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Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation

Abstract

When two or more arms are used to manipulate a large object, it is preferable not to have a rigid grasp in order
to gain more dexterity in manipulation. It may therefore be necessary to control contact motion between the
object and the effector(s) on one or more arms. This paper addresses the dynamic control of two arms
cooperatively manipulating a large object with rolling contacts. In the framework presented here, the motion
of the object as well as the loci of the contact point either on the surface of each effector or on the object can
be directly controlled. The velocity and acceleration equations for three-dimensional rolling contacts are
derived in order to obtain a dynamic model of the system. A nonlinear feedback control algorithm that
decouples and linearizes the system is developed. This is used to demonstrate the control of rolling motion
along each arm and the adaptation of grasps to varying loads.
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Dynamic Control of 3-D Rolling Contacts
iIn Two-Arm Manipulation

Nilanjan SarkarMember, IEEE Xiaoping Yun, Member, IEEE,and Vijay Kumar

Abstract—When two or more arms are used to manipulate is that large objects of different shapes can be grasped, and the
a large object, it is preferable not to have a rigid grasp in grasp can be adapted or modified by rolling the object along
order to gain more dexterity in manipulation. It may therefore the arm(s) without necessitating regrasping. The objective
be necessary to control contact motion between the object and ; . " . :
the effector(s) on one or more arms. This paper addresses the therefore is to (_:ontrol the object pOS_ItIOﬂ and orientation as
dynamic control of two arms cooperatively manipulating a large  Well as the motion of the contact point along the surface of
object with rolling contacts. In the framework presented here, each arm and of the object during manipulation. Although
the motion of the object as well as the loci of the contact point the contact motion can be either rolling or sliding, we pre-

either on the surface of each effector or on the object can be for ro|ling mainly because of two reasons. First, rolling is
directly controlled. The velocity and acceleration equations for

three-dimensional rolling contacts are derived in order to obtain mor(_e ene_rgy eﬁ'(_:'em’ an_d Secor_]d' rF’”'_”g does not have the
a dynamic model of the system. A nonlinear feedback control Nonlinearity that is associated with friction.
algorithm that decouples and linearizes the system is developed. In the literature,dynamicsand rolling contact have been

This is used to demonstrate the control of rolling motion along addressed in great detail. However, the two subjects have
each arm and the adaptation of grasps to varying loads. never been integrated into a general maniplation via rolling
Index Terms—Dextrous manipulation, grasping, rolling con- contact technique. For example, in [21, Ch. 5] the kinematics

tact, two-arm manipulation. of rolling contacts are discussed and dynamics and control in
[21, Ch. 6]. But the constraints discussed in [21, Ch. 6] do
|. INTRODUCTION not allow the contact points to move during the manipulation.

This paper fills the gap. We introduce novel local contact

EXTROUS ROBOTIC manipulation has been addressed o ginates. They allow us to formulate the dynamics and

from many different view points. The motivation for ourgqnrq of manipulation via rolling contacts in a general way,

work is the following: suppose we want to manipulate a largghich admits motion of the contacts during the manipulation
object (larger than the grasp of a single gripper) with no Speclﬁ’r‘ocess.

feature (for example, a handle). It is unlikely that a single robot 11,4 paper is organized as follows. We briefly discuss some
with gripper-like end-effector will be able to perform the task, eyious work that is relevant to this study in Section II. We
We need multiple robots for such a task. When we coordingjg, present kinematic analysis of rolling contacts up to second
many robots to manipulate such a large object, it may ngfyer in Section IIl. This is followed by the development of
be productive to hold the object rigidly at each grasp. A rigig general framework for the constraint analysis of a two-arm
grasp prevents fine manipulation and also severely restricts gﬂygtem in Section IV. Section V is devoted to representing
workspace of the robot system. One solution to this probleffle motion equation of the system in state space in order
is to allow relative motion at each robot-object contact.  ; cast the problem into a standard affine nonlinear control
In this paper, we address the manipulation of objects Willopiem. We then discuss feedback control of such a system

two arms by explicitly controlling the interactions at th§, gection VI and present results from computer simulations to

object-arm contact. Specifically, we maintain rolling contagfemonstrate the adaptation (reconfiguration) of two-arm grasps

and control the rolling motion at each contact. The advantaggy, ot regrasping and the ability to change the locations of

Manuscript received November 10, 1995. This work was supported ?nontaCtS on the arms during a manipulation task in Section VII.

part by the National Science Foundation under Grant MSS-91-57156, Iktinally, we summarize our paper in Section VIII.
92-09880, IRI-95-96026, CDA-95-96021, BCS-92-16691, CDA-90-2253,

and CDA 88-22719, by the ONR/DARPA Grant N00014-92-J-1647, by the

Army/DAAL 03-89-C-0031PRI, the Whitaker Foundation, the University of II. PREVIOUS WORK

Pennsylvania Research Foundation, and the NPS RIP Grant. This paper waghe kinematic constraint equations and transformations be-
recommended for publication by Associate Editor J. C. Trinkle and Editor A.

Goldenberg upon evaluation of the reviewers’ comments. tiween (?artesian (task-space) and local coordinates are pre-
N. Sarkar is with the Department of Mechanical Engineering, Universigented in [4], [11], and [19]. Montana [19] outlines a method

of Hawaii, Honolulu, HI 96822 USA (e-mail: sarkar@uwiliki.eng.hawaii.edu)fgy relating relative I’igid body motion to the rates of Change
X. Yun is with the Department of Electrical and Computer Engi-
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V. Kumar is with the Department of Mechanical Engineering and Applieghey can be differentiated for higher order kinematic analysis.
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a subset of the contact coordinates for each contact. The force
analysis for such systems is discussed in [11].

