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16 CHAPTER 4. PLAN OF RESEARCH 

This method can be applied to the 1-D system of Equations 4.19 and 4.20. The weighting 

matrices V and Q are chosen to  be diagonal thus decoupling the force and position error 

terms. The input d is the trajectory of the desired object position and the desired force Fl. 

This system can be simulated by first solving S and v by disregarding the minus sign on the 

left hand side of Equations 4.28 and 4.29 and forward integrating them from T to T + to .  

This information is then used in reverse. Thus, Ii' and therefore u, which is a function of 

K and the state x, can be calculated at time t. A simulation of the system now can be run 

from to through T. 

In practical implementation, a suboptimal scheme can be employed. In this case, the 

steady state value of S is found as T i cc off line. Although this value is not optimal, is 

normally a nea,r optimal. Now, K is a constant and u is a function of the state x and the 

variable v (Equation 4.26). Expressing v as a function of time yields: 

Let A = ( A  - B K ) t .  A sampled version of v is now derived, where the sample period 

Ts = tk+l - tk. During this sample period, it is assumed that d is constant. 

This equation can be used by a computer at each sample period to  update v(tk), but 

this requires v(to), e-6T and e - ' ~  d r .  The initial value of v can be calculated off-line 

by making use of Equation 4.30 as follows: 

Estimates of the remaining ternzs can be calculated as follows [ 6 ] :  

for sufficiently large N. Likewise, 
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Figure 4.2: Complete Manipulation System. 

again, for sufficiently large N. A computer can be programmed to make these calculations 

efficiently and to decide on-line the size of N. Thus, the above suboptimal controller can 

be physically implemented. 

The complete manipulation system also has another major component, the planner (see 

Figure 4.2). As noted in the end of the previous section, the planner is an integral part 

of the system design. The planner has the responsibility to  generate inputs that preserve 

the constraints on the system, namely forces that do not pull and contacts that do not 

separate. The inputs to the planner are the task variables, such as desired critical contact 

force and object position, velocity, and acceleration. The outputs of the planner, for the 

optimal controller developed above, are the desired object position and the desired force to  

be applied by the first manipulator (Equation 4.18). 

4.2 Two dimensional case 

The next case to be examined involves extending the task into two dimensions (2-D). The 

manipulators and the object are restricted to move within the same plane. The goal is to  

move the object within the plane along a desired trajectory while maintaining the grasp. The 

trajectory of the object is given in terms of 3 variables, translation in x and y directions and 

rotation 4 about the plane normal (z). Analysis of the grasping force requires assumptions 

about the contact points. It is assumed that each manipulator makes a single point contact 

with the object. The point contact is characterized by a friction coefficient p.  Further, the 

contact curves are also constrained: the manipulators have straight line perimeters at and 

in the neighborhood of the contact point while the object's perimeter is circular. Finally, 

it is assumed that each robot can exercise all three independent degrees of freedom (DOF) 

at the contact point. 

Notice that the task goal, manipulating the object, does not explicitly specify the be- 
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Figure 4.3: Two dimensional example. 

havior of the robots at the contact points. In general, each contact point can be subject 

to  separation, sliding and/or rolling. In this development, it is assumed that separation at 

the contact point implies the inability to  manipulate the object and results in task failure. 

Similarly, sliding is not considered beneficial within this framework. However, rolling at 

the contacts is included in the analysis, and it is shown how rolling can be implemented to  

resolve the problems of sliding and separation. 

In Figure 4.3, a typical 2 dimensional case is shown where two serial 3 link robots 

manipulate a circular object. This example we be referred to  throughout this section. 

4.2.1 System Equations 

The object motion is an extension of Equation 4.1, given by: 

where Mo = diag[mo Io] is the object inertia matrix with the mass term m, E R~~~ and 

inertia term I, E R, p, = [so yo bolt is the position vector of the object's center of mass 

(CM) and wo = $,, and W = [w: w,]' E R3 is a vector of disturbance forces/torques at 

the CM (and is comprised of force disturbance wf E R2 and moment disturbance w, E R) .  

Note that W can include the force due to  gravity. The term Fi E R2 is the force at the ith 

contact point. The matrix r; E R3x2 relates the contact force to an equivalent force/torque 
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at the CM and is of the form: 

where r; = [ril ri,It is the vector from the CM to the ith contact point. Implicit in 

this equation is the fact there are rolling contacts, thus only forces (and no moments) are 

transmitted at  the contact points. All of the above variables are referenced with respect to  

a fixed global coordinate frame. 

The dynamic equation of the 3 D O F  revolute joint robot is given by: 

where M;(q;) E is the inertial matrix of the ith robot, q; E R3 is the joint angle vector 

(with time derivatives q; and q ; ) ,  K(q;q;) E 'R3 is a vector that accounts for torques due 

to  the velocity (and/or position) dependent terms of centrifugal, Coriolis, and gravitational 

force, T; E R3 is the vector of torques applied by the joint actuators, and J,f E R~~~ is the 

transpose of the robot Jacobian matrix relating the differential motion of a single reference 

point p; = [xi y; $;It attached to the robot (effector) to the differential motion of the joints. 

F; is defined with respect to Equation 4.39 and A; E 'R3x2 relates the forces/torques at the 

effector reference point pi to the contact point p,, on the robot and has the form: 

where d; is the vector (in R2)  from the ith robot's effector reference point to  its contact 

point. Note that Equation 4.41 models only the physical dynamics of the arm, the actuator 

dynamics are not considered. 

