
University of Pennsylvania
ScholarlyCommons

Departmental Papers (MEAM) Department of Mechanical Engineering & Applied
Mechanics

4-1-1990

Kinematics of Redundantly Actuated Closed
Chains
Vijay Kumar
University of Pennsylvania, kumar@grasp.upenn.edu

John F. Gardner
Pennsylvania State University - University Park

Follow this and additional works at: http://repository.upenn.edu/meam_papers

Part of the Mechanical Engineering Commons

Suggested Citation:
Kumar, V. and J.F. Gardner. (1990). "Kinematics of Redundantly Actuated Closed Chains." IEEE Transactions on Robotics and Automation, Vol. 6(2)2.
pp. 269 - 274.

©1990 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/meam_papers/248
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Kumar, Vijay and Gardner, John F., "Kinematics of Redundantly Actuated Closed Chains" (1990). Departmental Papers (MEAM). 248.
http://repository.upenn.edu/meam_papers/248

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers/248?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/meam_papers/248
mailto:libraryrepository@pobox.upenn.edu


Kinematics of Redundantly Actuated Closed Chains

Abstract
The instantaneous kinematics of a hybrid manipulation system, which combines the traditional serial chain
geometry with parallelism in actuation, and the problem of coordination is discussed. The indeterminacy and
singularities in the inverse kinematics and statics equations and measures of kinematic performance are
analyzed. Finally, coordination algorithms that maintain an optimal force distribution between the actuators
while avoiding or exploiting singularities are presented.

Disciplines
Engineering | Mechanical Engineering

Comments
Suggested Citation:
Kumar, V. and J.F. Gardner. (1990). "Kinematics of Redundantly Actuated Closed Chains." IEEE Transactions
on Robotics and Automation, Vol. 6(2)2. pp. 269 - 274.

©1990 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/248

http://repository.upenn.edu/meam_papers/248?utm_source=repository.upenn.edu%2Fmeam_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages


IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. V O L  6 .  NO 7 .  APRII. I Y Y O  269 

Kinematics of Redundantly Actuated Closed Chains 

VlJAY K U M A R .  \ t F \ l H I R .  IFrF. A\n JOHN F GARDNER 

Abstract-The instantaneous kinematics of a hybrid manipulation sys- 
tem, which combines the traditional serial chain geometry with par- 
allelism in actuation, and the problem of coordination is discussed. 
The indeterminacy and singularities in the inverse kinematics and stat- 
ics equations and measures of kinematic performance are analyzed. 
Finally, coordination algorithms that maintain an optimal force distri- 
bution between the actuators while avoiding or exploiting singularities 
are presented. 

I .  IUTROI>UCTION 

Broadly speaking, there are two types of geometries for robot 
manipulators: serial chain and parallel chain linkages. However, 
robotic systems such as two cooperating arms, walking vehicles. 
and multifingered grippers consist of several actively controlled ar- 
ticulations (serial linkages), which act in parallel on an objectiend- 
effectoriground. Unlike serial manipulators. they include one or more 
closed kinematic chains in their structure. and in addition, unlike 
completely parallel manipulators, there is more than one actuator 
in a particular chain. and the number of actuators typically exceeds 
the mobility typically. In this paper. such devices are called hybrid 
manipulators. 

Examples of robots with completely in-parallel actuation and the 
kinematic and dynamic analysis of such parallel systems have been 
presented in [ I ] ,  121, [7], and [12]. The dualities that exist between 
serial and parallel geometries and between kinematics and statics have 
been pointed out in [17]. The control problem for such dynamically 
constrained systems has also been analyzed (see, e .g . ,  141, [5], [16]. 

Hybrid systems are characterized by redundantly-actuated closed 
chains. The actuator rates are uniquely determined by the specified 
trajectory, but the actuator forces are underdetermined. The redun- 
dancy in such systems is dual to the kinematic redundancy in serial 
chain manipulators in which the number of actuators exceeds the 
dimension of the task space [ 111. The presence of redundancy en- 
genders a need for techniques that will resolve (or even exploit) the 
redundancy in the system. 

