectives 

For the future the implemented framework could be made more scalable as it was not the 

main goal of this thesis work. To be able to support massive amount of spatiotemporal 

data for map-matching restructuring some parts of the application would be needed. For-

tunately the existing data pipeline is made of multiple small scripts that could be distribut-

ed to multiple nodes and later results be merged. 

To support matching pedestrian trajectories would need better underlying GIS data, be-

cause at the moment the pedestrian road network data available is largely missing. 

The visualization application could be further developed to be part of the decision making 

process for some domain problem solving that require to work with trajectory data. 

The applied methodology would need some enhancements to work with more parse data 

(e.g. sampling rate is 2-5 minutes), as some of low-powered devices can’t afford storing 

location too often. 
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