The velocity of the reference point on the robot effector is related to the velocity of the 

CM of the object by the relationship: 

The trar~slational velocities of the object and the robot at the contact point are equivalent 

as long as the contact does not slip. The rotational velocities of the object and arm at the 
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contact point are not equivalent in general (W,,~ # 0), because the contact can roll. The 

acceleration relationship is of the form: 

where X: is the radius of curvature of the circular object and ni is the object surface normal 

(directed inward). 

The relationship between the joint accelerations qi and the acceleration of the fixed 

reference point on the effector pi is given by: 

The above equations can be combined into a complete system. Given that  each robot 

has 3 DOF a t  its contact point, then the mobility of the 2 planar robots manipulating a 

planar object with rolling contacts is five. The rolling contacts are instantaneously modeled 

as a revolute joints and the system is equivalent to  an eight bar serial linkage. The system 

can be specified by the position variable p = [x, yo 4, 4 2 I t  where the first three terms 

represent the object's position (including orientation) and the last 2 terms represent the 

orientation of the surface normal of each robot at  its contact point. (It is assumed that  the 

orientation of the robot reference point pi and the robot contact point are the same and 

equivalent to  the surface normal of the robot at  the contact point. Thus 4; is the third 

element of the robot effector reference vector p; = [xi y; $;It.) The complete system with 

respect to the state variable X = [XI X;lt = [pt $It E R1° would have the form: 

where F( . )  E R5 is a function of position and velocity, G(.) E R~~~ is a function of position, 

and 7 = [T: r;lt E x6 is the vector of joint torques for both robots. The system output 

defined as Y = [Y: Y2It = [pt (Fl .e12)lt E where the force quantity Fl is projected upon 

elz, the unit vector of the line joining the contact point of the first robot to  the contact 

point made by the second robot. The importance of this quantity is shown in the critical 

contact force analysis that follows. The output has the functional form: 

where a( . )  E R is a function of the system position and velocity while b( . )  E R6 is a function 

only of the system position. 

The full derivation of the functions F(X1, X2) ,  G(X1), a(X1, X 2 ) ,  and b(X1) are 

developed in Appendix A. 



4.2. TWO DIMENSIONAL CASE 

Figure 4.4: Critical contact force. 

4.2.2 Critical Contact Force 

The critical contact force again describes the force exerted by the robots that does not 

contribute to the object motion. For example, in the case of two robots as shown in 

Figure 4.3 where the line segment joining the two contact points is within each contact 

point's friction cone, the critical contact force is defined as: 

where F; E R2 is the force a,pplied by the ith robot at its contact point, and el2 E R2 is 

defined above as the unit vector of the line joining the contact point of the first robot to 

the contact point made by the second robot. 

Note that this definition is valid when both terms are non-negative, that is to say both 

Fl -el2 > 0 and -(F2.e12) > 0. This condition is satisfied when realistic coefficient of friction 

values are considered and the constraint of no contact separation is imposed. This is shown 

geometrically below with friction cones. A friction cone designates all possible forces applied 

at a contact point that do not violate the friction constraint (IIFtatangentiatll I ,U IIFnorrnal 1 1 ) .  
For example, define 112 as the line in the plane that includes the two contact points ( A  and 

B) on the object. Let AB be the line segment of 112 joining the two points. Let be the 

ray with open endpoint A and extending along E12  in the direction opposite B and define 

2 similarly. The non-negative condition excludes the possibility that the projection of the 

force applied at  the either contact point onto the contact line Z l 2  lies on either A or 8. If 
motion, gravity, and disturbance forces are not considered, then the definition of friction 

cones implies that the line segment AB must be within the friction cones of both contacts 

in order to apply a force along m. (See Figure 4.4.) For the common case of the coefficient 

of friction being less that one, if the line segment AB is within the friction cones of both 
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contact points, then the projection of any force applied within the friction cone onto the line 

112 must lie on the segment a. Thus, the condition that Fl . el2 2 0 and -(F2 - e12) 2 0 

holds. 

As in the 1-D case, the critical contact force itself is not easily incorporated into the 

controller. However a bound can be found for the error in the critical contact force. This 

results in the controller managing the system trajectory and the force applied by one robot, 

since these variables are differentiable, and the non-differentiable function resides in the 

planner. 

From Equation 4.49 we can write: 

Taking the projection of the translational object motion equation (top two rows of Equa- 

tion 4.39) upon el2 yields: 

where xt = [ x ,  yo]. This expression can be combined with Equation 4.50 such that the 

F2 el2 term is eliminated. The resulting expression solved for Fl - el2 is given as: 

This expression also serves as a planner for the desired Fl el;! which is written as: 

The error terms are defined as: 

and the modeled mass as m,d = m, + Am, where Am, E R2x2  represents any model 

discrepancies. The expression for the error in the critical contact force is then written as: 

1 1 d - d -  
e,, = F - e l  - - 1  - ) e l  - ( m x  wj) . el2 

2 
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U. Non-Linear (4 Robot-Object 5 
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Figure 4.5: Nonlinear feedback preceding input integration. 

By expanding mf and gathering common terms the above equation can be written as: 

By taking the norm of both sides, a bound is found for the error in the critical contact 

force: 

Thus, a controller that has bounds on the object trajectory error, the error in the component 

of force Fl along el2, the disturbance error, and the desired object acceleration will have a 

bounded critical contact force error. The planner, by making use of Equation 4.53, handles 

the non-differentiable function instead of the control system. 

