85,932 research outputs found

    Communicating Processes with Data for Supervisory Coordination

    Full text link
    We employ supervisory controllers to safely coordinate high-level discrete(-event) behavior of distributed components of complex systems. Supervisory controllers observe discrete-event system behavior, make a decision on allowed activities, and communicate the control signals to the involved parties. Models of the supervisory controllers can be automatically synthesized based on formal models of the system components and a formalization of the safe coordination (control) requirements. Based on the obtained models, code generation can be used to implement the supervisory controllers in software, on a PLC, or an embedded (micro)processor. In this article, we develop a process theory with data that supports a model-based systems engineering framework for supervisory coordination. We employ communication to distinguish between the different flows of information, i.e., observation and supervision, whereas we employ data to specify the coordination requirements more compactly, and to increase the expressivity of the framework. To illustrate the framework, we remodel an industrial case study involving coordination of maintenance procedures of a printing process of a high-tech Oce printer.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Distributed voltage control in electrical power systems

    Get PDF
    Voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capability of the combined transmission and generation system. Discrete event controllers such as load tap changing transformers (LTCs), electronically controlled HVDC lines and switched capacitor banks can locally maintain the voltage but following a major disturbance that causes a strong decrease in the voltages, there are some interaction between LTCs action and up to now there has been relatively little attention paid to coordination between important components in voltage stability using message exchange between them and applying distributed control and taking discrete events into account. So, this study aims at voltage stability enhancement by using coordinated control of the discrete event controllers by using message exchange between the different local control agents. Various approaches for coordinating local controllers (e.g. distributed model predictive controllers) will be investigated. The influence of the discrete event driven local voltage controllers on remote locations of the network has to be investigated in a hybrid systems model framework

    Event-driven industrial robot control architecture for the Adept V+ platform

    Get PDF
    Modern industrial robotic systems are highly interconnected. They operate in a distributed environment and communicate with sensors, computer vision systems, mechatronic devices, and computational components. On the fundamental level, communication and coordination between all parties in such distributed system are characterized by discrete event behavior. The latter is largely attributed to the specifics of communication over the network, which, in terms, facilitates asynchronous programming and explicit event handling. In addition, on the conceptual level, events are an important building block for realizing reactivity and coordination. Eventdriven architecture has manifested its effectiveness for building loosely-coupled systems based on publish-subscribe middleware, either general-purpose or robotic-oriented. Despite all the advances in middleware, industrial robots remain difficult to program in context of distributed systems, to a large extent due to the limitation of the native robot platforms. This paper proposes an architecture for flexible event-based control of industrial robots based on the Adept V+ platform. The architecture is based on the robot controller providing a TCP/IP server and a collection of robot skills, and a high-level control module deployed to a dedicated computing device. The control module possesses bidirectional communication with the robot controller and publish/subscribe messaging with external systems. It is programmed in asynchronous style using pyadept, a Python library based on Python coroutines, AsyncIO event loop and ZeroMQ middleware. The proposed solution facilitates integration of Adept robots into distributed environments and building more flexible robotic solutions with eventbased logic

    Supervisor Localization of Discrete-Event Systems based on State Tree Structures

    Full text link
    Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems in the Ramadge-Wonham supervisory control framework. Its essence is the decomposition of monolithic (global) control action into local control strategies for the individual agents. In this paper, we establish a counterpart supervisor localization theory in the framework of State Tree Structures, known to be efficient for control design of very large systems. In the new framework, we introduce the new concepts of local state tracker, local control function, and state-based local-global control equivalence. As before, we prove that the collective localized control behavior is identical to the monolithic optimal (i.e. maximally permissive) and nonblocking controlled behavior. In addition, we propose a new and more efficient localization algorithm which exploits BDD computation. Finally we demonstrate our localization approach on a model for a complex semiconductor manufacturing system

    On Conditional Decomposability

    Full text link
    The requirement of a language to be conditionally decomposable is imposed on a specification language in the coordination supervisory control framework of discrete-event systems. In this paper, we present a polynomial-time algorithm for the verification whether a language is conditionally decomposable with respect to given alphabets. Moreover, we also present a polynomial-time algorithm to extend the common alphabet so that the language becomes conditionally decomposable. A relationship of conditional decomposability to nonblockingness of modular discrete-event systems is also discussed in this paper in the general settings. It is shown that conditional decomposability is a weaker condition than nonblockingness.Comment: A few minor correction

    Supervisory Control Synthesis of Discrete-Event Systems using Coordination Scheme

    Full text link
    Supervisory control of discrete-event systems with a global safety specification and with only local supervisors is a difficult problem. For global specifications the equivalent conditions for local control synthesis to equal global control synthesis may not be met. This paper formulates and solves a control synthesis problem for a generator with a global specification and with a combination of a coordinator and local controllers. Conditional controllability is proven to be an equivalent condition for the existence of such a coordinated controller. A procedure to compute the least restrictive solution is also provided in this paper and conditions are stated under which the result of our procedure coincides with the supremal controllable sublanguage.Comment: 29 pages, 11 figure
    corecore