It is well known that three-dimensional rolling constraint
equations are nonholonomic [23]. Nonholonomic systems are
controllable regardless of the structure of constraints [5].
Although it has been shown that a nonholonomic system
cannot be feedback stabilized to a single equilibrium point
by a smooth feedback, the system we are interested in can be
shown to be small-time locally controllable [1]. Additionally,Fig. 1. Two rigid bodies with point contact.
even though such a system is not input-state linearizable, the
input-output linearization is still possible with properly cho-

obj 2

sen output equations [37]. Motion planning of honholonomic obj 2

systems has been extensively studied [14], [13]. However the

work on dynamic control of such systems [7] is more relevant =~ : > (361)2

to this paper. Uz = constant § (n) (x2),
Force analysis of systems having multiple frictional point 2 = constant (n), " 7

contacts has also been studied from the view point of multiarm
coordination. Nakamura, Nagai, and Yoshikawa [22] divided
the dynamical coordination problem into two phases: deter-
mining the resultant force by multiple robotic mechanisms
and determining the internal force between the mechanisms.
Unseren and Koivo [34] investigated the problem of two Ui, = constant
manipula’Fors firr_nl_y holding an object by_ formulating th%g_ 5 Coordinate curves and contact frames.

problem in the joint space and transforming it to a set of

generalized coordinates. Tarn, Bejczy, and Yun [33] developed

a closed kinematic-chain formulation and nonlinear contrpb, fixed to obj 2 at time. ¢; andc; are a pair of points, which
techniques for two-arm coordination problem. Yun and Kumalo not belong to either body but move along the surface of obj
[36] formulated an algorithm that simultaneously control$ and obj 2, respectively, so that they are instantaneously at the
the trajectory of the object and interaction forces for twasoint of contact. We choose reference frames on obj 1 and obj
arm systems. But there was no contact motion allowed #at pointo; ando,, respectively. These reference frames are
those cases and therefore the grasp considered was rigitached to the objects. We attach coordinate systems at points
Multifingered grasp with rolling contact was studied in [6F;1 and ¢ which move with the contact points. Finally, we
and [15]. The difference between the results of [6], [15] andefine a continuous family of object-fixed coordinate frames
this paper is that we are able to control the trajectory of contaait pointsp; andp, in such a way that they coincide with
points as well as the position/orientation of the object. Paljand ¢ frames at timet.

et al. [25], [24] demonstrated the control of rolling and contact We define fivecontact coordinateshat characterize the
forces in multiarm manipulation for two dimensional objectanotion of the point of contact. Each surface is parameterized
But since rolling in two dimensions introduces only holonomiby two coordinates [17]. The point of contact is characterized
constraints, the problem was much simpler. by the intersection of four coordinate curves (two on each
surface). The corresponding coordinates vy, ue and v

are the first four parameters (Fig. 2). The fifth parameter

) . ) ) . Is 1, the angle of contact which is the angle between the
In this section we develop the contact kinematics of rlg|g1 and us curves [19]. In Fig. 3, it is the angle between

bodies up to second order. These are explicit equations relat'rﬂ“ngl;)1 (tangent tow, = constant curve) and (x1)» (tangent

the velocities and accelerations of the contact points to th oy = constant curve). The sign ofy is defined in such a

of the contacting rigid bodies. These equations depend \‘/?/By that a rotation ofz1); about the outward pointing unit

the local surface properties of each contacting body and are’ to the surface at point: throuah— alians the
used later in the control of manipulation tasks. The detaik—:.;1 es (a:?)ll)land (1) poini, gh—y alig

derivation is omitted here for the purpose of brevity but can Throughout the rest of this paper we will use various

be fgund n our receqtly published work [29] and in S"j.‘r'.(?r,éoncepts of differential geometry. Detailed discussions on
theS|s_ [31]. First, we mt_roduce some notation and deflnltloraﬁem can be found in any standard differential geometry text
to facilitate the discussion. (see, for example, [18], [32], [16]), and therefore are omitted
) here. We will use the following notations for surface properties
A. Notation [17]: G and g;; denote the metric tensor and its individual
The notation and framework for kinematic analysis arelements, respectivelyfé‘j and L;; denote the Christoffel
mostly borrowed from [19]. In Fig. 1, we consider two rigidsymbols of the second kind, and coefficients of the second
objects (obj 1 and obj 2) contacting at a point. The contaftthdamental form, respectively. We provide the other notations

point is the coincidence of two poings, fixed to obj 1 and as and when they become necessary.

v, = constant

lll. CONTACT KINEMATICS
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Fig. 3. Definition of angley.

B. Contact Kinematic Equations

Using the notations described in the preceding subsection,
we may present the equations for contact kinematics. Let

Uy = [ur vt andUs = [us 2], together withe, be

the contact coordinates. Let the relative linear and angular
velocities of the contacting rigid bodies observed in the frame

p2 (also in the framez;) be

Ve We

b2 — p2 —
VP1P2 - V’y wpl - wy
V. Wy

And let the relative linear and angular accelerations of the

contacting rigid bodies in the fram& be

Gy e

P2 — b2 —
aPle - ay wpl - ay
az ay

The first-order contact kinematics relating the rate of change

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

treatment where contact kinematics are formulated as a virtual
kinematic chain.