4.2.3 Controller Design 

The controller for the 2-D case no longer regulates a linear time-invariant system as in the 

previous 1-D case. However, the 2-D system equations have the same force characteristic as 

the 1-D case: in Equation 4.48 the input torques are algebraicly related to  the output force. 

The addition of integrators to the input channels resolves this pathology. This system is 

both highly non-linear and coupled. A non-linear feedback is found that both linearizes the 

entire system with respect to a new state and decouples the inputs to control one output. 

Two types of nonlinear feedback are developed below, with the introduction of feedback 

before and after the input integrators as the primary difference. 

First, we develop the controller shown in Figure 4.5 with the nonlinear feedback applied 

before the input integrators. The new system is written with respect to the state J = 
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[(I (a silt = [pt pt TtIt and has the form: 

where I(6) is the 6 x 6 identity matrix and the input u = [7]. The output equation is then 

restated as: 

Techniques from nonlinear control involving differential geometry are employed to  find 

a feedback of the form [ lo] :  

u = a ( [ )  + P( t )v  (4.63) 

where a(.)  and P( . )  are given as: 

and a ( [ )  is referred to  as the system decoupling matrix. This matrix is given as: 

where the operator Lg f is the Lie derivative of vector space f along vector space g defined 

The application of this feedback linearizes the system with respect to  a new state z related 

to z by the: 
t t t  

2 = T(<)  = [ z ~  z2 z3 24It = [I: L~Y: L?Y: Y21t (4.67) 

The requirement for this technique to work is the invertibility of the decoupling matrix. 

The final form of the system with nonlinear feedback before the integration is given 

below: 
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Figure 4.6: Nonlinear feedback following input intergators. 

An alternative to  the approach above is to  apply the nonlinear decoupling feedback after 

x 
b 

V. -- 

the input integrators, as shown in Figure 4.6. In this case, the feedback is applied as the 

input to  the system of Equations 4.47 and 4.48 and has the form: 

Non-Linear Robot-Object 
Feedback System 

where u is the new input and $ and 7 are given by: 

Now the system is linearized and decoupled at  the level of the input u since 

The system is completed by inserting the integrators preceding u. The system input is 

v = u and now the system can be written with respect to the state (' = [C: (i ('i c4lt = 
t .t -t [P P P (F1-elz)lt as: 

The output equation is simply: 
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4.2.4 Planner 

The previous section resulted in a system that was linear and decoupled, however the inputs 

to  this system are not task variables, i.e. variables that are explicit in the task specification. 

For instance, the output vector Yl = p = [x, yo do dl d2It includes the orientation of the 

robots (dl  and $2) yet the task goal of manipulating an object does not specify anything 

about these orientations. The other output variable Y2 = Fl -e12 may also appear unrelated 

to the task goal. Thus, a planner is designed to  relate task variables to  controller variables 

in such a way that  can satisfy the task goals and possibly improve the system. 

We assume that  implicit in the goal of successfully manipulating an object are certain 

the sub-goals: 

1. To reduce the possibility of slipping a t  the contact points within the grasp. 

2. To avoid loss of the grasp of the object. 

3. To prevent crushing the object. 

These goals require additional information to be provided along with the task variables 

besides the desired object trajectory. We show below that  by simply adding to this set the 

desired critical contact force, these goals can be met. 

The relationship of the force vector applied by the robot to  the orientation a t  the contact 

point directly effect Case 1 above. The force vector is a result of the desired motion of the 

object and the desired critical contact force. If this force is not within the friction cone 

of the contact point, slipping will occur. Thus, to prevent slipping, the following equation 

must hold: 

I Fi - (F; - n;)n; 1 5 p (F; - n;) (4.75) 

where p is the coefficient of friction (Coulomb's Law), Fi is the force applied by the ith 

robot ( i  = 1,2) ,  and n; is the normal at the ith contact point (pointing into the object). 

The coefficient of friction is often quite small, on the order of 0.15 - 0.6 for metal-on-metal 

contacts [2], thus this constraint is very susceptible to  being violated. 

A more stable way to apply the force is to closely aligned i t  with the contact surface 

normal, which mirlinlizes the left hand side of the inequality of Equation 4.75. Consider 

two extreme cases of grasping, as shown in Figure 4.7. In the first case, the robot contact 

perimeters face each other. The critical contact force applied by both robots will be normal 

t o  the surface and within the friction cone. However, the force applied by the robots to  

counteract gravity and produce motion can be in any direction, and the resultant force 
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Figure 4.7: Extreme conditions. 

may extend beyond the friction cone. A larger force could be applied along the contact 

line by both robots in order to keep the resultant force within the friction cone with out 

effecting the object motion. However, this may lead to  the crushing of the object (and/or 

the violation of robot arm torque limits). 

In the second extreme case, both robots contact the object at the same point which is 

directly opposite the required gravity/motion force. Thus the forces applied by the robots 

are centered within the friction cone, but since the contact points overlap, there is no 

notion of critical contact force. Indeed, this configuration is quite unstable with respect to  

directional disturbances. 

Between these two extremes resides a grasp solution which considers both the critical 

contact force and the gravity/motion force and results in a force that is aligned with the 

surface normal. This can be realized by changing the location of the contact as the desired 

gravity/motion force changes. Once an object is grasped, the only way to change the contact 

position without separation or slipping is through rolling. Rolling can be accomplished 

by controlling the object trajectory and the robot effector orientation. This justifies the 

inclusion of b1 and in the system trajectory. 

