1,291 research outputs found

    Control strategy for cooperating disparate manipulators

    Get PDF
    To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator

    Asymmetric Dual-Arm Task Execution using an Extended Relative Jacobian

    Full text link
    Coordinated dual-arm manipulation tasks can be broadly characterized as possessing absolute and relative motion components. Relative motion tasks, in particular, are inherently redundant in the way they can be distributed between end-effectors. In this work, we analyse cooperative manipulation in terms of the asymmetric resolution of relative motion tasks. We discuss how existing approaches enable the asymmetric execution of a relative motion task, and show how an asymmetric relative motion space can be defined. We leverage this result to propose an extended relative Jacobian to model the cooperative system, which allows a user to set a concrete degree of asymmetry in the task execution. This is achieved without the need for prescribing an absolute motion target. Instead, the absolute motion remains available as a functional redundancy to the system. We illustrate the properties of our proposed Jacobian through numerical simulations of a novel differential Inverse Kinematics algorithm.Comment: Accepted for presentation at ISRR19. 16 Page

    Multiple cooperating manipulators: The case of kinematically redundant arms

    Get PDF
    Existing work concerning two or more manipulators simultaneously grasping and transferring a common load is continued and extended. Specifically considered is the case of one or more arms being kinematically redundant. Some existing results in the modeling and control of single redundant arms and multiple manipulators are reviewed. The cooperating situation is modeled in terms of a set of coordinates representing object motion and internal object squeezing. Nominal trajectories in these coordinates are produced via actuator load distribution algorithms introduced previously. A controller is developed to track these desired object trajectories while making use of the kinematic redundancy to additionally aid the cooperation and coordination of the system. It is shown how the existence of kinematic redundancy within the system may be used to enhance the degree of cooperation achievable

    Kinematics of Redundantly Actuated Closed Chains

    Get PDF
    The instantaneous kinematics of a hybrid manipulation system, which combines the traditional serial chain geometry with parallelism in actuation, and the problem of coordination is discussed. The indeterminacy and singularities in the inverse kinematics and statics equations and measures of kinematic performance are analyzed. Finally, coordination algorithms that maintain an optimal force distribution between the actuators while avoiding or exploiting singularities are presented

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    An Approach to Simultaneous Control of Trajectory and Interaction Forces in Dual-Arm Configurations

    Get PDF
    Multiple arm systems, multifingered grippers, and walking vehicles all have two common features. In each case, more than one actively coordinated articulation interacts with a passive object, thus forming one or more closed chains. For example, when two arms grasp an object simultaneously, the arms together with the object and the ground (base) form a closed chain. This induces kinematic and dynamic constraints and the resulting equations of motion are extremely nonlinear and coupled. Furthermore, the number of actuators exceeds the kinematic mobility of the chain in a typical case, which results in an underdetermined system of equations. An approach to control such constrained dynamic systems is described in this short paper. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus inputs to control the constraint or interaction forces and moments in the closed chain. A dynamic control model is derived for the closed chain that is suitable for designing a controller, in which the trajectory as well as the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. In this paper, these ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly

    Modification of Gesture-Determined-Dynamic Function with Consideration of Margins for Motion Planning of Humanoid Robots

    Full text link
    The gesture-determined-dynamic function (GDDF) offers an effective way to handle the control problems of humanoid robots. Specifically, GDDF is utilized to constrain the movements of dual arms of humanoid robots and steer specific gestures to conduct demanding tasks under certain conditions. However, there is still a deficiency in this scheme. Through experiments, we found that the joints of the dual arms, which can be regarded as the redundant manipulators, could exceed their limits slightly at the joint angle level. The performance straightly depends on the parameters designed beforehand for the GDDF, which causes a lack of adaptability to the practical applications of this method. In this paper, a modified scheme of GDDF with consideration of margins (MGDDF) is proposed. This MGDDF scheme is based on quadratic programming (QP) framework, which is widely applied to solving the redundancy resolution problems of robot arms. Moreover, three margins are introduced in the proposed MGDDF scheme to avoid joint limits. With consideration of these margins, the joints of manipulators of the humanoid robots will not exceed their limits, and the potential damages which might be caused by exceeding limits will be completely avoided. Computer simulations conducted on MATLAB further verify the feasibility and superiority of the proposed MGDDF scheme
    corecore