Let U be a 5x 1 vector of contact coordinate$] =
[u1,v1,u2,v2,%]%, andq be a12 x 1 vector of Lagrangian
coordinates [26] which includes the position and orientation
coordinates for each of the two rigid bodies. We can write
the above first-order contact kinematics equations in a form
that explicitly shows the first-order relationship between the
contact coordinates and the Lagrangian coordinates

Usx1 = C1(q, U)sx12G12x1- )

The second-order contact kinematics that relate the second-
order derivatives of the contact coordinates to the relative
acceleration of the rigid bodies are given by [29], [31]

)15, 5]
Uz |~ |RyE\HiVG, —EH)WG,
RyVGiT4 VGal's
{[R El\/_LJWl—F |:E1(\/G_2)_1f/2:|W2
+{ 20.E RGO H(A}
—w.RyH1VG, —¢pH/Ga | Uz
O2x1 O2x1

(o)

_ . w, + | fa, _
ot (—cix ) (ay ) l O2x1 ] }
~ ~ (6)
P = Ul(rlUl + F1W1) + UQ(FQUQ + FQWQ)
T
+ <_w£ ) Ru’,El(\/ Gl)_lLlUl — Qy (7)

T
a, = LiW, + LoWs + 2<_w:j ) Ry U, 8)

where

-1
0

Ei = [(1) } W= [a? w077 9

of contact coordinates to the rigid body velocities are [19],

[29], [31]
et () ()
1)

e () ()]
=01 T1Up + 0ol Us —w, 3)
V.=0 4)

Whereo—Z = gff) % = (VG)'L(VG)™, H) =

RyHi R, and

—sin
—cos® |’

cos 1

- {— sin )

In the above equationg7; is the metric tensor obbj i,
and /G, is the square rodtof G;. See [20] for a different

Ry,

Lif a matrix A is positive definite, it can be factorized as= PP*' for
some matrixP, which is called the square root of.

In the above equations, the matricés L, I, L, T
and I, describe local differential geometric properties of the
contacting surfaces. Their detailed forms are provided in
Appendix A.

Similar to (5), the above second-order contact kinematics
equations can be written in a form that explicitly shows the
second-order relationship between the contact coordinates and
the Lagrangian coordinates

Usx1 = C1(q, U)sxi2Giox1 + C2(q, U, ¢, U)sx1. (10)

The first- and second-order contact kinematic equations,
as described here, allow us to relate the relative motion of
the contacting bodies to the velocities and accelerations of
the contact point. Therefore, by knowing the motion of the
contacting bodies we can predict the locus of the contact
point over time using the above equations. And this allows us
to explicitly control the motion of the contact point through
a state-space formulation which we develop in subsequent
sections.
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C. Kinematics of Rolling Contact

Two bodies are said to be in a condition of rolling contact t
if the relative velocity of the contact points or the sliding o
velocity [3], [4] is zero, i.e.,

Ve f, End effector 1 ob End effector 2

ject

P2 Vppe () = | Vy | =0. (11) I8¢
V.

. . . . Fig. 4. Schematic of the two arm manipulation system.
Because this definition imposes a condition on velocities (or on

the first-order derivative and not on higher order derivativesgor pure r0||ing upto the second-order, the fo||owing condition
this is referred to as the first-order condition for rolling. must be satisfied [31]:

Further, if the time derivative of the relative velocity is also P2y (n)s = 0
zero, i.e., (12), as shown at the bottom of the page, two bodies n 2
are said to be in a condition of second-order rolling. Note th&! equivalently, in the contact frame,
p1(t) andp; (t — At) are two different points fixed to obj 1, a. =0, (17)
and likewisep,(t) andp,(t— At) are two points fixed to obj 2
(see Fig. 1). Equation (12) can be rewritten as in (13) sho
at the bottom of the page. The first term in (13) is nothin
but?2a, . (t). The second term can be expressed as (detai
proof can be found in [31]¥?w,; x °V.i,1. Therefore, the
second-order condition for rolling is given by V. CONSTRAINT EQUATIONS OF THE TWO-ARM SYSTEMS

It should be noted at this point that for pure rolling, from
TS) and (16), we getn, = a, = 0. In other words,
he tangential components of the relative linear rigid body
accelerations are zero for pure rolling.

In this section we derive the constraint equations for the
two-arm systems shown schematically in Fig. 4. We assume

Using contact kinematic equations, the above condition can fhé&t €ach arm has a single point contact with the object which
expressed in the form, as shown in (15) at the bottom of the held at the end-effectors. We first introduce the notation

page. For a detailed discussion on higher order conditions f8f tWo-arm system, followed by a discussion on constraint
rolling, refer Cai and Roth [3], [4]. It is seen from the abov@nalysis and contact models. Finally, we present the constraint

equation that unlike contact velocity, the contact accelerati§guations for pure rolling contact.
is not automatically zero for second-order condition for rollings. Coordinates and Reference Erames

However, if we impose another condition known as the no- .
. o : . . We assume that each arm has six degree-of-freedom. These
spin condition, we achieve what is called pure rolling [10, p,

S L2 drms manipulate a passive object through frictional point

242]. The pivoting component of the angular velocity is zerg h . h ;

for pure rolling ([23, p. 18]). Thus we define the first_Ordecontacts. The contact can occur at any point on the surface
. diti ' f'" | bf the most distal link. For simplicity, we assume that each

No-spin condition as Tollows: arm contacts the object at one point only.

We use subscripts 1, 2, and 3 to denote the first arm, the

object and the second arm, respectively (Fig. 4). We attach
where(n), is the outward pointing surface normal for objecframeso; to each arm and the object. The origins of the frames

b Qp1po +p2wp1 X Olvclol =0. (14)

P20y, - (n)2 = 0

2 at the contact point. In the contact frame o1 andog are chosen at any convenient point on the contacting
surfaces belonging to the respective arms. The origin of the
wy; = 0. (16) frameo, is chosen at the center of mass of the object.

i V@) = PV anpa-an(t =AY (12)
At—0 At

POV, ey ) = POV (E = At) POV, pa)(t = AY) = POV (1 apypyman (E— AY)

+ lim

lim

At—0 At At—0 At
=0.
(13)
g — (/g1 sin ey 4 /g2 cos P )w. (—ELRyV/GL U w.
ay | = —(/g11t1 COSY — /G221 )w, ( Wy )TRJ\/G_lUl . (15)
a (V/O11t1 siny + \/gaat1 cos P )wy + (/G111 coS — | /Gat sine) )wy —Wy v
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We specify the position and orientation of each arm and theOnce the contact is maintained, we are interested in impos-
object by specifying the position of the origin of framgand ing rolling constraints at each contact point. In order to ensure
the orientation of the frame; with respect to an inertial frame rolling motion, by definition, the tangential components of the
f1. We define the position of the origin of the fraragby the relative linear velocities between the arms and the object at
vectorX; = [z; 3 #]%, and the orientation of the frameeach contact point must be zero, that is

