762 research outputs found

    Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks

    Get PDF
    Mobile ad hoc networks: MANETs) and wireless sensor networks: WSNs) are two recently-developed technologies that uniquely function without fixed infrastructure support, and sense at scales, resolutions, and durations previously not possible. While both offer great potential in many applications, developing software for these types of networks is extremely difficult, preventing their wide-spread use. Three primary challenges are: 1) the high level of dynamics within the network in terms of changing wireless links and node hardware configurations,: 2) the wide variety of hardware present in these networks, and: 3) the extremely limited computational and energy resources available. Until now, the burden of handling these issues was put on the software application developer. This dissertation presents three novel programming models and middleware systems that address these challenges: Limone, Agilla, and Servilla. Limone reliably handles high levels of dynamics within MANETs. It does this through lightweight coordination primitives that make minimal assumptions about network connectivity. Agilla enables self-adaptive WSN applications via the integration of mobile agent and tuple space programming models, which is critical given the continuously changing network. It is the first system to successfully demonstrate the feasibility of using mobile agents and tuple spaces within WSNs. Servilla addresses the challenges that arise from WSN hardware heterogeneity using principles of Service-Oriented Computing: SOC). It is the first system to successfully implement the entire SOC model within WSNs and uniquely tailors it to the WSN domain by making it energy-aware and adaptive. The efficacies of the above three systems are demonstrated through implementation, micro-benchmarks, and the evaluation of several real-world applications including Universal Remote, Fire Detection and Tracking, Structural Health Monitoring, and Medical Patient Monitoring

    Agilla: A Mobile Agent Middleware for Sensor Networks

    Get PDF
    Agilla is a mobile agent middleware for sensor networks. Mobile agents are special processes that can migrate across sensors. They increase network flexibility by enabling active in-network reprogramming. Neighbor lists and tuple spaces are used for agent coordination. Agilla was originally implemented on Mica2 motes, but has been ported to other platforms. Its Mica2 implementation consumes 41.6KB of code and 3.59KB of data memory. Agents can move five hops in less than 1.1s with over 92% success. Agilla was used to develop multiple applications related to fire detection and tracking, cargo container monitoring, and robot navigation

    Fog computing : enabling the management and orchestration of smart city applications in 5G networks

    Get PDF
    Fog computing extends the cloud computing paradigm by placing resources close to the edges of the network to deal with the upcoming growth of connected devices. Smart city applications, such as health monitoring and predictive maintenance, will introduce a new set of stringent requirements, such as low latency, since resources can be requested on-demand simultaneously by multiple devices at different locations. It is then necessary to adapt existing network technologies to future needs and design new architectural concepts to help meet these strict requirements. This article proposes a fog computing framework enabling autonomous management and orchestration functionalities in 5G-enabled smart cities. Our approach follows the guidelines of the European Telecommunications Standards Institute (ETSI) NFV MANO architecture extending it with additional software components. The contribution of our work is its fully-integrated fog node management system alongside the foreseen application layer Peer-to-Peer (P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol for the exchange of application service provisioning information between fog nodes. Evaluations of an anomaly detection use case based on an air monitoring application are presented. Our results show that the proposed framework achieves a substantial reduction in network bandwidth usage and in latency when compared to centralized cloud solutions

    Self-organizing nest migration dynamics synthesis for ant colony systems

    Full text link
    In this study, we synthesize a novel dynamical approach for ant colonies enabling them to migrate to new nest sites in a self-organizing fashion. In other words, we realize ant colony migration as a self-organizing phenotype-level collective behavior. For this purpose, we first segment the edges of the graph of ants' pathways. Then, each segment, attributed to its own pheromone profile, may host an ant. So, multiple ants may occupy an edge at the same time. Thanks to this segment-wise edge formulation, ants have more selection options in the course of their pathway determination, thereby increasing the diversity of their colony's emergent behaviors. In light of the continuous pheromone dynamics of segments, each edge owns a spatio-temporal piece-wise continuous pheromone profile in which both deposit and evaporation processes are unified. The passive dynamics of the proposed migration mechanism is sufficiently rich so that an ant colony can migrate to the vicinity of a new nest site in a self-organizing manner without any external supervision. In particular, we perform extensive simulations to test our migration dynamics applied to a colony including 500 ants traversing a pathway graph comprising 200 nodes and 4000 edges which are segmented based on various resolutions. The obtained results exhibit the effectiveness of our strategy

    Application of a Blockchain Enabled Model in Disaster Aids Supply Network Resilience

    Get PDF
    The disaster area is a dynamic environment. The bottleneck in distributing the supplies may be from the damaged infrastructure or the unavailability of accurate information about the required amounts. The success of the disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a reliable dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts. This study analyzes the application of blockchain technology on disaster management resilience. The influences of this most promising application on the disaster aid supply network resilience combined with the Internet of Things (IoT) and Dynamic Voltage Frequency Scaling (DVFS) algorithm are explored employing a network-based simulation. The theoretical analysis reveals an advancement in disaster-aids supply network strategies using smart contracts for collaborations. The simulation study indicates an enhance in resilience by improvement in collaboration and communication due to more time-efficient processing for disaster supply management. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation
    corecore