Redundancy in manipulation systems with parallelism has been 
studied with reference to multifingered grippers [SI, [ 15) and walk- 
ing vehicles [3], [ IO], [ 141. Since all these systems involve interaction 
between several actively controlled arms with a passive object [9]. 
most reports have described attempts to optimize contact conditions 
131. [S]-[lO], [ 141. These optimization efforts have largely ignored 
the performance of actuators at the joint level and have treated each 
articulation (legifingeriarm) independently rather than considering 
the entire system. In research on multiple arm systems (see. e . g . ,  
[13], [16], [18]. [2O]). the force distribution problem has not been 
addressed directly. Instead. in most proposed control schemes, the 
force distribution is automatically determined by trajectory errors, 
which results in unacceptably large interaction forces, thus affect- 
ing the system performance adversely. Even in studies in which this 
problem has been addressed, the load distribution has been a priori  
specified [13], [ 161. 

This paper addresses the issue of coordination in robotic systems 
with redundantly actuated closed chains. First. an instantaneous kine- 
matic analysis of hybrid devices is presented. The singularities in the 
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kinematics and statics equations. which are characteristic of systems 
with closed chains, are analyzed. We next discuss the kinematic char- 
acterization of the actuators to improve the understanding of the na- 
ture of redundancy in hybrid systems. Coordination schemes, which 
avoid singularities and compute optimal force distributions, are de- 
rived from this characterization. Simulations are used to demonstrate 
the efficacy of the proposed schemes. 

11. I N S T 4 h T A N t O t i S  KINI:MATIC ANALYSIS 

The analysis in this paper is restricted to symmetric configura- 
tions (same number of links. joints. and actuators on each chain). 
It is assumed that the joints are frictionless and that inertial forces 
are negligible since the main objective of the paper is to gain an 
insight into the problem rather than work with a perfect model. Let 
the manipulation system be comprised of n parallel chains. each con- 
sisting of m serially connected links (and possessing m degrees of 
freedom), and let the task space of d-dimensional (where d 5 m ) .  
Let a ( <m) be the number of actuators in each of the n chains. There 
are r = (n x a )  actively controlled joints. The special case a = 1 
( r  = n) corresponds to a scheme of actuation that is completely par- 
allel; an extensive survey of such mechanisms can be found in [ 7 ] ,  
whereas n = 1 ( a  must equal m in this case) denotes the standard 
serial arm. 

For the ith serial chain, the end-effector rate '8 is given by 

'1 ='J' ( l  (1) 

where the leading superscript i denotes the ith serial chain, ' q  is the 
( m  x 1) vector of joint rates, and 'J is the ( d  x m )  Jacobian matrix 
for the ith chain. Similarly, using the principle of virtual work 

'7 1 'JT'f (2) 

where '7 is the m x 1 vector of joint torques (or forces), and If is 
the vector of forces and moments exerted by the ith chain on the 
end effector (platform) or object. Obviously. m-a joint torques in '7 
must equal zero. Equations ( I )  and (2) can be written for any of the 
n serial chains in the system. 

Let us assume for the moment that the ith chain is in a nonsingular 
configuration, that is, m = d .  and the m joint freedoms in the ith 
chain are linearly independent. We can invert 'J  in (1) to obtain the 
joint rates required to effect a desired velocity of the end effector in 
the task space. If this is done for all the n chains, we can write the 
inverse equations for the mn rates compactly: 

(3) 

The rates for the r (  = nu) actively controlled joints can be extracted 
from (3) 

e ,  =rx (4) 

where e, is a r x I vector of joint rates. where the subscript 'a' 
indicates that only the rates of the actively controlled joints are in- 
cluded in the vector. Each row of r ( a  r x d Jacobian matrix) is 
a row in the mn x d matrix of inverses in (3) .  Equation (4) repre- 
sents the inverse rate kinematics equations for the system. Clearly. 
if r = d = nu and I' is nonsingular, the direct kinematics equations 
may be obtained by inverting (4): 

1 =r-le , .  ( 5 )  

Notice that in systems with parallelism, the inverse kinematics (31, 
(4) are simpler than the direct kinematics [12], [17]. Further, the 
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inverse kinematics require that each Jacobian matrix ( ' J )  be nonsin- 
gular, but the direct kinematics, in addition to that, require that r 
be nonsingular. 