0; l:_)y_z_:l vector of RoII—Pitch—Y?w E_uler angles (see [27] f_or a Viels - (z1)2 = 0 (25)

definition), ®; = [¢; 6; ¢:]*, with respect to the inertial

frame /.. We defineg = [X; ®, X» ® Xz @3 to be Veel1 + (#2)2 =0 (26)

an 18 x 1 vector of Lagrangian coordinates. Vier2 - (21)a =0 (27)
Of the two contact points, the contact point which is between Viel2 - (®2)4 = 0. (28)

the arm 1 and the object is callamntact 1 and the other

which is between the arm 2 and the object is caltedtact . . : .
rT#ocny along the contact normal is zero, we achieve what is

2. At contact 1 ¢; andc, are the contact frames on the ar . . . ) -
. . L called pure rolling. If we impose thiso-spincondition on the
1 and on the object, respectively. Similarbg, andc, are the : .
relfamve angular velocity we get

respective contact frames on the arm 2 and on the object a
contact 2 p, is the frame attached to the arm 1 apg to Wrep1 - (n)2 =0 (29)
the object.p; and p» coincide withe¢; and co, respectively, Wrel2 - (n)4 = 0. (30)

at timet¢. Similarly, p3 andp, are defined for arn2 and the ] . .
object, respectively. Equations (25)—(30) are nonholonomic constraints.

At each contact point there are five contact coordinates, SuPstituting the rolling conditions, (25)~(28) and the no-spin
Therefore. the total set of contact coordinatéss a 10 x 1 conditions, (29—(30), into the first-order contact kinematics,
vector and is given by/ = [U; Us 91 Us Uy 1ho]?. (1)~(3), we obtain [31]

The relative rigid body angular and linear velocities are A(HU =0 (31)
defined in the following manner:

Additionally, if the component of the relative angular ve-

where A>(U) is a 6 x 10 matrix given by
Wrel,l = W1 — W2 (18)

Wrel2 = W3 — W (29) A:(U)
rel,2 = 3 T A VG —Ryv/G: 0 0 0 0
Vrel,l = Vp1 - sz (20) - -1y —o20'9 1 0 0 0
Vrel,? = Vp3 — Vp4 (21) 0 0 0 vier —sz VGEs 0
wherew; andw, are the angular velocitities of the first end- 0 0 0 —osls  —ouly 1
effector and the object, respectively. Similarty; and w, These constraint equations are expressed entirely using the
are the angular velocitities of the second end-effector and tentact coordinates. From (5), andg are linearly related by
object, respectively. qulentlwg apdm are same. -Note_that 7= As(U)g (32)
wrel,1 @Nd Vi1 are relative velocities expressed dn while
weel2 and Vie o are relative velocities ir. where the matrix43;(U) is 10 x 18 dimensional and is given
. . by
B. Constraint Analysis Ky Ko Ko Kii 0Oaxz 0Oays
In order to maintain contact between the arms and the object K12 Kz Kiqu Kiz Oaxz O2xs

we need to ensure that the normal components of the relative () = Kie Kiz Kis Kig O1xs Oixs
linear velocities between the arm and the object at each contact O2x3 O2xz K20 Ko1 Kz Ko
point are zero, that is O2x3 Ooxz Koy Kos Ko Koy
Vees - ()2 =0 @ e Dee B e B G
Vre1,2'(n)4:0 (23) ere Kg—ii1; an 20—1fLo7 ale X . matrices, an
o _ Ki6—K19 and Kozs—K3; are 1 x 3 matrices. These are
where(n), and(n), are the two outward pointing unit normalsfynctions of local surface properties and of the positions
on the object atontact 1and contact 2 respectively. These ang orientations of the contacting rigid bodies. The detail
constraints are holonomic constraints. we can write (22)—(2&pressions for each matrix is given in Appendix B.

in the following form [31]: Substituting (32) into (31) we get
Al((lv U)q =0 (24) A4(U)Q -0 (33)
where
where A4 (U) = Ay(U)A3(U) is a 6 x 18 matrix.
A= Finally, combining (24) and (33) we write
BT —EsNy —ET5 E,N. 0 0 .

0 0 —EzTi EzNi ExTs —EaNs |, . Alq,U)g=0 (34)

Es=[0 0 1] where A(q,U) = [AT(q,U) AT(U)] is an 8 x 18 ma-

trix which characterizes both holonomic and nonholonomic
where N;'s and7;’s are given in Appendix B. constraints.
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V. MOTION EQUATIONS We now proceed to represent (37) in the state space in order

In the preceding section we have developed the constraipi facilitate the controller design. It should pe noted .that,.
equations for the two-arm system. We now derive the motid¥gcause of the presence of the qonholonomlc constraints in
equations and represent them in the state space in such a wo-arm system, we may not simply ugsandg as a state

that the system becomes a standard affine nonlinear confeftor- The problem is further complicated by the presence of
system. the local contact coordinatds.

