218 research outputs found

    Linear controllers for free-flying and controlled-floating space robots: a new perspective

    Get PDF
    Autonomous space robots are crucial for performing future in-orbit operations, including servicing of a spacecraft, assembly of large structures, maintenance of other space assets and active debris removal. Such orbital missions require servicer spacecraft equipped with one or more dexterous manipulators. However, unlike its terrestrial counterpart, the base of the robotic manipulator is not fixed in inertial space; instead, it is mounted on the base�spacecraft, which itself possess both translational and rotational motions. Additionally, the system will be subjected to extreme environmental perturbations, parametric uncertainties and system constraints due to the dynamic coupling between the manipulator and the base-spacecraft. This paper presents the dynamic model of the space robot and a three�stage control algorithm for this highly dynamic non-linear system. In this approach, feed�forward compensation and feed-forward linearization techniques are used to decouple and linearize the highly non-linear system respectively. This approach allows the use of the linear Proportional-Integral-Derivative (PID) controller and Linear Quadratic Regulator (LQR) in the final stages. Moreover, this paper covers a simulation-based trade-off analysis to determine both proposed linear controllers’ efficacy. This assessment considers precise trajectory tracking requirements whilst minimizing power consumption and improving robustness during the close-range operation with the target spacecraft

    A mission architecture and systems level design of navigation, robotics and grappling hardware for an on-orbit servicing spacecraft

    Get PDF
    On-orbit servicing (OOS) includes a range of servicing types that increase the lifetime of a satellite and its performance, as well as ensuring that it does not contribute to the growing issue of space debris. The avoidance of satellites becoming derelict is particularly important given the rise of ‘mega-constellations’. With the first cases of it in the 1970s, OOS has been achieved many times using crewed missions and robots controlled from the ground or by astronauts, for example during repairs and upgrades to the Hubble Space Telescope (HST) and on the International Space Station (ISS). This has allowed various space agencies and other organisations to mature processes and tools for several OOS mission types. The Northrop Grumman Mission Extension Vehicle-1’s (MEV-1) success servicing Intelsat 901 in early 2020 demonstrated that OOS is now viable from a commercial as well as technical standpoint. However, due to low technology maturity, autonomous rendezvous and proximity operations (RPO) and servicing remain challenging, despite autonomous rendezvous and docking with space stations having been demonstrated many times. This report will investigate the current state of the art in OOS and which technologies require further development to enable widespread adoption of OOS. A mission architecture to support OOS of satellites in the highest populated orbits will be described. Using this architecture, the report will focus on the selection of hardware required for guidance, navigation and control (GNC), for relative navigation towards and docking with the target satellite and of robotics to service the target. The report will use the design of the OneWeb satellites as a baseline for the target spacecraft but will also show how the servicing spacecraft’s services could be applied to a range of orbits and target spacecraf

    Robotic Manipulation and Capture in Space: A Survey

    Get PDF
    Space exploration and exploitation depend on the development of on-orbit robotic capabilities for tasks such as servicing of satellites, removing of orbital debris, or construction and maintenance of orbital assets. Manipulation and capture of objects on-orbit are key enablers for these capabilities. This survey addresses fundamental aspects of manipulation and capture, such as the dynamics of space manipulator systems (SMS), i.e., satellites equipped with manipulators, the contact dynamics between manipulator grippers/payloads and targets, and the methods for identifying properties of SMSs and their targets. Also, it presents recent work of sensing pose and system states, of motion planning for capturing a target, and of feedback control methods for SMS during motion or interaction tasks. Finally, the paper reviews major ground testing testbeds for capture operations, and several notable missions and technologies developed for capture of targets on-orbit

    High-Tech Defense Industries: Developing Autonomous Intelligent Systems

    Get PDF
    After the Cold War, the defense industries found themselves at a crossroads. However, it seems that they are gaining new momentum, as new technologies such as robotics and artificial intelligence are enabling the development of autonomous, highly innovative and disruptive intelligent systems. Despite this new impetus, there are still doubts about where to invest limited financial resources to boost high-tech defense industries. In order to shed some light on the topic, we decided to conduct a systematic literature review by using the PRISMA protocol and content analysis. The results indicate that autonomous intelligent systems are being developed by the defense industry and categorized into three different modes—fully autonomous operations, partially autonomous operations, and smart autonomous decision-making. In addition, it is also important to note that, at a strategic level of war, there is limited room for automation given the need for human intervention. However, at the tactical level of war, there is a high probability of growth in industrial defense, since, at this level, structured decisions and complex analytical-cognitive tasks are carried out. In the light of carrying out those decisions and tasks, robotics and artificial intelligence can make a contribution far superior to that of human beings.info:eu-repo/semantics/publishedVersio

    High-Tech Defense Industries: Developing Autonomous Intelligent Systems

    Get PDF
    After the Cold War, the defense industries found themselves at a crossroads. However, it seems that they are gaining new momentum, as new technologies such as robotics and artificial intelligence are enabling the development of autonomous, highly innovative and disruptive intelligent systems. Despite this new impetus, there are still doubts about where to invest limited financial resources to boost high-tech defense industries. In order to shed some light on the topic, we decided to conduct a systematic literature review by using the PRISMA protocol and content analysis. The results indicate that autonomous intelligent systems are being developed by the defense industry and categorized into three different modes—fully autonomous operations, partially autonomous operations, and smart autonomous decision-making. In addition, it is also important to note that, at a strategic level of war, there is limited room for automation given the need for human intervention. However, at the tactical level of war, there is a high probability of growth in industrial defense, since, at this level, structured decisions and complex analytical-cognitive tasks are carried out. In the light of carrying out those decisions and tasks, robotics and artificial intelligence can make a contribution far superior to that of human beings.info:eu-repo/semantics/publishedVersio

    An Educational Platform for Small Satellite Development with Proximity Operation Capabilities

    Get PDF
    An alternative to ground testing of small satellites is presented here, where the kinematics of a 3U underactuated CubeSat operating in 3 degrees-of-freedom (DOF) is reproduced by an omnidirectional wheeled platform, while satellite dynamics are simulated in real-time. The system is equipped with a relative navigation sensor in the form factor of a smartphone, the Smartphone Video Guidance Sensor (SVGS), allowing the platform to reproduce proximity operation maneuvers. The wheeled platform is used as an educational tool for students over a large range of academic levels, from high school to graduate school. A derivation of the kinematic relationship from satellite dynamics to rotacaster wheel velocities is presented, along with the guidance and control laws of the system. Simulation and experimental results demonstrate that the wheeled platform was able to successfully replicate detumble, slew, and attitude hold maneuvers of a 3U CubeSat

    The coordinated control of space robot teams for the on-orbit construction of large flexible space structures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 95-103).Teams of autonomous space robots are needed for future space missions such as the construction of large solar power stations and large space telescopes in earth orbit. This work focuses on the control of teams of robots performing construction tasks such as manipulation and assembly of large space structures. The control of the robot structure system is difficult. The space structures are flexible and there are significant dynamic interactions between the robots and the structures. Forces applied by the robots may excite undesirable vibrations in the structures. Furthermore, the changing configuration of the system results in the system dynamics being described by a set of non-linear partial differential equations. Limited sensing and actuation in space present additional challenges. The approach proposed here is to transform the system dynamics into a set of linear time-varying ordinary differential equations. The control of the high-frequency robots can be decoupled from the control of the low-frequency structures. This approach allows the robots to apply forces to the structures and control the dynamic interactions between the structures and the robots. The approach permits linear optimal control theory to be used. Simulation studies and experimental verification demonstrate the validity of the approach.by Peggy Boning.Ph.D
    corecore