The complete planner is now specified: its inputs are the desired trajectory of the object 
(3Id ( @ , p ) and the desired critical contact force. Its outputs are the desired system 

state trajectory (pd, @j", lid, ~ ( ~ 1 ~ )  and the desired component of PI along the unit vector el2 

and its derivative. The system trajectory output includes the object and robot orientation, 

thus the rolling of the contact is stipulated. The planner calculates these outputs based on 

the inputs and the system state and characteristics of the object (mass, shape, CM) and 

the robot effectors (shape, size). 
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Roll Algorithm 

The planner's roll algorithm is developed below for the case of a circular object manipulated 

by two 3 link serial manipulators within the plane. It is assumed the object mass is known 

and centered at the center of the object. The object is described as a circle of radius r. The 

desired trajectory of the object is specified as the object position p, and its higher order 

derivatives. Further, it is assumed that the object only translates, its desired trajectory 

does not include any rotations (see the Section 4.3.4 for the analysis with rotations). 

Based on the desired trajectory and the (known) mass of the object, the desired equiv- 

alent force vector Fe = m,xt - wt is calculated such that when it is applied to the object's 

CM, the desired motion object motion is produced. Here W can represent the force of 

gravity of the object as well as any other known disturbance forces. Fe is restricted to  be 

a continuous, smooth function. 

Let the rotational transformation to the C coordinate system 'R E R2x2  be defined 

such that 'Fe = 'RF, has a zero 'z component and a non-negative 'y component. In 

other words, 'F, = [0, (Fell is the vector with the magnitude of Fe but in the positive C y  

direction. A symmetric solution is then pursued in the C coordinate system. Each arm will 

contribute equally in the positive 'y direction to produce 'F, and each arm will contribute 

in equal magnitudes along the axis direction to  produce the critical contact force. Thus, 

the desired forces by each arm in the C system are given as: 

Now, these forces are transformed back to the original coordinate system to yield the desired 

forces: 

The final step of the planner is to  determine the orientation of the the robots and the 

projection of Fl along el2. The desired orientation of the ith arm is given by: 

Thus, the desired force F;d coincides with the desired contact normal and is centered within 

the friction cone. The direction el2 is the first column of the inverse rotational transfor- 

mation and the calculation Fl . el2 can be performed. Higher order derivatives of q5; and 

fi - el2 are solvable as well and involve the higher order derivatives of the object motion. 
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Figure 4.8: Rolling. 

This rolling behavior is illustrated by a series of pictures in Figure 4.8. In these frames, 

a circular object is moved from an initial point at  rest Xi to a final point at rest Xf, and 

the orientation of the object does not change at  any time. Notice that the first frame the 

robots is merely counteracting the force of gravity and applying the critical contact force. 

The second frame the robots are collectively moving the object to the right. Note that they 

have rolled to  new contact points so that the force from each robot is along the contact 

normal. In the final frame, the force of the robots is de-accelerating the object. Again, they 

have rolled to new contact points so that the force is along the surface normal. 

To achieve the goal of not crushing the object (Case 3), it is assumed that the given 

desired critical contact force is well below the object's ultimate tensile strength. Referencing 

the critical contact force analysis, we have show that the error in the critical contact force 

is bounded by the error in trajectory, a force component, and the modeling error. 

The prevention of separation (Case 2) is guaranteed by the above algorithm since the 

force applied by the object is closely aligned with the surface normal and the force is non- 

negative. 
( 3 )  In summary, the planner transforms task variables (p,, p,, p,, p, , FCC) into controller 

( 3 )  variables (p, p, p, p, , Fl . e l a )  while maintaining a grasp of the object that neither sepa- 

rates nor excessively compresses the object. Further, the planner calculates the trajectory 

of the roll at  the contact points to complete the task successfully. 

4.3 Extensions to the 2-D Case 

This section will discuss extensions of the 2-D case by relaxing some of the assumptions 

of the previous sections. In particular, the following scenarios are developed: contact by 

more than two robots, less restrictive object shapes and mass distributions, and effectors 

with curved (not straight line) contact perimeters. Additionally, the treatment of moments 
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applied to  the object are discussed. These topics are investigated to find modifications to  

the previous analysis. The complete solution to  the new problem is not stated, but instead 

methods are presented that extend the previous analysis to  resolve the new problem. 

4.3.1 Multi-robot contacts 

Previously, the 2-D case involved two robots manipulating an object. Additional robots can 

positively impact the task execution in two ways: the re-distribution of heavy loads and 

improved disturbance rejection. The manipulation of heavy objects may exceed the force 

limit of the individual robot arms involved, however additional robot arms, strategically 

placed, can reduce the burden of any single arm. 

The 2-D case planner showed how two arm manipulation can keep the force applied by 

each arm centered within the friction cone. This algorithm required that any disturbance 

forces applied to the object are known and vary smoothly. In practice, they must vary 

with small changes due to  the small bandwidth of the rolling of the physical system. Any 

large change in the disturbance force requires the system to respond with a large amount of 

rolling. By introducing a third arm such that the three contact points made by the robots 

form the inscribed equilateral triangle of the circular object, then any pair of robots can 

become the active pair in countering a force disturbance without a large amount of roll. 

An additional robot effects the formulation of the system equations. In the planar 

case, where each robot has 3 DOF, then every additional robot adds 3 new inputs to  the 

system- the three motor torques. Given the initial contact point of the added robot and 

the constraint that it can only roll at the contact point, then the position of all three robot 

joints is determined by its current orientation. Thus each additional robot increases the 

system's mobility by one. If the system is to have the same number of inputs as outputs 

(which enables it to  be input-output decoupled), then for each new robot there are two new 

outputs to be determined. 

