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Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation

Abstract
When two or more arms are used to manipulate a large object, it is preferable not to have a rigid grasp in order
to gain more dexterity in manipulation. It may therefore be necessary to control contact motion between the
object and the effector(s) on one or more arms. This paper addresses the dynamic control of two arms
cooperatively manipulating a large object with rolling contacts. In the framework presented here, the motion
of the object as well as the loci of the contact point either on the surface of each effector or on the object can
be directly controlled. The velocity and acceleration equations for three-dimensional rolling contacts are
derived in order to obtain a dynamic model of the system. A nonlinear feedback control algorithm that
decouples and linearizes the system is developed. This is used to demonstrate the control of rolling motion
along each arm and the adaptation of grasps to varying loads.
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Dynamic Control of 3-D Rolling Contacts
in Two-Arm Manipulation

Nilanjan Sarkar,Member, IEEE,Xiaoping Yun,Member, IEEE,and Vijay Kumar

Abstract—When two or more arms are used to manipulate
a large object, it is preferable not to have a rigid grasp in
order to gain more dexterity in manipulation. It may therefore
be necessary to control contact motion between the object and
the effector(s) on one or more arms. This paper addresses the
dynamic control of two arms cooperatively manipulating a large
object with rolling contacts. In the framework presented here,
the motion of the object as well as the loci of the contact point
either on the surface of each effector or on the object can be
directly controlled. The velocity and acceleration equations for
three-dimensional rolling contacts are derived in order to obtain
a dynamic model of the system. A nonlinear feedback control
algorithm that decouples and linearizes the system is developed.
This is used to demonstrate the control of rolling motion along
each arm and the adaptation of grasps to varying loads.

Index Terms—Dextrous manipulation, grasping, rolling con-
tact, two-arm manipulation.

I. INTRODUCTION

DEXTROUS ROBOTIC manipulation has been addressed
from many different view points. The motivation for our

work is the following: suppose we want to manipulate a large
object (larger than the grasp of a single gripper) with no special
feature (for example, a handle). It is unlikely that a single robot
with gripper-like end-effector will be able to perform the task.
We need multiple robots for such a task. When we coordinate
many robots to manipulate such a large object, it may not
be productive to hold the object rigidly at each grasp. A rigid
grasp prevents fine manipulation and also severely restricts the
workspace of the robot system. One solution to this problem
is to allow relative motion at each robot-object contact.

In this paper, we address the manipulation of objects with
two arms by explicitly controlling the interactions at the
object-arm contact. Specifically, we maintain rolling contact
and control the rolling motion at each contact. The advantage
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is that large objects of different shapes can be grasped, and the
grasp can be adapted or modified by rolling the object along
the arm(s) without necessitating regrasping. The objective
therefore is to control the object position and orientation as
well as the motion of the contact point along the surface of
each arm and of the object during manipulation. Although
the contact motion can be either rolling or sliding, we pre-
fer rolling mainly because of two reasons. First, rolling is
more energy efficient, and second, rolling does not have the
nonlinearity that is associated with friction.

In the literature,dynamicsand rolling contact have been
addressed in great detail. However, the two subjects have
never been integrated into a general maniplation via rolling
contact technique. For example, in [21, Ch. 5] the kinematics
of rolling contacts are discussed and dynamics and control in
[21, Ch. 6]. But the constraints discussed in [21, Ch. 6] do
not allow the contact points to move during the manipulation.
This paper fills the gap. We introduce novel local contact
coordinates. They allow us to formulate the dynamics and
control of manipulation via rolling contacts in a general way,
which admits motion of the contacts during the manipulation
process.

The paper is organized as follows. We briefly discuss some
previous work that is relevant to this study in Section II. We
then present kinematic analysis of rolling contacts up to second
order in Section III. This is followed by the development of
a general framework for the constraint analysis of a two-arm
system in Section IV. Section V is devoted to representing
the motion equation of the system in state space in order
to cast the problem into a standard affine nonlinear control
problem. We then discuss feedback control of such a system
in Section VI and present results from computer simulations to
demonstrate the adaptation (reconfiguration) of two-arm grasps
without regrasping and the ability to change the locations of
contacts on the arms during a manipulation task in Section VII.
Finally, we summarize our paper in Section VIII.