Similar transformations from joint space to Cartesian (end- 
effector) space are possible in statics in the absence of friction and 
gravity. By using the principle of virtual work, from (4), we obtain 
(7(7 is the vector of joint torques for all the actively controlled joints) 

Tee, = 7;rx = w r i  ( 6 )  

or 

w =rT7,. (7) 

Once more. if r = nu = d and r is invertible. the inverse problem 
can be solved. 

A . Singularities 

There are two types of special configurations that are encountered 
in control algorithms for such hybrid systems. The first type of sin- 
gularity is caused by the joint freedoms in a single chain becoming 
linearly dependent, which results in that chain loosing one or  more 
degrees of freedom, thus constraining the end effector along one or 
more directions. This is the well-known kinematic singularity. which 
is characteristic of serial chain arms. However, even if none of the 
n serial chains are singular (that is. there is no kinematic singular- 
ity). it is possible for the d rows in the d x d r matrix to become 
linearly dependent. In this case. the direct kinematics transformation 
(5) is not possible. In such a situation. a desired unique velocity of 
the end effector cannot always be specified. Alternatively, the ma- 
nipulator is underconstrained, and there exist one or more wrenches 
that cannot be resisted. Therefore, alternatively, we can describe this 
singularity as a singularity in the "inverse statics" since it also pre- 
vents the determination of T ,  for a given w in (7).  In other wordh. 
this type of singularity is dual to the first kind and may even be 
called a static singularity as opposed to a kinematic singularity. We 
note that since we are only concerned about geometric singularities. 
computational singularities that arise from a particular mathematical 
modeling technique are not an issue here. 

B.  Redundancies 

If any of the n chains has more than d joints, i.e., m 2 d .  the 
inverse kinematics problem is underdetermined. It is possible to find 
more than one set of joint rates for a desired end-effector veloc- 
ity, and this situation is called kinematic redundancy. Optimization 
techniques to resolve the kinematic redundancy can be found in the 
literature [6] and is beyond the scope of this study. In this paper, we 
will concentrate on systems in which m = d .  A situation that is dual 
to this occurs in hybrid systems when the problem of determination 
of the forces and moments exerted by each of the n chains of the 
end effector is underspecified. In this case, the problem is statically 
indeterminate- the situation of static redundancy is dual to the con- 
cept of kinematic redundancy. This problem of distributing the load 
between the n chains is called the force distribution problem (21, 
[91-[11l. 1141. 

111. KIYFMATIC CHARACTERIIATION OF ACTL:ATORS 

A .  Partitioning of Actuators 

ten as 
If the rows of r are denoted by R 1 ,  R z , .  . . , R , ,  (7) can be rewrit- 

w = r r T  = [RYR? ' ' . R ; ] [ 7 , 7 ?  ' ' ' 7 , ] .  (8) 

This represents an underdetermined set of equations when r > d .  In 
such a situation, it is possible to designate any d of the r available 
actuators as primary (the other d - r are called secondary) sinii- 
lar to the approach followed in [4] and [ 5 ] .  In this framework. the 
primary actuator set would control the motion of the manipulated 
object, whereas the secondary actuators would cater to secondary 
objectives-one alternative is the control of interaction or constraint 

Fig. 1 .  Manipulation with two planar arms 

forces on thc object [20] .  In any event. the control inputs correspond- 
ing to the primary actuator set, in general, span the task space. From 
this point on, we ignore such secondary considerations and assume 
that joints with secondary actuators are free. 