For example, if three robots contact a circular object, then the system has a mobility of 

six. The six generalized coordinates can be chosen to  be the object location ( p a  = [so yo # , I t )  
and the robot orientations #2, and #3). The system has nine inputs corresponding to  

the three motors of each robot. If the system is restricted to  nine outputs, then a natural 

choice for six of them is the set of generalized coordinates. The other three can be defined in 

relation to  the critical contact forces. For example, Figure 4.9 depicts three critical contact 

forces between each pair of contacts where the critical contact point is defined as: 
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Figure 4.9: Three arms manipulating an object. 

In this notation, the forces applied by the kth robot is written as a combination of two 

components 

where a ,  ,B are scalars. Here e k j  ( e k l )  is the unit vector joining the kth (k th)  contact point 

to the j th ( l th ) .  Thus, the Fkek3 term from the above equation is equal to aekj .  

As in the previous cases, formulating a controller with the critical contact force is difficult 

due to the non-differentiable function. So, instead we design a controller which regulates the 

system position and three force components. We show below that errors in the controller 

variables bound the errors in the critical contact force. Consider the motion equation of 

the object: 

Mopo = (4.83) 

where Fie>, is expressed in terms of its components along the lines joining the contact 

points, and M,, p,, to,, and I, are defined in Equation 4.39. The 3 x 2 matrix f ;  converts 
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the forces to the cartesian frame and and translates the force applied at  the contact point 

to  an equivalent force/moment at the object CM. For example, Fl is given by: 

where r l  = [rlx rly] is the vector from the object CM to the contact point and el2, is the 

x component of the unit vector of the line joining the first contact point to  the second. 

We can choose three forces from Equation 4.83 to be output from the controller such as 

F, = [FleI2 F2e23 F3e31]t. I n  that case, the three remaining forces can be expressed as a 

function of these three forces and the object acceleration. 

Now, all three critical contact forces are given by combining Equation 4.81 and 4.85: 

Likewise, the desired critical contact force is described by: 

By defining the error terms as follows: 

d d ..d 
ecc = Fee - FCC; ej = F, - F,; e, = p, - F0 (4.88) 

then a bound for the error in the critical contact force is expressed as: 

The desired values for the output forces can be calculated by solving the desired critical 

contact force expression (Equation 4.87) for the output forces, although this is not trivial 
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Figure 4.10: Three arm rolling. 

due to the absolute value function. This calculation is performed in the control system 

planner. 

Rolling can still be used to center the applied force a t  each contact force within the 

friction cone. For instance, neglecting gravity and other disturbances, it is easy t o  see that 

for a circular object with no desired motion and equal desired critical contact forces then 

the system will be rolled such that the lines joining the contact points form an equilateral 

triangle. (See Figure 4.10.) If instead FCC,, = FCC,, > FCC,, then the system would roll to  

the acute tria.ngle c~nfigura~tion. 

4.3.2 Arbitrary objects 

Most of the previous detailed analysis assumed that  the object was circular and of uniform 

density (and therefore the CM was located at the circle's center). Here we discuss the 

relaxing of these two assumptions. 

The circular assumption is relaxed to the assumption that the object is a simple closed 

convex figure. For example, ellipses and quadrilaterals qualify as acceptable objects. In 

these cases, the curvature of the object perimeter will dictate what part rolling has in task 

implementation. Since the robot effectors are straight lines, straight object perimeters do 

not allow rolling at all. Near straight perimeters are very sensitive to rolling. Rolling is 

not highly desired in this case because this motion may require very long robot effectors. If 

rolling is not possible or desirable, then given the desired object trajectory and the critical 

contact forces, the stability of the grasp can not be improved once the object is grasped. 

On the other hand, when objects have a useful curvature, the contact points can be 

rolled t o  grasp configurations where the applied forces are less likely t o  cause slipping or 

separation. 'l'he algorithm for rolling with non-circular objects is more complex because 

it must consider the effects of the induced moments. This was not the case with circular 
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Figure 4.11: Arbitrary shaped object manipulated by two manipulators. 

objects because the desired force was always applied from the contact point to the object 

CM, thus producing no moment. In the general case, moving the contact point will change 

the moment that the force applied at the contact point produces at the object CM. 

Additionally, desired tasks may be impossible due to the object shape and effector 

lengths. The planner must determine if the exact solution (where the applied forces are 

centered within the friction cone) exists, and in the case that it does not, it must check if 

any solution exists that would prevent slipping and separation. 

The relaxation of the uniform density requirement effects the object inertial matrix 

and its CM. Whether the object CM is centered or not is less important than whether the 

location of the CM is known. First, consider the static case where no motion is desired (and 

there is no gravity or disturbance forces). Here, the rolling is such that the applied forces 

attempt to  be balanced along the lines joining the contact points while the applied force 

at each contact point is normal to the surface. Once this configuration is resolved, then 

the motion generating and disturbance countering force (F,)  is considered. This technique 

is reasonable in practice if one assumes that F, is much smaller than the critical contact 

forces. In other words, the grasp is firm and the motion is slow. For two contacts, the it 

can be seen that if the both surface normals are on the same side of the line joining the 

contact points, then each contact should be rolled to reduce the angle between the between 

the normal that contact line (see Figure 4.11). If the surface normals are on opposite sides 

of the line joining the contact points, then the contacts can both be rolled in the direction 

of positive rotation or both rolled in the direction of negative rotation. 