II. PREVIOUS WORK

The kinematic constraint equations and transformations be-
tween Cartesian (task-space) and local coordinates are pre-
sented in [4], [11], and [19]. Montana [19] outlines a method
for relating relative rigid body motion to the rates of change
of contact coordinates. But his work is limited to the velocity
analysis only. Further, his equations are not in a form that
they can be differentiated for higher order kinematic analysis.
Cai and Roth [4] adopt a more general approach and obtain
expressions for all higher order derivatives, but they use only

1042–296X/97$10.00 1997 IEEE
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a subset of the contact coordinates for each contact. The force
analysis for such systems is discussed in [11].

It is well known that three-dimensional rolling constraint
equations are nonholonomic [23]. Nonholonomic systems are
controllable regardless of the structure of constraints [5].
Although it has been shown that a nonholonomic system
cannot be feedback stabilized to a single equilibrium point
by a smooth feedback, the system we are interested in can be
shown to be small-time locally controllable [1]. Additionally,
even though such a system is not input-state linearizable, the
input-output linearization is still possible with properly cho-
sen output equations [37]. Motion planning of nonholonomic
systems has been extensively studied [14], [13]. However the
work on dynamic control of such systems [7] is more relevant
to this paper.

Force analysis of systems having multiple frictional point
contacts has also been studied from the view point of multiarm
coordination. Nakamura, Nagai, and Yoshikawa [22] divided
the dynamical coordination problem into two phases: deter-
mining the resultant force by multiple robotic mechanisms
and determining the internal force between the mechanisms.
Unseren and Koivo [34] investigated the problem of two
manipulators firmly holding an object by formulating the
problem in the joint space and transforming it to a set of
generalized coordinates. Tarn, Bejczy, and Yun [33] developed
a closed kinematic-chain formulation and nonlinear control
techniques for two-arm coordination problem. Yun and Kumar
[36] formulated an algorithm that simultaneously controls
the trajectory of the object and interaction forces for two-
arm systems. But there was no contact motion allowed in
those cases and therefore the grasp considered was rigid.
Multifingered grasp with rolling contact was studied in [6]
and [15]. The difference between the results of [6], [15] and
this paper is that we are able to control the trajectory of contact
points as well as the position/orientation of the object. Paljug
et al. [25], [24] demonstrated the control of rolling and contact
forces in multiarm manipulation for two dimensional objects.
But since rolling in two dimensions introduces only holonomic
constraints, the problem was much simpler.

III. CONTACT KINEMATICS

In this section we develop the contact kinematics of rigid
bodies up to second order. These are explicit equations relating
the velocities and accelerations of the contact points to those
of the contacting rigid bodies. These equations depend on
the local surface properties of each contacting body and are
used later in the control of manipulation tasks. The detailed
derivation is omitted here for the purpose of brevity but can
be found in our recently published work [29] and in Sarkar’s
thesis [31]. First, we introduce some notation and definitions
to facilitate the discussion.

A. Notation

The notation and framework for kinematic analysis are
mostly borrowed from [19]. In Fig. 1, we consider two rigid
objects (obj 1 and obj 2) contacting at a point. The contact
point is the coincidence of two points , fixed to obj 1 and

Fig. 1. Two rigid bodies with point contact.

Fig. 2. Coordinate curves and contact frames.

, fixed to obj 2 at time. and are a pair of points, which
do not belong to either body but move along the surface of obj
1 and obj 2, respectively, so that they are instantaneously at the
point of contact. We choose reference frames on obj 1 and obj
2 at point and , respectively. These reference frames are
attached to the objects. We attach coordinate systems at points

and which move with the contact points. Finally, we
define a continuous family of object-fixed coordinate frames
at points and in such a way that they coincide with
and frames at time .

We define fivecontact coordinatesthat characterize the
motion of the point of contact. Each surface is parameterized
by two coordinates [17]. The point of contact is characterized
by the intersection of four coordinate curves (two on each
surface). The corresponding coordinates and
are the first four parameters (Fig. 2). The fifth parameter
is , the angle of contact which is the angle between the

and curves [19]. In Fig. 3, it is the angle between
(tangent to ) and (tangent

to ). The sign of is defined in such a
way that a rotation of about the outward pointing unit
normal to the surface at point through aligns the
axes and .