Clearly, there are rCc, choices for the primary actuator set. The 
input vector of torques corresponding to a particular set that consists 
of actuators i ,  , i : ,  . . . ,io is denoted here as U , ,  ,,, ,...,, ii. Each such 
r x 1 vector has d nonzero torques (7 , ,  , 7,!, . ' ,  7rd);  the other r ~ d 
torques are zero. These 'Cd vectors span the r-dimensional joint 
space. and any vector of inputs (torques) can be expressed as a linear 
combination of these vectors. Any of the 'Cd primary actuator sets 
can be used to control the motion and the input vec toru , , ,12 . . .  can 
be found by solving for the d unknowns r,, , r,, , . . . , r,tj 

w =r:,,: ,....,,, ~ T , , T , ,  . - . T , , I ' ,  where 

r,,,!:, , J < !  = lRfR:,"',RJ,l'. (9) 

B .  Measures of Kinematic Performance 

Several measures of Linematic pcrformancc have been sought for 
serial robot manipulators. The manipulability [ 191 and the condition 
number [I51 are two well-known indices. Both measures of kinematic 
optimality may be adapted to meet our  requirements. 

For a given primary actuator set consisting of actuators 
i ,  , i?  , . . . ,id (input vector U , ,  , ,?,  we can define 

as measures of optiniality of the primary actuator sets. where c( .) is 
the condition number. Clearly. p ( , , :  ,..,,! and r, , i r  .,,j are functions of 
the position of the object in task space as well as the choice of actua- 
tors i f ,  i 2 ,  . . , i d .  It is important to note. however. that pi,,- ...,,, is the 
volume (except for a multiplicative constant) of the force ellipsoid 
given by 

A larger value of p , , , ! . .  l , j  implies that for a given load. the input 
torques are smaller. Similarly, r , , , 2 . . . l , j  is a measure of the isotropy 
of the force ellipsoid. 

C .  A Planar Dual Arm Manipulation System-An Example 

As an example. we consider two planar robot manipulators, where 
each has two revolute joints. We model the gripped object as a small 
cylinder (the radius is small compared with the link lengths). and 
the interaction between the hvo arms is modeled as a revolute joint. 
In these circumstances, the system may be modeled as a closed five- 
bar chain (with five revolute joints) and four actuators. as is shown 
in Fig. 1. The mobility of the linkage is cqual to two. and the task 
space i s  the 2D translational space. Since the number of control inputs 
(actuators) is four, the system is redundant. 

Let (x, y )  be the coordinates of thc ob.ject and 8, be the joint 
variables. Further, let c , ,  s,. c , ,  , and s , ,  denote cos 8,. sin 0 , .  
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cos(8, + 0 ) ) .  and sin(8, + 0,).  respectively. The rate kinematics 
equations are 

where 

and 

Inverting the Jacobians analytically. we get expressions similar to (4) 
and ( 7 ) :  

e, = [e l  e? 6, e,]' = ri 

w = [w., w , . ] ~ .  = rT7 = [ H ~ K : R ~ R ~ ] [ T ~ T : T ~ T , ] ~  
where 

Clearly. there are 'Cl (= 6) choices for the primary actuator set. 
The six input vectors, denoted by u 1 2 .  u I > .  u I J .  u z j ,  u ? ~ .  and u , ~  
span the 4D joint space, and any vector of torques can be expressed 
as a linear combination of these vectors. The input vector U,, for the 
primary actuator set consisting of actuators i and j that is required 
for a load w can be found by solving the above equations for the two 
unknowns 7 ,  and 7 / .  

For example, for u I I  = [ T I  0 0IT 

where 

Even for the simple geometry shown in Fig. I ,  the workspace is 
replete with singularities. These can be classified into six categories 
(cases A-F), all of which are shown in Fig. 2 and described in Table 
I. 