From the constraint equation (34) we note thjaalways
belongs to the null space of(q,U). Let S1(¢q,U) be an 18

A. State S R tati . ) :
ate space Representation x 10 dimensional full-rank matrix such that

The equations of motion of each arm (denoted by 1 and
i = 3) can be written in operational space [12] in the form A(q,U)S1(q,U) = 0. (38)

e .o That is, the columns of5; (g, U) are in the null space of
Mi(Xiv‘I’i){éﬂ + Vi(Xi, @, X, &) A(q,U). It follows that ¢ can be represented as a linear
_ Ji_T(Xi,@)n — Qui(Xs, D1, U\ (35) combination of the columns of; (g, U), i.e.,
. — R . q=51(q, U (39)
where M; is the inertia matrix}; is the vector of the position
and velocity dependent forced; is the Jacobian and; is Wherer is a 10x 1 dimensional vector. Substituting (39) into
the 6 x 1 vector of joint torques for arm. ); is the 4x 1 (32) we expresd/ also in terms ofv
vector of contact constraint forces and momenteantact:. : .
Here \; = [-anc Fzy F,. Miz]Ty WhereFm, Ey and F. U= A3(U)q = A3(U)51(Q7U)V - SQ(Qv U)V (40)
are the components of the contact force (exerted by the awhere S = A3S;. The detailed derivation of; and S,
on the object) and/;. is the contact moment in the contacimatrices for the two-arm system is deferred until the next
frame ¢ for arm 1 and ¢, for arm 3), Q. (X;, ®;,U;) is a subsection.
6 x 4 Jacobian matrix which relates the constraint forces to thePremultiplying (37) byS{, we obtain
generalized forces corresponding to the coordina#és ;).

T AL Ty, _ T _ T AT
Similarly, following the same notation we write the dynamic SLMG+ SV =51 Er = S AT (41)
equations for the object Noting (38), the term involving the constraint forcein
b o (41) vanishes. Differentiating (39) once with respect to the
MQ(X2,<1>2)[(.I-)2} + Vo(Xy, By, X, &) time, we have
2 .
= Qo1(X2, P2, U2) A1 + Qo3(X2, P2, Us) Az (36) G = S1(q, V) + 51(q, U (42)
whereQ,; andQ, 5 are two 6x 4 Jacobian matrices, one for Substituting (42) into (41) we obtain
each contact point, which relate the constraint forces to the STMS 0w+ STMSv+ STV = STEr (43)
generalized forces corresponding to the coording®és ®,).
We can combine (35) and (36) to get, Therefore,
. —1 .
M(q)i+V(g,d) = B(q)r — AT (g, U)X 37) v=(STMS)  (STET— ST MSiwv—5{V). (44)
where Choosing the following state vector:
(M1 (X1, ®1) 0 0 1
M(q) = 0 Ma( X2, ®2) 0 e= U
i 0 0 M;3(X3, ®3) Y
Vi (X1, oy, X1, q)l) we may represent the motion equation (37) and the constraint
Vig,q) = |Va(Xo, Dy, Xo, @2) equation (34) in the following state space form:
_‘/ES(X37(I)37X37(I)3) q Sl(q7 U)]/ 0
(I (X, @) 0 = |U| = |S(q,U) | + 0 T
E(g) = 0 . 0 v f3lq,U,v) g3(q, U)
L 0 37 (X3, 8s) or equivalently
1M )\ = )\1 .
=1 A= i = f(@) + g(x)r (45)
Qo1(X1,21,00) 0 where f3 and g3 are obtained from (44) and are given by
AT (qU) = | Qo1(X2,®2,Uz)  Qu3(X2,®2,Uy) |. -1 .
ot ( 0 ) Qagng,%,Ugg Fs(q,Uyv) = = (ST MSy) ST (MSw +V)

= (STMS,) 'STE.
It should be noted from th@rinciple of Virtual Work[28] 95(0,U) = (51 M) S)

that the matrixA(q, U) in (37) are the same as the matrix Here we note that we have been able to describe the two-arm
A(q,U) in (34). system as an affine nonlinear system as evident from (45).
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B. Derivation ofS; and S» We now expresif as a function of the same such that

In this subsection we derive the explicit expression for U= So(U)r. (54)
S1(q, U) andSz(g, U) matrices introduced above. We note that
the choice forS; (g, U) is not unique. We choosé; (¢,U) in X
such a way that corresponds to certain meaningful velocities(.3) yields

It is physically meaningful to choose the object velocities ¢ = o [ UL + 090U, (55)
and the derivatives of contact coordinates/a3 herefore we

In order to construck, matrix we note that for pure rolling

Using (47) and (55) forcontact 1and similar equations for

decide contact 2we constructS,, a 10 x 10 matrix, as follows:
v=[X] & Uf Ui%T]?om' (46) O2x3 Oaxz  laxe O2x2
In ordgr to obtain an expression 6k we first note that for giiz giiz ﬁgm gfiz
pure rolling V,, = V, = w. = 0. SubstitutingV, =V, = 0 Sy = Osvs Opws 02;;2 A
in the (1) we obtain O2xs Oaxs  Oaxz  Kus,
<_w:jx> = (dy + Ha)Ry, JGr U, (47) O1x3 O1x3  Oix2  Kas,d10x10

where the expressions for individual elements are provided in
Using (18) and substituting; andw, in terms of the Euler Appendix B. HereK 4, and K44 are 2 x 2 matrices while
angles, we get K43 and K45 are 1 x 2 matrices and are functions of the

. . local surface properties.

Wrel,1 = F191 — F2 0, (48)

where F;, and F, are given in Appendix B. V1. FEEDBACK CONTROL

From the above two equations and noting that= 0, we Here we first discuss the choice of output equations which
can expressb; in terms ofy as is important in the formulation of the nonholonomic control
~ problem. We then develop a feedback linearization frame-
), = FT FR®y — FL Ey(H, +0H2)R7‘“1 VG ) work which not only linearizes the nonlinear system but also
1x2

. . decouples it.
= K3®2 + K33U; (49)
0 —

where £y = [} é] as defined before. . _
From (20) and expressing the linear velocities in terms of We want to control both the gross motion of the object

A. Output Equations

the Lagrange coordinates, we get needed to perform the task (which may be, for example, to
) ) . . move the object from one point in space to a different point
Vien = 11Xy = 1hXo — N1 @1 + Na®o (50) following a desired trajectory), and the fine motion at the

point of contacts needed for readjustment of the grasp without
releasing the object. Therefore, the output equations should
Be functions of both Lagrangian coordinates and the contact
coordinates and can be written as

y="h(q,U) =)t ho(U)T]". (56)