Throughout the rest of this paper we will use various
concepts of differential geometry. Detailed discussions on
them can be found in any standard differential geometry text
(see, for example, [18], [32], [16]), and therefore are omitted
here. We will use the following notations for surface properties
[17]: and denote the metric tensor and its individual
elements, respectively; and denote the Christoffel
symbols of the second kind, and coefficients of the second
fundamental form, respectively. We provide the other notations
as and when they become necessary.
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Fig. 3. Definition of angle .

B. Contact Kinematic Equations

Using the notations described in the preceding subsection,
we may present the equations for contact kinematics. Let

and , together with , be
the contact coordinates. Let the relative linear and angular
velocities of the contacting rigid bodies observed in the frame

(also in the frame ) be

And let the relative linear and angular accelerations of the
contacting rigid bodies in the frame be

The first-order contact kinematics relating the rate of change
of contact coordinates to the rigid body velocities are [19],
[29], [31]

(1)

(2)

(3)

(4)

where ,
and

In the above equations, is the metric tensor of ,
and is the square root1 of . See [20] for a different

1If a matrix A is positive definite, it can be factorized asA = PPT for
some matrixP , which is called the square root ofA.

treatment where contact kinematics are formulated as a virtual
kinematic chain.

Let be a 5 1 vector of contact coordinates,
, and be a vector of Lagrangian

coordinates [26] which includes the position and orientation
coordinates for each of the two rigid bodies. We can write
the above first-order contact kinematics equations in a form
that explicitly shows the first-order relationship between the
contact coordinates and the Lagrangian coordinates

(5)

The second-order contact kinematics that relate the second-
order derivatives of the contact coordinates to the relative
acceleration of the rigid bodies are given by [29], [31]

(6)

(7)

(8)

where

(9)

In the above equations, the matrices

and describe local differential geometric properties of the
contacting surfaces. Their detailed forms are provided in
Appendix A.

Similar to (5), the above second-order contact kinematics
equations can be written in a form that explicitly shows the
second-order relationship between the contact coordinates and
the Lagrangian coordinates

(10)

The first- and second-order contact kinematic equations,
as described here, allow us to relate the relative motion of
the contacting bodies to the velocities and accelerations of
the contact point. Therefore, by knowing the motion of the
contacting bodies we can predict the locus of the contact
point over time using the above equations. And this allows us
to explicitly control the motion of the contact point through
a state-space formulation which we develop in subsequent
sections.
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C. Kinematics of Rolling Contact

Two bodies are said to be in a condition of rolling contact
if the relative velocity of the contact points or the sliding
velocity [3], [4] is zero, i.e.,

(11)

Because this definition imposes a condition on velocities (or on
the first-order derivative and not on higher order derivatives),
this is referred to as the first-order condition for rolling.

Further, if the time derivative of the relative velocity is also
zero, i.e., (12), as shown at the bottom of the page, two bodies
are said to be in a condition of second-order rolling. Note that,

and are two different points fixed to obj 1,
and likewise and are two points fixed to obj 2
(see Fig. 1). Equation (12) can be rewritten as in (13) shown
at the bottom of the page. The first term in (13) is nothing
but . The second term can be expressed as (detailed
proof can be found in [31]) . Therefore, the
second-order condition for rolling is given by

(14)

Using contact kinematic equations, the above condition can be
expressed in the form, as shown in (15) at the bottom of the
page. For a detailed discussion on higher order conditions for
rolling, refer Cai and Roth [3], [4]. It is seen from the above
equation that unlike contact velocity, the contact acceleration
is not automatically zero for second-order condition for rolling.
However, if we impose another condition known as the no-
spin condition, we achieve what is called pure rolling [10, p.
242]. The pivoting component of the angular velocity is zero
for pure rolling ([23, p. 18]). Thus we define the first-order
no-spin condition as follows:

where is the outward pointing surface normal for object
2 at the contact point. In the contact frame

(16)

Fig. 4. Schematic of the two arm manipulation system.

For pure rolling up to the second-order, the following condition
must be satisfied [31]:

or equivalently, in the contact frame

(17)

It should be noted at this point that for pure rolling, from
(15) and (16), we get . In other words,
the tangential components of the relative linear rigid body
accelerations are zero for pure rolling.