The general problem of arbitrary objects and multiple manipulators becomes very com- 

plex. Restrictions due to the the surface curvatures and the effector size limit the amount 

of rolling possible. None the less, rolling at a particular contact does permit an adjust- 
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ment between the angle of applied force and the surface normal. A useful general strategy 

involves locating the robots initial contact in an area which permits effective rolling. For 

example, given a superquadric model of the object, then the sections of the object where 

the curvature is conducive toward rolling can be located. This information is then used as 

one of the decision variables in the grasping planner. 

4.3.3 Curved effectors 

The robot effector has been characterized as a straight line in the preceding analysis. Here 

we discuss the impact of curved effectors, restricting the curve to be convex and smooth. In 

the case of the circular object, the relationship of the acceleration of the effector reference 

point to  the object CM (Equation 4.45) must be changed to account for the curved effector. 

It now becomes: 

where KO and Ki are the radii of curvature of the object and the effector at the ith contact 

point, respectively, and n; is the object surface normal (directed inward). 

Additionally, the planner becomes more complex. Now, the function of the perimeters 

of both the object and the effector are involved in the calculation of the effector's desired 

orientation. 

4.3.4 The treatment of moments 

The desire to  rotate the object or to counter-act disturbance rotations of the object requires 

producing a moment about its CM. Producing a moment for the circular object case destroys 

the symmetry of the problem. At each contact point, a tangential force is applied to  produce 

the moment. 

Mz = r(F1, + F2,) (4.91) 

Here, Fit is tangent to the object perimeter at the ith contact point and is positive when 

its cross product with the surfa,ce normal (pointing from the contact point to the center of 

the circle) is in the positive z direction out of the plane. The planner of 2-D case resulted 

in applied forces that were centered within the friction cone. This is used as the starting 

point for the inclusion of moments. For the circular object with two contacts, the moment 

can be produced by having both contacts making equal contributions: 



CHAPTER 4. PLAN OF RESEARCH 

The friction cone constraint must now be verified to  avoid slipping. This is simply a com- 

parison of the tangential force from Equation 4.92 and the magnitude of the applied force 

from the planner E';, since the applied force is along the contact norm. 

If this constraint is violated, then the task will fail. Otherwise, the force applied a t  the 

contact point is given by combining the tangential and normal components. Since the 

applied force starts in the center of the friction cone, this algorithm will result with an  

applied force that  is closest t o  the center of the friction cone for both contacts. 

4.4 Simulation and Experimentation 

This section presents the proposed simulation and experimentation of the two robot ex- 

ample. 'They are used t o  verify the theory and to learn more about the system and the 

problems involved in its practical implementation. 

In both cases, the simulation and experimentation will focus on the manipulation of a 

circular object by two robot arms, demonstrating the performance of the planner algorithm 

and the controllers described in Section 4.2. In particular, the performance in controlling 

the position of the system and the critical contact force will be investigated. Two tasks 

we be implemented. The first task will involve moving the circular object back and forth. 

In this case the contacts will roll slightly, depending on the speed of motion, the weight of 

the object and the desired critical contact, force. The second task will involve countering 

disturbance forces. The robots will roll the contact points in order to  keep the applied 

forces due to disturbance response centered within the contact friction cone. 

4.4.1 Simulation 

The corlfiguration of Figure 4.3 is investigated where two 3 DOF serial, planar robot arms 

nlailipulate a circular object whose CM is located at its center. The formulation of the simu- 

lation incorporates rna,ny of the equations of Section 4.2. These equations are reformed into 

a single (large) differential equation system. (See Appendix A.) The non-linear feedback is 

calcula.t,ed for both ca.ses presented in Section 4.2.3, feedback before the input integrators 

and feedback after the input integrators. The first implementation results in the differen- 

tiation of the entire system. This process is a very complex endeavor, and requires the 

use of the symbolic ma.nipula.ting progra,m Mathematics [30]. This pa.cka.ge not only a.ssist,s 

in syrnbolic differentiation, but can also be programmed to  formulate the result in usable 
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Figure 4.12: Simulation of two effector manipulation with rolling contacts. 

computer code. The alternate method of applying the feedback after the integrators does 

not require differentiating the entire system, so it is computationally less complex, however 

since the feedback is after the integrators, it may prove more sensitive. Both systems use a 

forth order Runge Kutta integration routine and the entire system is programmed in the C 

language on Sun Microsystem Sparc 11's. 

In Figure 4.12, the preliminary results of the simulation using the feedback before the 

integration are shown. 

Further analysis is capable with the simulation. Below is listed the issues that are to 

be investigated with both methods of feedback. The results of this investigation will be 

qualitative in nature in order to determine an understanding of the effect of each issue. 

Discretizing the controller in time. Since the actual experimental system is 
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controlled by a digital computer, the effects of discretizing the control law are investi- 

gated. It is thought that this should only present a small disturbance to  the system, 

depending on the simulated sampling frequency. Additionally, the experimental sys- 

tem in use at the lab has a measurement delay of one sample period and these effects 

are also simulated. 

a Mis-matched coefficients. The theory assumes exact knowledge about a number 

of parameters, including object mass and robot inertia, mass, and link lengths. By 

incorporating small errors between the control law values and the system values, the 

sensitivity of these parameters can be qualified. 

a Simplified control matrices. In order to implement the theory in real-time, the 

controller may need to  be considerably simplified. Through simulation, one can verify 

the important elements of key matrices and the elements that have a negligible effect. 