. _ Since the system has 10 degrees-of-freedom, we can control
where the expressions faksy, Ks;, and K are given 10 independent variables. It is important to control the position
in Appendix B. Similarly, following the same procedure foand orientation of the object since, in general, those are

where7y, 715, N1 and N, are given in Apeendix B. Since
Viel,1 1s zero for rolling motion, from the above equation afte
substituting®;, from (49) we obtain the following expression
for X; in terms of

X = K34 Xo + K3599 + K3sU; (51)

contact 2we arrive at the following equations: the variables needed to be controlled in order to perform
by = Kardy + Kaslls (52) a manlpulatlon task. Therefore the first block of our output
) i . . equations becomes
X3 = K30 X2 + Ky40P2 + K41 Us (53)

T

hi(q) = [XT oI . (57)
where the expressions fds; to K4 are provided in Ap- @ [ 2 2 ]GXI

pendix B. The remaining four variables can be chosen to be functions

We now construcs; matrix from the above equations. It isOf the contact coordinates. They can either be the contact
an 18x 10 matrix which satisfies the equatigr= S, (g, U)v coordinates of both arms, that ig; andUs, or they can be the

and has the following form: contact coordinates on the object at both contact points, that
is, Us andUy. It should be noted at this point that since we are
(K34)3xs  (Kz5)3x3  (Kz6)3x2 0352 imposing rolling constraints at the contact points, we can only
03x3 (Ks2)3xs  (K33)3x2 0352 control eitherU; or U, at contact 1and similarly, eitherUs
S, = Isxs O3x3 032 O3x2 . or U, atcontact 2 This is becausé&/; andU, (and similarly,
0353 I3x3 U2 U2 Us and Uy) are no longer independent. We therefore choose
(K39)3x3  (K10)3x3 U352 (K41)3x2 the following two sets of output equations to demonstrate the

O3x3 (K37)3x3 0352 (Kz8)3x2 d 13x10 methodology.
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Output-l:  We choose the following output equations when
we are specifically interested in controlling the loci of the
contact points on the arms

y=[X3 of Ul Uf (58)

]T
Output-Il:  We choose the following output equations
when we are specifically interested in controlling the loci f,

of the contact points on the object at both contacts

U, = constant

T
y=[xF of uf ur]”. (59)

Fig. 5. Coordinate curves on the effectors and the object.

B. Feedback Linearization

At this point it is clear from the foregoing discussion
that we have formulated the control problem of the two-
arm system as the standard controller design of a nonlinear
system characterized by the state equation (45) and the output
equation (56). Since the system is nonlinear, we will utilize thepl
differential geometric control method to linearize the system
[9]. Because the system is subject to nonholonomic constraints,
it is not input-state linearizable [2]. Therefore we pursue
input-output linearization.

P2

To compute the nonlinear feedback for input-output lin- INITIAL FINAL
earization, we note the following Lie derivatives: Fig. 6. Centering the contact.
) 0 . . .
L.h— oh _ a%l 0 0ol =0 The natural basis and the corresponding unit normal for a
9T ox 0 2= 0 o plane with the above coordinate system are
g 1 0 0
_ | Bq PV

th_ [%SQV} T = 0 To = 1 n= |0
Ohy 5193 0 0 1

LyLh= |58 . ) : , ,

g=s [%5293} For a sphere with radiug, let us define a coordinate system

BecauseL, L ;h is nonzero, the relative degree of the system [ : U — R : (us,v2)
for each component of the output is two [9]. The feedback for — (psinug cosve, psinugsinvy, pcosus).
achieving input-output linearization is then given by [9] ) ) .

The natural basis for this coordinate system and the corre-

T =—(LyLsh) ' Lih + (LyLgh) ™ u sponding unit normal are
where v is the new input p oStz COS U2 —psinuz sin vy
. s = | pcosugy si = si cos
Applying the above nonlinear feedback, the closed-loop 1 P _pinLnQUQ 2 P muf) v2

system becomes -
SIN U2 COS V2

i = u. (60) n = |sinus sin vy
COS U2

A linear feedback can be applied in addition to the nonline%mous local surface quantities are shown in Appendix C.
feedback to properly place the poles of the overall system. The transformation matrices faontact 1are

URe, = Izxs
VII. SIMULATION RESULTS ' ) ) . )
X . COS U~ CoOsv —Sinv SN U~ COS v

_We consider two 6—degr§e-of7freedom m.amp_ulators gach 2R, = |cosu?sinv? cosv?  sinu?sinv?
with a flat effector on the sixth link. The object is spherical —sinu? 0 cos u2
with a radius,0 = 0.1 m. The coordinate curves on the object
and the effectors are shown in Fig. 5. Similarly, °¢R., and“*R,., are defined forcontact 2

We define the following coordinate system for a plane We assume that the torsional coefficient of friction is high
(which represents the flat effectors): so that the no-spin condition is maintained. This may not

be the case with contacts between perfectly rigid bodies. It
f:UCR? = R3:(e4 62— (£4,€2,0). is, however, typical of objects with some compliance at the
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surface for which the rigid body kinematic model would still ‘“‘"““‘I“"a : § : : o
be a good nominal model. When the no-spin condition is 3000~ ¥
maintained we achieve pure rolling and we substitute= 20001 =
a. = a, = a, = 0 in addition toV,, = V,, = 0 in the contact o o |

equations. We consider the case of pure rolling at the contact
points. Therefore, focontact 1 using the contact equations
developed in Section IlI-B [see (1)—(3)], we get

1‘1,1 = p(wy CcOs ”(/) + W, sin ”(/)) 40.00

01 = p(—wy sin ) + w, cos )