IV. CONSTRAINT EQUATIONS OF THETWO-ARM SYSTEMS

In this section we derive the constraint equations for the
two-arm systems shown schematically in Fig. 4. We assume
that each arm has a single point contact with the object which
is held at the end-effectors. We first introduce the notation
for two-arm system, followed by a discussion on constraint
analysis and contact models. Finally, we present the constraint
equations for pure rolling contact.

A. Coordinates and Reference Frames

We assume that each arm has six degree-of-freedom. These
arms manipulate a passive object through frictional point
contacts. The contact can occur at any point on the surface
of the most distal link. For simplicity, we assume that each
arm contacts the object at one point only.

We use subscripts 1, 2, and 3 to denote the first arm, the
object and the second arm, respectively (Fig. 4). We attach
frames to each arm and the object. The origins of the frames

and are chosen at any convenient point on the contacting
surfaces belonging to the respective arms. The origin of the
frame is chosen at the center of mass of the object.

(12)

(13)

(15)
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We specify the position and orientation of each arm and the
object by specifying the position of the origin of frameand
the orientation of the frame with respect to an inertial frame

. We define the position of the origin of the frameby the
vector , and the orientation of the frame

by a vector of Roll-Pitch-Yaw Euler angles (see [27] for a
definition), , with respect to the inertial
frame . We define to be
an 18 1 vector of Lagrangian coordinates.

Of the two contact points, the contact point which is between
the arm 1 and the object is calledcontact 1, and the other
which is between the arm 2 and the object is calledcontact
2. At contact 1, and are the contact frames on the arm
1 and on the object, respectively. Similarly, and are the
respective contact frames on the arm 2 and on the object at
contact 2. is the frame attached to the arm 1 and to
the object. and coincide with and , respectively,
at time . Similarly, and are defined for arm and the
object, respectively.

At each contact point there are five contact coordinates.
Therefore, the total set of contact coordinatesis a 10 1
vector and is given by .

The relative rigid body angular and linear velocities are
defined in the following manner:

(18)

(19)

(20)

(21)

where and are the angular velocitities of the first end-
effector and the object, respectively. Similarly, and
are the angular velocitities of the second end-effector and the
object, respectively. Evidently, and are same. Note that

and are relative velocities expressed in while
and are relative velocities in .

B. Constraint Analysis

In order to maintain contact between the arms and the object
we need to ensure that the normal components of the relative
linear velocities between the arm and the object at each contact
point are zero, that is

(22)

(23)

where and are the two outward pointing unit normals
on the object atcontact 1and contact 2, respectively. These
constraints are holonomic constraints. we can write (22)–(23)
in the following form [31]:

(24)

where

where ’s and ’s are given in Appendix B.

Once the contact is maintained, we are interested in impos-
ing rolling constraints at each contact point. In order to ensure
rolling motion, by definition, the tangential components of the
relative linear velocities between the arms and the object at
each contact point must be zero, that is

(25)

(26)

(27)

(28)

Additionally, if the component of the relative angular ve-
locity along the contact normal is zero, we achieve what is
called pure rolling. If we impose thisno-spincondition on the
relative angular velocity we get

(29)

(30)

Equations (25)–(30) are nonholonomic constraints.
Substituting the rolling conditions, (25)–(28) and the no-spin

conditions, (29–(30), into the first-order contact kinematics,
(1)–(3), we obtain [31]

(31)

where is a 6 10 matrix given by

These constraint equations are expressed entirely using the
contact coordinates. From (5), and are linearly related by

(32)

where the matrix is 10 18 dimensional and is given
by

Here – and – are 2 3 matrices, and
– and – are 1 3 matrices. These are

functions of local surface properties and of the positions
and orientations of the contacting rigid bodies. The detail
expressions for each matrix is given in Appendix B.

Substituting (32) into (31) we get

(33)

where is a 6 18 matrix.
Finally, combining (24) and (33) we write

(34)

where is an 8 18 ma-
trix which characterizes both holonomic and nonholonomic
constraints.
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V. MOTION EQUATIONS

In the preceding section we have developed the constraint
equations for the two-arm system. We now derive the motion
equations and represent them in the state space in such a way
that the system becomes a standard affine nonlinear control
system.

