1,408 research outputs found

    Multi-Arm Manipulation of Large Objects With Rolling Contacts

    Get PDF
    The problem of manipulating objects which are relatively larger than the size of the manipulators is investigated. Large objects without special features such as handles can not be grasped easily by the conventional end effectors such as parallel-jaw grippers or multi-fingered hands. This work focuses on the manipulation of large objects in the plane and analyzes the contact interactions. The flat surface effectors of planar three link manipulators interact with the object. The dynamics of the object and the manipulators are included in the equations of motion that govern the planar manipulation system. The contacts between the link surface and the object can be characterized by rolling, sliding, and separation. This study focuses on rolling which is explicitly included in the dynamic model of the system. Contact separation is avoided by enforcing the unilateral constraint that each manipulator must push at the contact point. Sliding is avoided by constraining the applied force to fall within the contact friction cone. The dynamic coordination between multiple manipulators is achieved by simultaneously regulating the motion of the object and the critical contact force. Control algorithms are developed that employ nonlinear feedback to linearize and decouple the system. A motion and force planner is developed which incorporates the unilateral constraints into the system. The motion planner also specifies the rolling motion for each contact. Rolling enables the system to avoid slipping by repositioning the contact points such that forces are applied along the surface normals. The calculations of the rolling motion planner are based on the dynamics of the object, the measured external disturbance forces, and desired critical contact force. Extensions of the analysis are investigated by relaxing certain key assumptions. Results from simulation and experimentation are presented to verify the efficacy of the theory and to provide insight into the issues of practical implementation

    Control of Multiple Arm Systems With Rolling Constraints

    Get PDF
    When multiple arms are used to manipulate a large object, it is necessary to maintain and control contacts between the object and effector(s) on one or more arms. The contacts are characterized by holonomic as well as nonholonomic constraints. This paper addresses the control of mechanical systems subject to nonholonomic constraints, rolling constraints in particular. It has been shown that such a system is always controllable, but cannot be stabilized to a single equilibrium by smooth feedback [l, 2]. In this paper, we show that the system is not input-state linearizable though input-output linearization is possible with appropriate output equations. Further, if the system is position-controlled (i.e., the output equation is a functions of position variables only), it has a zero dynamics which is Lagrange stable but not asymptotically stable. We discuss the analysis and controller design for planar as well as spatial multi-arm systems and present results from computer simulations to demonstrate the theoretical results

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the RoDyMan Project

    Get PDF
    The goal of this work is to disseminate the results achieved so far within the RODYMAN project related to planning and control strategies for robotic nonprehensile manipulation. The project aims at advancing the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to future enhance the possibility of employing robots in anthropic environments. The final demonstrator of the RODYMAN project will be an autonomous pizza maker. This article is a milestone to highlight the lessons learned so far and pave the way towards future research directions and critical discussions

    The GR2 gripper: an underactuated hand for open-loop in-hand planar manipulation

    Get PDF
    Performing dexterous manipulation of unknown objects with robot grippers without using high-fidelity contact sensors, active/sliding surfaces, or a priori workspace exploration is still an open problem in robot manipulation and a necessity for many robotics applications. In this paper, we present a two-fingered gripper topology that enables an enhanced predefined in-hand manipulation primitive controlled without knowing the size, shape, or other particularities of the grasped object. The in-hand manipulation behavior, namely, the planar manipulation of the grasped body, is predefined thanks to a simple hybrid low-level control scheme and has an increased range of motion due to the introduction of an elastic pivot joint between the two fingers. Experimental results with a prototype clearly show the advantages and benefits of the proposed concept. Given the generality of the topology and in-hand manipulation principle, researchers and designers working on multiple areas of robotics can benefit from the findings

    Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation

    Get PDF
    When two or more arms are used to manipulate a large object, it is preferable not to have a rigid grasp in order to gain more dexterity in manipulation. It may therefore be necessary to control contact motion between the object and the effector(s) on one or more arms. This paper addresses the dynamic control of two arms cooperatively manipulating a large object with rolling contacts. In the framework presented here, the motion of the object as well as the loci of the contact point either on the surface of each effector or on the object can be directly controlled. The velocity and acceleration equations for three-dimensional rolling contacts are derived in order to obtain a dynamic model of the system. A nonlinear feedback control algorithm that decouples and linearizes the system is developed. This is used to demonstrate the control of rolling motion along each arm and the adaptation of grasps to varying loads

    Control of Rolling Contacts in Multi-Arm Manipulation

    Get PDF
    When multiple arms are used to manipulate a large object, it is beneficial and sometimes necessary to maintain and control contacts between the object and the effector (the contacting surface of an arm) through force closure. Rolling and/or sliding can occur at these contacts, and the system is characterized by holonomic as well as nonholonomic (including unilateral) constraints. In this paper, the control of planar rolling contacts is investigated. Multi-arm manipulation systems are typically redundant. In our approach, a minimal set of inputs is employed to control the trajectory of the system while the surplus inputs control the contact condition. The trajectory includes the gross motion of the object as well as the rolling motion at the contacts. A nonlinear feedback scheme for simultaneous control of motion as well as contact conditions is presented. A new algorithm which adapts a two-effector grasp with rolling contacts to external loads and the trajectory is developed. Simulations and experimental results are used to illustrate the salient features in control and planning
    • …
    corecore