1),2 = Wy (61) 70,00 4
Uy = —WyCSC U2 8000 .
. 90.00 —
1 = —(wy cot up). soneo b |
From (6) and (7), we get 1000 |
Uy = pz/)l (U,2 sin 1/)1 ~+ ¥ sin us cos 1/)1) — PUa¥a COS Ug sin 1/)1 e ] I I I i L ime
N2 . 3 0.00 0.20 040 0.60 080 1.00
— p(02)” sinug cosug cos 11 + p(ap sinty + oy cosPy) @
U1 = pz/}l(ug cos 91 — Ug sinug siny ) — pliatiy COS Uz COS Y
distance x 1073
+ p(1)? sinug cos ug sintpy + p(a, cosipy — ay siney) T . g . T e
; 12000 - dw
Uiy = ythy sinuy + ayy (62) oso |- Jw

100.00 —

Vg = 1‘1,21/)1 CSCus — o¥s COL Ug — (v CSCUg
1/)1 = i}g sin Uy — 1),21‘}2 COS U2. (63) 8000

Similarly, we get contact equations fa@ontact 2 In the 7000
simulations, the linear system represented by (60) is designed
in such a way that each second-order system has a small
overshoot with a damping ratio and settling time of 0.65 and 3000
0.5 s, respectively. We have simulated two types of tasks as  wm}-

described below. 1000} i
A. Centering the Contact 0wl N =

Here we control the loci of the contact points on the end 00l |
effectors while simultaneously moving the object in a vertical 4000 ]
straight line. We start with a configuration where the contact 000 20 040 0w 50 oo
points on the end effectors are not at their centers (reference (b)
points) but at some distance away from them (see Fig. 6). O 7. The motion of the contact point on the first end effector (a) and at
objective is to roll the effectors in such a way that the contaﬁ.ﬁ second end effector (b).
points are brought to the centers of the respective effectors
while the object follows the desired trajectory. We use the firat horizontal straight line. Here we use the output equations
set of output equations described by (58). The initial and findéscribed by (59). The initial and final configuration of the
configuration of the system for this task is shown in Fig. &ystem for this task is shown in Fig. 9. Fig. 10 shows the
Fig. 7 shows how the contact points on the effectors convengmtion of the contact points on the object. Fig. 11(a) shows
to the desired points. Fig. 8(a) shows the convergence of tmew the object moves along the prescribed horizontal line.
motion of the object. The motion of the contact points oithe object motion and the motion of the contact points on the
the object which are not explicitly controlled in this casebject are asymptotically stable and the response is that of a
are shown in Fig. 8(b). Although these variables appear typical, underdamped second-order system. The motion of the
drift, they are stable in the sense each variable convergescamtact points on the effectors, [Fig. 11(b)] on the other hand,
some value. This represents the zero dynamics of the systéstable in the Lyapunov sense (that is, Lagrange stable)—this
The zero dynamics of the system is Lagrange stable whichtégidency to “drift” is typical of nonholonomic systems [1],
typical for nonholonomic system [1], [35]. [35].

B. Grasp Adaptation VIIl. CONCLUDING REMARKS

In this example we start with a contact configuration that
requires large internal forces to stably hold the object weight. Summary
The end effectors/object are rolled to the desired contact
configuration so that the arms have a better mechanical adwe have presented a new theoretical framework for the
vantage while simultaneously trying to move the object alorgpordinated control of two arms manipulating a large ob-
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Fig. 8. Vertical motion of the object (a) and motion of the contact points onig- 10.  The motion of the contact point on the objectaftactl (a) and
the object at both contact points (b).

INITIAL

Fig. 9. Grasp adaptation.

ject. This framework allows explicit control not only of the

at contact2 (b).

which cancels the dynamics and decouples the outputs. Since
the control model requires the use of first- and second-
order contact kinematics equations, we have developed and
presented contact kinematics up to second order. Although the
first-order contact kinematics was previously developed [19],
second-order contact kinematics utilizing the complete five-
dimensional contact space is new. Also, our control algorithm
that explicitly uses such contact equations by enhancing the
state space with contact coordinates is a new contribution. It
enables one to control the contact coordinates directly. Finally,
we have demonstrated the efficacy of the control scheme via
computer simulations.

Discussion

object motion but also of the contact locations between the

arms and the object through controlling rolling motion at There are several aspects of this problem that have not
the contacts. The control algorithm is a nonlinear feedbableen reported in detail in this paper. First, the validity of our
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distance

main objective of this work was to lay down the theoretical

320 T T T T T T x_obj . . . . o .
30| T~ | R foundation for coordinated manipulation, it is clear that ex-
or ] perimental validation and testing is an important direction for
280 s future work.
270~ -~
260 - —
L i APPENDIX A
230 DEFINITIONS OF MATRICES IN THE SECOND-ORDER
oL ] CONTACT KINEMATICS
2.00 -
1.90 - -
1.80 - |
- a — 2 2
Feol- ] I'=[} I1]
1.50 — .|
i ] I = L1 Ly
13| 1 Loy Lo
1201 7 1 1 1
Lio |- B f — |:F%1 2F%2 F%? :|
1.00 [
090 L 1 1 I 1 L lime Fll 2]'_‘12 F22
0.00 0.20 040 ( ) 0.60 080 1.00 L — [Lll 2L12 L22 ]
a, 2 T
r 2 13\T12 or
_ _ (U3 = T1)TT + 588
distance x 10° = 2 1 2 2 1 2 ors, ors,
o T T T T T Tl F — (F21 —_ Fll)FIQ —|— (FQQ —_ F12)F11 —|— 851 —|— 852
! ar?
12000 |- L (]-_%2 - F%Q)F%Q + [)5122
100.00 - 1 oL T 5
80.00 FllLll — 85111
aL AL
0001 F%lLIQ + F%QLll - 65112 - 65121
40.00 — — aL
000l I — Iyl — S8
= g T
oo < F%lLQI - 35211
2000 N - 2 2 aL OL
T AN i U5 Loy + 159 Ly _a Lagzlz - 65221
~60.00 1 ‘\‘ - 7 L F%QL 22 — 65222 .
80.00 - Vo A . . ..
10000 - Vo 4 For each matrix, we use the subscripthen we refer tbj <.
12000 - Voo T - For example['; is the I" matrix for obj 1 and(T'};), is its
el ’ ] ijkth component.
160.00 -
180.00 N -
-200:00 [~ “\___ -------------------------------- APPENDIX B
2000} | 1 | I I L,
py- o " . py- o me EXPRESSIONS FORDIFFERENT VARIABLES
() The expressions foF;'s, T;'s, and N;'s are
Fig. 11. Horizontal motion of the object (a) and the motion of the contact _c2 c1 o1
points on each end effectors (b). =" Re " Ry, " Ry
Fy ="R,,?Ry K,
= cchl(:lROlOlRfl
. . . _ c c 01 ,.
equations requires that the grasp is always force closed. In Ny = Dual{** R, ' Ro, " py0, } 11
this paper, we have not presented the control of contact forces. 15 =R, Ry,
Neither have we discussed the conditions for maintaining force Ny = Dual{ R, %1p,0, } F.