A. State Space Representation

The equations of motion of each arm (denoted by and
) can be written in operational space [12] in the form

(35)

where is the inertia matrix, is the vector of the position
and velocity dependent forces, is the Jacobian and is
the 6 1 vector of joint torques for arm. is the 4 1
vector of contact constraint forces and moment atcontact .
Here , where and
are the components of the contact force (exerted by the arm
on the object) and is the contact moment in the contact
frame ( for arm and for arm 3), is a

Jacobian matrix which relates the constraint forces to the
generalized forces corresponding to the coordinates .

Similarly, following the same notation we write the dynamic
equations for the object

(36)

where and are two 6 4 Jacobian matrices, one for
each contact point, which relate the constraint forces to the
generalized forces corresponding to the coordinates .

We can combine (35) and (36) to get,

(37)

where

It should be noted from thePrinciple of Virtual Work[28]
that the matrix in (37) are the same as the matrix

in (34).

We now proceed to represent (37) in the state space in order
to facilitate the controller design. It should be noted that,
because of the presence of the nonholonomic constraints in
the two-arm system, we may not simply useand as a state
vector. The problem is further complicated by the presence of
the local contact coordinates.

From the constraint equation (34) we note thatalways
belongs to the null space of . Let be an 18

10 dimensional full-rank matrix such that

(38)

That is, the columns of are in the null space of
. It follows that can be represented as a linear

combination of the columns of , i.e.,

(39)

where is a 10 1 dimensional vector. Substituting (39) into
(32) we express also in terms of

(40)

where . The detailed derivation of and
matrices for the two-arm system is deferred until the next
subsection.

Premultiplying (37) by , we obtain

(41)

Noting (38), the term involving the constraint force in
(41) vanishes. Differentiating (39) once with respect to the
time, we have

(42)

Substituting (42) into (41) we obtain

(43)

Therefore,

(44)

Choosing the following state vector:

we may represent the motion equation (37) and the constraint
equation (34) in the following state space form:

or equivalently

(45)

where and are obtained from (44) and are given by

Here we note that we have been able to describe the two-arm
system as an affine nonlinear system as evident from (45).
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B. Derivation of and

In this subsection we derive the explicit expression for
and matrices introduced above. We note that

the choice for is not unique. We choose in
such a way that corresponds to certain meaningful velocities.

It is physically meaningful to choose the object velocities
and the derivatives of contact coordinates as. Therefore we
decide

(46)

In order to obtain an expression for we first note that for
pure rolling . Substituting
in the (1) we obtain

(47)

Using (18) and substituting and in terms of the Euler
angles, we get

(48)

where and are given in Appendix B.
From the above two equations and noting that , we

can express in terms of as

(49)

where as defined before.
From (20) and expressing the linear velocities in terms of

the Lagrange coordinates, we get

(50)

where and are given in Apeendix B. Since
is zero for rolling motion, from the above equation after

substituting from (49) we obtain the following expression
for in terms of

(51)

where the expressions for , and are given
in Appendix B. Similarly, following the same procedure for
contact 2we arrive at the following equations:

(52)

(53)

where the expressions for to are provided in Ap-
pendix B.

We now construct matrix from the above equations. It is
an 18 10 matrix which satisfies the equation
and has the following form:

We now express as a function of the same such that

(54)

In order to construct matrix we note that for pure rolling
(3) yields

(55)

Using (47) and (55) forcontact 1and similar equations for
contact 2we construct , a 10 10 matrix, as follows:

where the expressions for individual elements are provided in
Appendix B. Here and are 2 2 matrices while

and are 1 2 matrices and are functions of the
local surface properties.

VI. FEEDBACK CONTROL

Here we first discuss the choice of output equations which
is important in the formulation of the nonholonomic control
problem. We then develop a feedback linearization frame-
work which not only linearizes the nonlinear system but also
decouples it.