If the primary actuator set consists of actuators from one of the 
two arms only (that is, the inputs U or  U?., are considered). a spe- 
cial configuration or singularity occurs when an arm is completely 
extended or retracted (cases A and F in Fig. 2 and Table I); the 
determinant of 'J  (or ' J )  equals zero. If the system is considcred 
to be a closed chain, that is, the dichotomy of two arms is aban- 
doned, we are automatically faced with more special configurations. 
For example, for U equating the determinant of r 1 3  to zero yields 
upon simplification the condition sin(O1 -t 82 ~ 83 - 04) = 0. This 
corresponds to the distal links of each manipulator being aligned, 
or more precisely, to axes of joints 2 ,  4. and 5 being coplanar. In 
this situation, a force exerted perpendicular to the plane of the axes 
cannot be resisted, and the object, therefore. is unrestrained. Simi- 
larly, the singularities for other actuator sets can be found. Unless a 
simple leader-follower type of a scheme is employed for coordina- 

Fig. 2. Singular configurations in manipulation with two planar arms. In all 
cases. three of the five joint axes are coplanar (see Table I ) .  Cases A and 
F correspond to the "usual" kinematic singularities, whereas cases B-E 
are the static singularities. 

I 
CASE ACTUATOR 1 pYy 
t 1 

2, 4 

3.4 

w m " c . a  CONDITION 
FOR SINGULARIT( 

sin 82 = 0 

4 sin (el  + e2 - e3 - e4) + 13 sin (el + e2 - 83) = o 

GEOMETRIC 
DESCRIPTION 

(COPLANAR AXES) 

1. 2. 5 

2. 4. 5 

2. 3, 5 

1.4 .  5 

1. 3. 5 

3 , 4 .  5 

tion, all these singularities can be expected to affect the control of 
the system. A good coordination algorithm must avoid (or exploit) 
these singularities appropriately. as is shown in the next section. 

IV. COORDINATION OF REDUNDANT ACTUATORS 

We now address the problem of specifying torque set points for 
the controller and resolving the redundancy in (8) in an effective 
manner. It is clear from the discussion in the previous section that 
negotiating the myriad singularities is one of the key issues. However, 
if one considers the major task of the system to be that of resisting 
an applied load, it makes sense to take advantage of home of thc 
singularities. In particular, the singularities that belong to the first 
class (kinematic singularities) are potentially attractive since the) 
represent configurations in which externally applied loads are not 
reacted by the actuators at all. If we formulate a control scheme that 
actually favors those sets of actuators that are at or near kinematic 
singularities and avoid those that are at or near "static" singularities, 
we can achieve greater load (for example, lifting) capacity with less 
joint deflections, greater accuracy, and superior performance. 

The simplest coordination scheme involves switching from one set 
of primary actuators to another in order to constantly command the 
optimal primary actuator set while the secondary actuator set is idle. 
However, this would result in a discontinuity in the torques at the 
instants when the actuator sets are switched. To circumvent this, we 
propose a coordination scheme based on different weighted averages 
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P 
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Fig. 3 .  Simulation results (Example 1) .  The trajectory is a horizontal path 
( ~ 0.5 5 x 5 0.5, y = 0.1) with a constant load of ~ i - 2j  applied 
on the object (including the weight), s IS a parameter that varies from 0 
to I along the trajectory, and u t , ,  ’ and U,,,? denote I ,  and I, (i < j ) ,  
respectively, for the primary actuator set consisting of actuators i and j .  
The force distributions in (d) and (e) are derived from (14) with r , ,  and 
p, ,  as weighting factors, respectively. 

of the rCd possible input vectors that enables a continuous switching 
between different actuator sets. 

