2,118 research outputs found

    Coordination of inbound and outbound transportation schedules with the production schedule

    Get PDF
    This paper studies the coordination of production and shipment schedules for a single stage in the supply chain. The production scheduling problem at the facility is modeled as belonging to a single process. Jobs that are located at a distant origin are carried to this facility making use of a finite number of capacitated vehicles. These vehicles, which are initially stationed close to the origin, are also used for the return of the jobs upon completion of their processing. In the paper, a model is developed to find the schedules of the facility and the vehicles jointly, allowing for effective utilization of the vehicles both in the inbound and the outbound. The objective of the proposed model is to minimize the sum of transportation costs and inventory holding costs. Issues related to transportation such as travel times, vehicle capacities, and waiting limits are explicitly accounted for. Inventories of the unprocessed and processed jobs at the facility are penalized. The paper contributes to the literature on supply chain scheduling under transportation considerations by modeling a practically motivated problem, proving that it is strongly NP-Hard, and developing an analytical and a numerical investigation for its solution. In particular, properties of the solution space are explored, lower bounds are developed on the optimal costs of the general and the special cases, and a computationally-efficient heuristic is proposed for solving large-size instances. The qualities of the heuristic and the lower bounds are demonstrated over an extensive numerical analysis. © 2016 Elsevier Lt

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    Intermodal Transfer Coordination in Logistic Networks

    Get PDF
    Increasing awareness that globalization and information technology affect the patterns of transport and logistic activities has increased interest in the integration of intermodal transport resources. There are many significant advantages provided by integration of multiple transport schedules, such as: (1) Eliminating direct routes connecting all origin-destinations pairs and concentrating cargos on major routes; (2) improving the utilization of existing transportation infrastructure; (3) reducing the requirements for warehouses and storage areas due to poor connections, and (4) reducing other impacts including traffic congestion, fuel consumption and emissions. This dissertation examines a series of optimization problems for transfer coordination in intermodal and intra-modal logistic networks. The first optimization model is developed for coordinating vehicle schedules and cargo transfers at freight terminals, in order to improve system operational efficiency. A mixed integer nonlinear programming problem (MINLP) within the studied multi-mode, multi-hub, and multi-commodity network is formulated and solved by using sequential quadratic programming (SQP), genetic algorithms (GA) and a hybrid GA-SQP heuristic algorithm. This is done primarily by optimizing service frequencies and slack times for system coordination, while also considering loading and unloading, storage and cargo processing operations at the transfer terminals. Through a series of case studies, the model has shown its ability to optimize service frequencies (or headways) and slack times based on given input information. The second model is developed for countering schedule disruptions within intermodal freight systems operating in time-dependent, stochastic and dynamic environments. When routine disruptions occur (e.g. traffic congestion, vehicle failures or demand fluctuations) in pre-planned intermodal timed-transfer systems, the proposed dispatching control method determines through an optimization process whether each ready outbound vehicle should be dispatched immediately or held waiting for some late incoming vehicles with connecting freight. An additional sub-model is developed to deal with the freight left over due to missed transfers. During the phases of disruption responses, alleviations and management, the proposed real-time control model may also consider the propagation of delays at further downstream terminals. For attenuating delay propagations, an integrated dispatching control model and an analysis of sensitivity to slack times are presented

    Horizontale en verticale samenwerking in distributieketens met cross-docks

    Get PDF

    Horizontale en verticale samenwerking in distributieketens met cross-docks

    Get PDF

    Logistics Outsourcing and 3PL Challenges

    Get PDF
    Logistics has been an important part of every economy and every business entity. The worldwide trend in globalization has led to many companies outsourcing their logistics function to Third-Party Logistics (3PL) companies, so as to focus on their core competencies. This paper attempts to broadly identify and categorize the challenges faced by 3PL companies and discover potential gaps for future research. Some of the challenges will be related with the experience and information collected from interviews with two 3PL companies.Singapore-MIT Alliance (SMA

    Integration of production, transportation and inventory decisions in supply chains