A. Output Equations

We want to control both the gross motion of the object
needed to perform the task (which may be, for example, to
move the object from one point in space to a different point
following a desired trajectory), and the fine motion at the
point of contacts needed for readjustment of the grasp without
releasing the object. Therefore, the output equations should
be functions of both Lagrangian coordinates and the contact
coordinates and can be written as

(56)

Since the system has 10 degrees-of-freedom, we can control
10 independent variables. It is important to control the position
and orientation of the object since, in general, those are
the variables needed to be controlled in order to perform
a manipulation task. Therefore the first block of our output
equations becomes

(57)

The remaining four variables can be chosen to be functions
of the contact coordinates. They can either be the contact
coordinates of both arms, that is, and , or they can be the
contact coordinates on the object at both contact points, that
is, and . It should be noted at this point that since we are
imposing rolling constraints at the contact points, we can only
control either or at contact 1and similarly, either
or at contact 2. This is because and (and similarly,

and ) are no longer independent. We therefore choose
the following two sets of output equations to demonstrate the
methodology.
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Output-I: We choose the following output equations when
we are specifically interested in controlling the loci of the
contact points on the arms

(58)

Output-II: We choose the following output equations
when we are specifically interested in controlling the loci
of the contact points on the object at both contacts

(59)

B. Feedback Linearization

At this point it is clear from the foregoing discussion
that we have formulated the control problem of the two-
arm system as the standard controller design of a nonlinear
system characterized by the state equation (45) and the output
equation (56). Since the system is nonlinear, we will utilize the
differential geometric control method to linearize the system
[9]. Because the system is subject to nonholonomic constraints,
it is not input-state linearizable [2]. Therefore we pursue
input-output linearization.

To compute the nonlinear feedback for input-output lin-
earization, we note the following Lie derivatives:

Because is nonzero, the relative degree of the system
for each component of the output is two [9]. The feedback for
achieving input-output linearization is then given by [9]

where is the new input.
Applying the above nonlinear feedback, the closed-loop

system becomes

(60)

A linear feedback can be applied in addition to the nonlinear
feedback to properly place the poles of the overall system.

VII. SIMULATION RESULTS

We consider two 6-degree-of-freedom manipulators each
with a flat effector on the sixth link. The object is spherical
with a radius, m. The coordinate curves on the object
and the effectors are shown in Fig. 5.

We define the following coordinate system for a plane
(which represents the flat effectors):

Fig. 5. Coordinate curves on the effectors and the object.

Fig. 6. Centering the contact.

The natural basis and the corresponding unit normal for a
plane with the above coordinate system are

For a sphere with radius, let us define a coordinate system

The natural basis for this coordinate system and the corre-
sponding unit normal are

Various local surface quantities are shown in Appendix C.
The transformation matrices forcontact 1are

Similarly, and are defined forcontact 2.
We assume that the torsional coefficient of friction is high

so that the no-spin condition is maintained. This may not
be the case with contacts between perfectly rigid bodies. It
is, however, typical of objects with some compliance at the
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surface for which the rigid body kinematic model would still
be a good nominal model. When the no-spin condition is
maintained we achieve pure rolling and we substitute

in addition to in the contact
equations. We consider the case of pure rolling at the contact
points. Therefore, forcontact 1, using the contact equations
developed in Section III-B [see (1)–(3)], we get

(61)

From (6) and (7), we get

(62)

csc csc

(63)

Similarly, we get contact equations forcontact 2. In the
simulations, the linear system represented by (60) is designed
in such a way that each second-order system has a small
overshoot with a damping ratio and settling time of 0.65 and
0.5 s, respectively. We have simulated two types of tasks as
described below.

A. Centering the Contact

Here we control the loci of the contact points on the end
effectors while simultaneously moving the object in a vertical
straight line. We start with a configuration where the contact
points on the end effectors are not at their centers (reference
points) but at some distance away from them (see Fig. 6). Our
objective is to roll the effectors in such a way that the contact
points are brought to the centers of the respective effectors
while the object follows the desired trajectory. We use the first
set of output equations described by (58). The initial and final
configuration of the system for this task is shown in Fig. 6.
Fig. 7 shows how the contact points on the effectors converge
to the desired points. Fig. 8(a) shows the convergence of the
motion of the object. The motion of the contact points on
the object which are not explicitly controlled in this case
are shown in Fig. 8(b). Although these variables appear to
drift, they are stable in the sense each variable converges to
some value. This represents the zero dynamics of the system.
The zero dynamics of the system is Lagrange stable which is
typical for nonholonomic system [1], [35].