4.4.2 Experimentation 

The experimentation will continue the study of the issues discussed in the simulation anal- 

ysis. Experimental results are to  be compared to the simulation results and any differences 

explored. Additionally, the experimentation introduces new aspects. For example, the mo- 

tor dynamics have not been modeled in the preceding development, under the assumption 

of the availability of (near) ideal torque sources. The friction of the gear train is a trade-off 

to  large amounts of backlash, and neither effects are in the theoretical development. Only 

position feedback is available with the setup. Velocity is obtained by numerically differen- 

tiation when it is absolutely required, although this is not a desirable method for obtaining 

this quantity. Joint acceleration is unknown. The effects of these and other implementation 

specific problems will be investigated. 

The experimental setup is named the Two Robotic Arm Coordination System (TRACS) 

[37, 23, 17,221. (See Figure 4.13). It is designed and built to investigate the issues presented 

in this proposal. It is comprised of two Puma 250 robots, each with 6 DOF. The end effector 

of the robots axe flat plates to represent any flat surface on the robot. One of the robots 

contains a 6 DOF force/torque sensor between the plate and wrist. Additionally, both 

plates are equipped with Interlink contact/force sensors which provide feedback on contact 

location and normal contact force. These robots are configured such that each models a 

serial 3 DOF robot and their effectors operate in the same plane. 

The system is controlled by a PC-AT based computer that contains an AMD 29000 

based high speed floating point coprocessor board. This coprocessor board and the PC-AT 
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Figure 4.13: TRACS hardware architecture. 
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80286 processor combine to yield sample rates for control of all twelve joints in excess of 200 

Hz. The system is organized such that the processor of the PC performs robot sensor and 

actuator 1/0 while the coprocessor board calculates the control. This coprocessor board is 

programmed in the C computer language, thus much of the simulation code can be used 

with the experimental setup. 



Chapter 5 

Summary 

The proposed research is centered about a relatively new problem within the area of multi- 

arm robot systems: whole arm manipulation (WAM) [24]. This involves the manipulation 

of objects that are large relative to the size of the robot. In general, this task requires more 

than one manipulator and each manipulator is permitted the use of any link surface. Many 

robots arms can not accommodate manipulation on their link surfaces due cable routing and 

actuator placement. New manipulators are being design for these types of tasks [I]. These 

manipulators will require new control algorithms. This proposal investigates the control of 

robot arms for whole arm manipulation. 

The following two sections summarize the current status of the research effort and details 

the work yet to be completed. The last section then lists the contribution of this proposed 

work. 

5.1 Current status 

The following work of the proposed research is completed: 

r Modeling. The formulation of the differential equations governing the 2-D example 

of two arms manipulating a circular object is complete and included in Appendix A. 

r Design. The controller employing nonlinear feedback before the input integrators 

has been solved for the same example with the use of Mathematica. The equations 

of the planner which calculates the desired roll and enforces the unilateral constraints 

have also been derived. 

r Simulation. Sinlulation of the system and the controller with feedback preceding 

the input integrators is near completion. This simulation demonstrates the decoupled 
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position and force control. 

r Experimentation. The experimental system is functional. I t  consists of two Puma 

250's and a PC-AT based controller. It is currently capable of implementing simple 

control schemes with both arms. 

5.2 Proposed work plan 

The following work is involved in completing the proposed research: 

Modeling. The extensions of the 2-D example will be formalized and examples will 

be provided for illustration. 

r Design. The controller implementing nonlinear feedback after the input integrators 

will be developed. 

r Simulation. The simulation of the system with nonlinear feedback preceding the 

input integrators will be completely debug. The simulations for the case of feedback 

following the integrators must be developed. Finally, simulation data will be gathered 

for the tasks of moving a circular object and rejecting a force disturbance. 

Experimentation. The experimental setup will be overhauled and undergo various 

calibration procedures in order to obtain the best performance possible. A 6 DOF 

force/torque sensor will be incorporated into the system. Then the proposed tasks 

will be performed for both types of controller feedback and data will be gathered from 

these experiments. 

r Analysis. The simulation and experimental data will be analyzed, compared, and 

contrasted. The control techniques will be evaluated and practical implementation 

issues will be addressed. Lastly, the information will be written up and documented 

in the final thesis. 

5.3 Contribution 

The contribution of this research is divided into two distinct categories, scientific and en- 

gineering. The scientific contributions are the basic fundamental results of this work. The 

engineering contributions refer to the significance of the work in regard to practical issues, 

including physical implementation. 
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a Scientific Research Issues: 

- Controlled Dynamic  Rolling. In general, the contact between the object 

and link surface is not a fixed grasp. Rolling, sliding and separation can occur at 

these points. This proposal considers rolling at the contact point. This rolling 

is not only part of the kinematic model of the system, but i t  is also actively 

controlled. The controller goal is the prevention of sliding and separation, thus 

improving the stability of the grasp. This is accomplished by attempting to  keep 

the applied force vector centered within the friction cone. The trajectory of the 

roll is based on the object dynamics and the critical contact force, while the 

controller also considers the manipulator dynamics. 

- Controller Design wi th  Unilateral  Constraints.  The general approach 

to the control design involves formulating the system as a set on nonlinear dif- 

ferentiable equations. Unilateral constraints, such as the restriction that each 

manipulator must push at the contact point point and cannot affect a pull, in- 

troduce non-differential functions into the problem. Our approach is to design 

the controller for the set of differential equations that represent the system. The 

unilateral constraints are delegated to  the system planner. The error in the 

planner-controller system is shown to be bounded by the error term (and other 

terms) of the controlled system. 