For a given primary actuator set consisting of actuators 
i l ,  i : ,  . . . , i d ,  the input vector U ! , , , :  ,..., can be computed unless 
rl1,,? ,...,,,, is singular. If P ! ~ ~ , : , .  .,,, is an index that is ubed as a mca- 
sure of performance o f u , , , , 2 , .  ,,(, . an appropriate vector of torques 
can be computed quite simply: 

P , , , ?  ..,, p, , ,?  ./,, 

i ; l . ’  ‘ l , j  

The use of either p , , , ?  ...,,! or r , , , ?  as a weighting factor makes it 
possible to accommodate singularities with ease since in either case, 
the weighting factor vanishes when the input vector corresponding 
to a singular r ,,,, :, . . . j , ,  matrix. Using pi , ! : . . . ;< ,  results in a larger 
force ellipsoid for the system and therefore smaller torques. This 

automatically favors kinematic singularities (see cases A and F in 
Fig. 2 and Table I) but avoids “static” singularities (cases B, C. 
D, and E in Fig. 2 and Table I). The use of r l l12 . . . ld  on the other 
hand would increase the isotropy of the force ellipsoid but would also 
(indirectly) avoid “static” singularities that cause the force ellipsoid 
to flatten out along one of its principal axes. 

A .  Example-A Simulation of the Dual-Arm Manipulation 
System 

We illustrate the application of (14) using the indexes p, , ,2 . . . lc l  and 
r l l r ~ . . . r , l  with simulations on a quasistatic model of the system in the 
example considered earlier (see Figs. 3 and 4). We consider the two 
trajectories shown in Figure 3(a) and 4(a) with a constant load, w, 
of -i - 2 j  units as examples. 

The horizontal trajectory of Fig. 3(a) passes through a kinematic 
singularity (case A) at x = 0. Fig. 3(b) and (c) shows the torques 
required to counteract the applied load in a master-slave type control 
scheme. Fig. 3(b), actuators 1 and 2 (input vector,u I z )  and Fig. 3(c), 
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( 1 )  
Fig. 4. Simulation results (Example 2 ) .  The trajectory ic a vertical path 

! x  = 0.5, ~ 0.5 y 5 1.5) with a constant load of ~ i ~ 3 applied 
on the object (including the weight). s is a parameter that varies from 0 
to 1 along the trajectory, and U,,, ’ and U,,,’ denote t ,  and t ,  (i < j ) .  
respectively, for the primary actuator set consisting of actuators i and J .  

The force distributions in (d) and (e) are derived from (14) with p,, and 
b:, as weighting factors, respectively. 

actuators 3 and 4 (input vector, u j 4 )  are considered to be primary 
actuator sets. Since arm 1 (input U ,:) is near a kinematic singularity. 
U is preferable to uj4. Other actuator sets have different character- 
istics. Fig. 3(d) shows values of r , ,  (reciprocals of the six condition 
numbers) as functions of position. Recall that as r , ,  approaches I ,  
the force ellipsoid approaches perfect isometry (a preferred condi- 
tion). With a proper switching algorithm, it is therefore possible to 
solve the control problem in such a way that r , ,  is maintained at 
a value above 0 .3  (see Fig. 3(d)) through the trajectory. Fig. 3(e) 
shows the actuator torques that result from implementing a weighted 
average scheme with p , ,  = r,], as is described in ( 14). On the other 
hand, using (14) with p,/  as a weighting factor results in a much 
better force distribution from the point of view of torque require- 
ments, as is shown in Fig. 3(f) .  The tradeoff is clear. By increasing 
the isotropy of the force ellipsoid, we also decrease the volume of 
the ellipsoid. We also obtain a smooth variation of torques in Fig. 
3 ( f ) ,  which is important, especially for high-speed maneuvers. since 
this affects how well the actuators will be able to faithfully produce 
the desired torques. 

In the second example. the trajectory is a vertical path (see Fig. 
4 (a) ) ,  which passes through three singularirics (cases B, C. and D). 
The so-called “static” singularities can be clearly seen in Fig. 4(b) 
from the time histories o f u  1 3  a n d u , ?  (cases B and C ,  respectively). 
Fig. 4(c) once again suggests that a simple switching algorithm would 
ensure a condition number less than 3.0 ( r , ,  > 0.33) through the 
trajectory. The force distribution resulting from pi/ as a weighting 
factor is shown in Fig. 4(d).  This time, the torques are discontinu- 
ous in the slope (as opposed to the torques in Fig. 3 ( f ) ) .  This is a 
consequence of the singularities. However. if the weighting factor is 
made a higher power of p, , .  for example, with pi/ = p:, , we obtain 
a force distribution in which the maximum torque is approximately 
the same. but the torques arc much smoother, as is shown in Fig. 
4(f)  (compare with Fig. 3 ( f ) ) .  