B. Grasp Adaptation

In this example we start with a contact configuration that
requires large internal forces to stably hold the object weight.
The end effectors/object are rolled to the desired contact
configuration so that the arms have a better mechanical ad-
vantage while simultaneously trying to move the object along

(a)

(b)

Fig. 7. The motion of the contact point on the first end effector (a) and at
the second end effector (b).

a horizontal straight line. Here we use the output equations
described by (59). The initial and final configuration of the
system for this task is shown in Fig. 9. Fig. 10 shows the
motion of the contact points on the object. Fig. 11(a) shows
how the object moves along the prescribed horizontal line.
The object motion and the motion of the contact points on the
object are asymptotically stable and the response is that of a
typical, underdamped second-order system. The motion of the
contact points on the effectors, [Fig. 11(b)] on the other hand,
is stable in the Lyapunov sense (that is, Lagrange stable)—this
tendency to “drift” is typical of nonholonomic systems [1],
[35].

VIII. C ONCLUDING REMARKS

A. Summary

We have presented a new theoretical framework for the
coordinated control of two arms manipulating a large ob-
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(a)

(b)

Fig. 8. Vertical motion of the object (a) and motion of the contact points on
the object at both contact points (b).

Fig. 9. Grasp adaptation.

ject. This framework allows explicit control not only of the
object motion but also of the contact locations between the
arms and the object through controlling rolling motion at
the contacts. The control algorithm is a nonlinear feedback

(a)

(b)

Fig. 10. The motion of the contact point on the object atcontact1 (a) and
at contact 2 (b).

which cancels the dynamics and decouples the outputs. Since
the control model requires the use of first- and second-
order contact kinematics equations, we have developed and
presented contact kinematics up to second order. Although the
first-order contact kinematics was previously developed [19],
second-order contact kinematics utilizing the complete five-
dimensional contact space is new. Also, our control algorithm
that explicitly uses such contact equations by enhancing the
state space with contact coordinates is a new contribution. It
enables one to control the contact coordinates directly. Finally,
we have demonstrated the efficacy of the control scheme via
computer simulations.

B. Discussion

There are several aspects of this problem that have not
been reported in detail in this paper. First, the validity of our
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(a)

(b)

Fig. 11. Horizontal motion of the object (a) and the motion of the contact
points on each end effectors (b).

equations requires that the grasp is always force closed. In
this paper, we have not presented the control of contact forces.
Neither have we discussed the conditions for maintaining force
closure. These issues are dealt with in [30], [8]. Second, we
have only considered the soft contact model in our simulations
and examples, although it can be argued that the point contact
(without torsional moments) model is more appropriate for
robot-object contacts. However it is easy to incorporate point
contact models as shown in the paper. The increase in difficulty
comes from the fact that we now need at least three robot-
object contacts (and therefore three arms) to maintain force
closure.

The main disadvantage of the proposed control scheme
is that it is model-based. Another disadvantage is that it
relies on feedback of the position and velocity of the contact
point moving over the robot effector. This underscores the
importance of developing good tactile sensors. Although the

main objective of this work was to lay down the theoretical
foundation for coordinated manipulation, it is clear that ex-
perimental validation and testing is an important direction for
future work.

APPENDIX A
DEFINITIONS OF MATRICES IN THE SECOND-ORDER

CONTACT KINEMATICS

For each matrix, we use the subscriptwhen we refer to .
For example, is the matrix for obj 1 and is its

th component.

APPENDIX B
EXPRESSIONS FORDIFFERENT VARIABLES

The expressions for ’s, ’s, and ’s are

In the above expressions, the term represents the
skew-symmetric matrix representation of the vector. For
example, if is a 3 1 vector, then

The individual elements of the matrix of (32) and other
related expressions are as follows:
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The expressions for each element of matrix are

Recall that .
The elements of are as follows:

APPENDIX C
LOCAL SURFACE PROPERTIES OF APLANE AND A SPHERE

A. Plane

The component of metric tensor is given by

Since the natural basis vectors and the components of the
metric tensor are constant for a plane, Christoffel symbols,
coefficients of the second fundamental forms, and all other
higher order surface properties are zero. Therefore, for a plane

.

B. Sphere

The components of the metric tensorare given by

is diagonal because the coordinate system is orthogonal.
There are eight Christoffel symbols of each kind. They are

The coefficients of the second fundamental form are

The derivatives of the Christoffel symbols of the second kind
that are not zero are

csc

csc

Finally, the only nonzero derivative of the coefficients of the
second fundamental form is

Therefore for a sphere with the above coordinate system
we have
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