6,447 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Robust Coordinated Control Algorithm for Multiple Marine Vessels with External Disturbances

    Get PDF
    The problem of coordinated control for multiple marine vessels in the presence of external disturbances is considered in this paper. A robust coordinated control algorithm is proposed for multiple marine vessels. The proposed robust coordinated control algorithm is divided into two parts. The first part develops an extended state observer to estimate the disturbances of marine vessels. The second part presents a robust coordinated control algorithm based on the output of the extended state observer. Furthermore, the robust coordinated control algorithm is designed using the dynamic surface control method. In light of the leader-follower strategy, the trajectory for each vessel is defined according to the desired trajectory of the assigned leader and the relative distance with respect to the leader. The effectiveness of the proposed coordination algorithm is demonstrated by the simulation results

    ALADIN-α—An open-source MATLAB toolbox for distributed non-convex optimization

    Get PDF
    This article introduces an open-source software for distributed and decentralized non-convex optimization named ALADIN-α. ALADIN-α is a MATLAB implementation of tailored variants of the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm. It is user interface is convenient for rapid prototyping of non-convex distributed optimization algorithms. An improved version of the recently proposed bi-level variant of ALADIN is included enabling decentralized non-convex optimization with reduced information exchange. A collection of examples from different applications fields including chemical engineering, robotics, and power systems underpins the potential of ALADIN-α

    ALADIN-α\alpha -- An open-source MATLAB toolbox for distributed non-convex optimization

    Get PDF
    This paper introduces an open-source software for distributed and decentralized non-convex optimization named ALADIN-α\alpha. ALADIN-α\alpha is a MATLAB implementation of the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, which is tailored towards rapid prototyping for non-convex distributed optimization. An improved version of the recently proposed bi-level variant of ALADIN is included enabling decentralized non-convex optimization. A collection of application examples from different applications fields including chemical engineering, robotics, and power systems underpins the application potential of ALADIN-α\alpha

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto TecnolĂłgico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    Automatic Configuration of Multi-Agent Model Predictive Controllers based on Semantic Graph World Models

    Full text link
    We propose a shared semantic map architecture to construct and configure Model Predictive Controllers (MPC) dynamically, that solve navigation problems for multiple robotic agents sharing parts of the same environment. The navigation task is represented as a sequence of semantically labeled areas in the map, that must be traversed sequentially, i.e. a route. Each semantic label represents one or more constraints on the robots' motion behaviour in that area. The advantages of this approach are: (i) an MPC-based motion controller in each individual robot can be (re-)configured, at runtime, with the locally and temporally relevant parameters; (ii) the application can influence, also at runtime, the navigation behaviour of the robots, just by adapting the semantic labels; and (iii) the robots can reason about their need for coordination, through analyzing over which horizon in time and space their routes overlap. The paper provides simulations of various representative situations, showing that the approach of runtime configuration of the MPC drastically decreases computation time, while retaining task execution performance similar to an approach in which each robot always includes all other robots in its MPC computations

    Multi-Agent Path Integral Control for Interaction-Aware Motion Planning in Urban Canals

    Full text link
    Autonomous vehicles that operate in urban environments shall comply with existing rules and reason about the interactions with other decision-making agents. In this paper, we introduce a decentralized and communication-free interaction-aware motion planner and apply it to Autonomous Surface Vessels (ASVs) in urban canals. We build upon a sampling-based method, namely Model Predictive Path Integral control (MPPI), and employ it to, in each time instance, compute both a collision-free trajectory for the vehicle and a prediction of other agents' trajectories, thus modeling interactions. To improve the method's efficiency in multi-agent scenarios, we introduce a two-stage sample evaluation strategy and define an appropriate cost function to achieve rule compliance. We evaluate this decentralized approach in simulations with multiple vessels in real scenarios extracted from Amsterdam's canals, showing superior performance than a state-of-the-art trajectory optimization framework and robustness when encountering different types of agents.Comment: Accepted for presentation at the 2023 IEEE International Conference on Robotics and Automation (ICRA
    • …
    corecore