In conclusion, the use of weighting factors enables efficient utiliza- 
tion of all the actuators and allows a “closed chain“ approach to the 
problem as opposed to a “master-slave” approach. The weighting 
factors circumvent singularities in the statics equations, whereas the 
kinematic singularities are exploited to minimize motor torques. This 
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approach results in an even distribution of forces, as is evidenced by 
Fig. 3(e) and ( f )  and Fig. 4(e) and ( f ) .  

B .  Remarks 

1 .  Dynamic Loads and Inertial Forces: The assumptions regard- 
ing the quasi-static nature of the problem are realistic in some ap- 
plications, as was mentioned earlier. However, if inertial forces be- 
come significant. they must be incorporated in the vector w. Now, 
w varies with time, but this does not preclude the application of 
the ideas presented in this paper. The only difference is that the 
"static" singularities are not as important at high speeds since the 
inertia of the system will carry it through such singularities. It may 
be speculated that control problems will not be as severe. Neverthe- 
less. at low speeds, even if the inertia of the system is significant, 
these singularities (belonging to the second kind) arc an important 
consideration. 

2 .  Computational Load: The computational complexity of the sug- 
gested scheme increases with the dimension of the task space. This is 
particularly so since r r l , ?  . . . , d  requires the computation of eigenvalues 
of a matrix and is unsuitable for on-line computation. However. the 
use of p l , l : . . . , d  is well suited to real-time operation, especially since 
the input vectors U,,,? ..., as well as the weighting factors p r l r 2  ..., ii 
can be computed in parallel. Even in 3D geometry, the complexity 
in the computation of the weighting factors is similar to the com- 
plexity in the computation of the determinant of a Jacobian matrix 
in an industrial robot, which is not at all expensive when efficient 
analytical expressions for the determinant are used. 

In fact, ( 14) can be further simplified if pi , , ,  .. ,<, = p,  ,,: 

I ,  I ? .  . ' I ( )  I , I 2  . . . I  

where adj (.)  represents the adjoint of the matrix. Now, no inverses 
have to be computed to find U,,, :...,<,, and there is never any scope 
for division by a small number. 

V .  CONCLUDING REMARKS 
The kinematics of a hybrid manipulation system, which combines 

the traditional serial chain geometry with parallelism in actuation. 
is discussed. These systems have two key attributes: a closed chain 
structure and redundancy in actuation. In this paper, the structural 
characteristics and the kinematic performance of such systems are 
studied. The special configurations or singularities, which are clas- 
sified into two dual categories, and are dual to one another, are 
described. A coordination algorithm that automatically avoids unde- 
sirable singularities while favoring preferred singularities is devel- 
oped. Simulation results demonstrate the utility and practicality of 
the scheme. 
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Modal State Position Controller for the UtahMIT 
Dextrous Hand 

THOMAS H.  SPEETER 

Absfruct- Control of multitingered robotic hands i s  a natural example 
of hybrid control. Contact forces must be controlled without exceeding 
force thresholds while the fingers are moved to impart motion to an ob- 
ject. This paper describes a modal state position control algorithm suited 
for hybrid manipulation tasks. Position tracking i s  robust, allowing force 
control to be executed in parallel according to task requirements. Hy-  
brid control i s  achieved by the summed actions of the primary position 
controller and one or more secondart force controllers. The position 
control algorithm is outlined for both joint space and Cartesian space 
applications. Implementation and performance issues on the U t a h M l T  
dextrous hand are discussed. 
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