closure. These issues are dealt with in [30], [8]. Second, we

have only considered the soft contact model in our simulations

and examples, although it can be argued that the point contacin the above expressions, the tefdmal{-} represents the
(without torsional moments) model is more appropriate fakew-symmetric matrix representation of the vecfey. For
robot-object contacts. However it is easy to incorporate poiexample, ifr = [r, r, 7.]7 is a 3x 1 vector, then
contact models as shown in the paper. The increase in difficulty

comes from the fact that we now need at least three robot- Dual{r} — 0 —(;‘z 7’3{
object contacts (and therefore three arms) to maintain force ual{r} = 7; , _6’”
—ry  Ta

closure.
The main disadvantage of the proposed control schemeThe individual elements of thel; matrix of (32) and other

is that it is model-based. Another disadvantage is that riélated expressions are as follows:

relies on feedback of the position and velocity of the contact - . -

point moving over the robot effector. This underscores the Ki= (\/CTl) Ry, (H1 + H2)

importance of developing good tactile sensors. Although the Ks = (v/Ga)™ (H, + Hy)™*
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APPENDIX C
LOCAL SURFACE PROPERTIES OF APLANE AND A SPHERE

Ko = (V/Gs) ™' Ry, (Hs + Hy) ™
K7 = (\/Gy) ™ (Hs + Hy) ™
Ky = -K,HE,/ T
Ky = —K4(E3F), — HyE4Ny)
Ko = K4HoELT)
K1 = Ky(Esly — HoEyNy)
Ki» = KsHi BTy
K3 = —K5(BEsFy + HiE4Ny)
Ky = —K;H EJTy
K5 = K5(E3Fy + H EyN,)
Ky = 01" Ks + 02I'2 K12
Ki7 =01l Ky +0ol'a K13 + E2 Fy
Kig = o1l'1 Ko+ 022 K14
Kig =o' K1 + 029 K5 — EQ S
Koo = KH EAT}
Ky = K¢(Esly — HLE4Ny)
Ky = —Ke¢H E(T3
Ky = —K¢(E3ls — HyEyN3)

A. Plane
The component of metric tensor is given by
gu=1 gi2=0
921 =0 g =1.

Since the natural basis vectors and the components of the
metric tensor are constant for a plane, Christoffel symbols,
coefficients of the second fundamental forms, and all other
higher order surface properties are zero. Therefore, for a plane

B. Sphere
The components of the metric tengGrare given by
guu=p" g12=0
g21 =0 g = p*sin(¢H)?.

G is diagonal because the coordinate system is orthogonal.
There are eight Christoffel symbols of each kind. They are

Koy = —K-H3E,T) [11,1] =0 [11,2] =0
Kys = K7(E3Fy + HyE4Ny) [12,1] =0 [12,2] = p*sin &' cos &
Kor — K-EEAT [21,1] =0 [21,2] = p? sin ¢ cos €1
At [22,1] = —p?sinélcos &l [22,2] =0
Ky; = —K7(E3Fs + H3E4N3) It =0 I'2, =0
Koz = 03’3 Koo + 041 Kog i, =0 I'?, = cot ¢!
o 3 1
Kog = 031's Koz + 04’y Ko7 — B L) Ffl =0 L L Fgl =cot{
I'5y = —siné* cosé I's, =0.

K3o = 033 K90 + 04’4 Koy
K31 = 03l's Koy + 044 Koy + EoFly

0 10 100
E3_[—1 0 0} E‘*‘{o 1 0}

The coefficients of the second fundamental fatgp are

Liy=-p L12=0
L21 =0 LQQ = —pSiIl (51)2.

The derivatives of the Christoffel symbols of the second kind
that are not zero are

I, = —csce!

The expressions for each element$%f(g, U) matrix are

Kz = F['F
. %, , = - csée¢t
Kow — —p—1 | BL(HL + Ho) Ry, VG il’l ¢ L
BT O1x2 I'501 = —cos(267).
Ky = TflTQ Finally, the only nonzero derivative of the coefficients of the

K35 = T/ (N1 K32 — No)
K3 =T N1 K33

Ks; = Fy 'R,

Kag = —F5 |:E1(H3 + H4)R¢2\/G3}
01 %2

K3y =T5'Ty

Ky = T5 (N3 K37 — Ny)
Ky = T3 'N3Kag.

Recall thatE; = [ ~§].

1 0

The elements of5(U) are as follows:

K42 = (\/ GQ)_IRu',l\/ Gl K44 = (\/ G4)_1R¢2 RV Gg
Kyz =o' + 020 Ky

Kus = 03’3 + 04l Kyy.

second fundamental form is
Loy = —2psinél cos £

Therefore for a sphere with the above coordinate system
we have

=[0 cot&t]
T [0 0 —sin ¢t cos €t
|0 2 cot &L 0
F=[0 -1 0]
_[-p 0
L= | 0 —p(sinﬁl)Q}

L=[-p 0 —p(siné')?]
T [0 0 0
T [0 psingtcosét 0
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