- Critical Contact  Force. The internal force of the grasp in this proposal is 

represented by the notion of a critical contact force. Unlike internal force rep- 

resentations that are defined by the null space of a grasping matrix, the critical 

contact force is easily visualized by the geometry of the contact points. Addition- 

ally, the critical contact force enforces the unilateral constraint of pushing at the 

contact point. The subsequent analysis and control is built upon this construct. 

r Engineering Research Issues: 

- Simulation. Developing complex simulations of cooperating arms will yield 

insight to the important features of the controller, such as its principal coefficients 

and its parameter sensitivity. The performance obtained from the application of 

nonlinear compensation before and after integration will be qualified. 

- TRACS.  A new test bed is developed to experimentally investigate the coordi- 

nated control of two robot arms. The system is inexpensive and fast enough for 

dynamic experimentation. 
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- Experimentat ion.  There has been little experimental data published regarding 

the coordination of robots arms, especially in the case of WAM with rolling 

contacts. Through experimentation, the partial benefits and hardships will be 

determined. 

- Pract ical  Implementat ion of  Force Control.  Many publications that do 

propose force controllers seldom provide simulation and experimental data from 

complex robotic systems for evaluation. The result of this proposal is a controller 

that regulates both force and position simultaneously through decoupled subsys- 

tems. The force controller explicitly introduces integrator on the input channels 

to create a casual relationship between the inputs and the outputs. 



Appendix A 

Derivation of State Space 

Equations 

This appendix defines the matrices of the system of equations given in Section 4.2 and 

t t t  Note that  X1 = bt, 421t, Xz = xl, and 7 = [ T ~  r2] . 
First, we begin with the manipulator dynamics (Equation 4.41) restated below: 

In the above equation, the acceleration is expressed in joint variables 4;;. The relationship 

of the acceleration of the joint variables to  the acceleration of the effector reference point 

was given in Equation 4.46 and restated here: 

Expressing the arin dynamics with respect to  the reference point of the effector gives us: 
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For convenience, the three equations of Equation A.5 are partitioned into a two sets, 

the translational equations (top two) and the rotational equations (bottom one). 

Note that XTi is simply the 2 x 2 identity matrix, thus the translational equations can be 

solved for F;. 

F; = J ~ ~ T ;  - wT,pi - KT, (A.7) 

The acceleration relationship of the effector reference point to  the circular object's CM 

was given by Equation 4.45 and restated below: 

X i  and r; are given in Equation 4.42 and 4.40, respectively. 

Note that the state variable X1 of the desired system is comprised of p, and the last 

elements of pl and p2,  namely #q and 4 1 ~ .  We partition 5; = $: J i l t  where 6; = [f; & I t  and 

solve Equation A.8 for 5;. 

This equation is restated with the simplified notation: 

where the expressions for B; and C; are easily obtained from Equations A.9 and A.lO. The 

matrix B; is a function of position (XI) only while the matrix C; is a function of both 

position and velocity (XI and X 2 ) .  

Now, the expression for F; (Equation A.7) is written with the partitioned pi and Equa- 

tion A . l l  is substituted in for Y; .  



Note that 4; is itself a member of xl, and now F; is written with respect to the system 

state. 

F~ = E , X ~  + G; + ~ 2 % ~  (A.13) 

where the matrix Ei is a function of position, the matrix G; is a function of both position 

and velocity, and they are given as: 

The object motion equation was given in Equation 4.39 and restated here for the case 

of two manipulators contacting the object: 

Substituting in Equation A.13 for Fl and F2 gives: 

where 

The matrices D and U are both functions of position while S is a functioil of position 

and velocity. Equation A.15 will be used later in the final steps of formulating the system 

equations. 

The rotational part of Equation A.6 is given as: 

Substituting in the partitioned pi and isolating 4; yields: 

Note that MTB, is a 1 x 3 vector written as [MrBi,  MrBi2 MTBi3] .  Substituting in the state 

form of from Equation A . l l  and the state form of Fi from Equation A.13 gives: 
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Finally, this equation is solved for 4; noting that MTBi, is a scalar that represents the 

cartesian inertia of the arm at the effector reference point and is thus non-zero. This 

equation has the form: 

Ji = L;xl + H;T; $ N; (A.19) 

where 

The matrices L; and H; are functions of position and N; is a function of both position and 

velocity. 

The system equations are now constructed from Equations A.15 and A.19. They are 

written together as follows: 

The 2 x 2 identity matrix is denoted as I(2). Note the vector [ji, $1 &lt = XI. Thus the 

system can be written in the simplified expression: 

where the matrices M,  Q, and P are easily obtained from Equation A.22. Again, note that 

the matrices M and P are functions of position and Q is a function of position and velocity. 

If M is non-singular, the11 the equation is solved for xl to yield: 

This expression defines the matrices F(X1, X2) and G(X1) of Equation 4.47 rewritten here: 

where F(X1, X2) = M-'Q and G(X1) = M-'P .  



The output Y2 = Fl e12. Equation A.13 defines F; in terms of the state variable xl .  
Substituting in Equation A.24 for the state yields: 

This expression defines the matrices a ( X l ,  X 2 )  and b (X l )  of Equation 4.48 rewritten here: 

where a ( X 1 ,  X z )  = el2 . ( E l M - l Q  + G I )  and b ( X 1 )  = el2 . ( 4 M - ' P  + [JG' 01 ). 
This concludes the derivation of the matrices of the system. This formulation is used in 

the theoretical development as well as the simulation and experimentation sections. 
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