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Science of Bilkent University, 2012.Thesis (Ph. D.) -- Bilkent University, 2012.Includes bibliographical references leaves 131-134.This dissertation studies the integration of production, transportation and inventory decisions in supply chains, while utilizing the same vehicles in the inbound and outbound. The details of integration is studied in two levels: operational and tactical. In the first part of the thesis, we provide an operational level model for coordination of production and shipment schedules in a single stage supply chain. The production scheduling problem at the facility is modelled as belonging to a single process. Jobs that are located at a distant origin are carried to this facility making use of a finite number of capacitated vehicles. These vehicles, which are initially stationed close to the origin, are also used for the return of the jobs upon completion of their processing. In the first part, a model is developed to find the schedules of the facility and the vehicles jointly, allowing effective utilization of the vehicles for both in the inbound and outbound transportation. In the second part of the dissertation, we provide a tactical level model and study a manufacturer’s production planning and outbound transportation problem with production capacities to minimize transportation and inventory holding costs. The manufacturer in this setting can use two vehicle types for outbound shipments. The first type of vehicle is available in unlimited number. The availability of the second type, which is less expensive, changes over time. For each possible combination of operating policies affecting the problem structure, we either provide a pseudo-polynomial algorithm for general cost structure or prove that no such algorithm exists even for linear cost structure. We develop general optimality properties, propose a generic model formulation that is valid for all problems and evaluate the effects of the operating policies on the system performance. The third part of the dissertation considers one of the problems defined in the second part in detail. Motivated by some industry practices, we present formulations for three different solution approaches, which we refer to as the uncoordinated solution, the hierarchically-coordinated solution and the centrallycoordinated solution. These approaches vary in how the underlying production and transportation subproblems are solved, i.e., sequentially versus jointly, or, heuristically versus optimally. We provide intractability proofs or polynomialtime exact solution procedures for the subproblems and their special cases. We also compare the three solution approaches to quantify the savings due to integration and explicit consideration of transportation availabilities.Koç, UtkuPh.D

    Development of stochastic delay cost functions

    Get PDF
    When a disturbance cannot be absorbed by schedule buffer, the tactical schedule recovery process of an airline prioritises between flights. This considers the cost of delay and may result in a reallocation of scarce airport resources during turnaround. Delay cost reference values do not differentiate between specific flights but rather aircraft types. This article presents a method to develop flight-specific delay cost functions, which consider inherent absorption capacities and downstream uncertainties. Delay propagation trees are used to model airline resource interdependencies and derives the associated cost of downstream delay cost-drivers from dependent probabilities using operational data. In a case study setting, the resulting stochastic cost functions are compared against reference values per aircraft type and deterministic step-cost functions per flight

    Precision Departure Release Capability (PDRC) Concept of Operations

    Get PDF
    After takeoff, aircraft must merge into en route (Center) airspace traffic flows which may be subject to constraints that create localized demandcapacity imbalances. When demand exceeds capacity Traffic Management Coordinators (TMCs) often use tactical departure scheduling to manage the flow of departures into the constrained Center traffic flow. Tactical departure scheduling usually involves use of a Call for Release (CFR) procedure wherein the Tower must call the Center TMC to coordinate a release time prior to allowing the flight to depart. In present-day operations release times are computed by the Center Traffic Management Advisor (TMA) decision support tool based upon manual estimates of aircraft ready time verbally communicated from the Tower to the Center. The TMA-computed release is verbally communicated from the Center back to the Tower where it is relayed to the Local controller as a release window that is typically three minutes wide. The Local controller will manage the departure to meet the coordinated release time window. Manual ready time prediction and verbal release time coordination are labor intensive and prone to inaccuracy. Also, use of release time windows adds uncertainty to the tactical departure process. Analysis of more than one million flights from January 2011 indicates that a significant number of tactically scheduled aircraft missed their en route slot due to ready time prediction uncertainty. Uncertainty in ready time estimates may result in missed opportunities to merge into constrained en route flows and lead to lost throughput. Next Generation Air Transportation System (NextGen) plans call for development of Tower automation systems capable of computing surface trajectory-based ready time estimates. NASA has developed the Precision Departure Release Capability (PDRC) concept that uses this technology to improve tactical departure scheduling by automatically communicating surface trajectory-based ready time predictions to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept helps reduce uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station (NTX) in DallasFort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations. This paper presents the Concept of Operations. Companion papers include the Final Report and a Technology Description. ? SUBJECT
    corecore