653 research outputs found

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    OROS: onlin operation and orchestration of collaborative robots using 5G

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe 5G mobile networks extend the capability for supporting collaborative robot operations in outdoor scenarios. However, the restricted battery life of robots still poses a major obstacle to their effective implementation and utilization in real scenarios. One of the most challenging situations is the execution of mission-critical tasks that require the use of various onboard sensors to perform simultaneous localization and mapping (SLAM) of unexplored environments. Given the time-sensitive nature of these tasks, completing them in the shortest possible time is of the highest importance. In this paper, we analyze the benefits of 5G-enabled collaborative robots by enhancing the intelligence of the robot operation through joint orchestration of Robot Operating System (ROS) and 5G resources for energysaving goals, addressing the problem from both offline and online manners. We propose OROS, a novel orchestration approach that minimizes mission-critical task completion times as well as overall energy consumption of 5G-connected robots by jointly optimizing robotic navigation and sensing together with infrastructure resources. We validate our 5G-enabled collaborative framework by means of Matlab/Simulink, ROS software and Gazebo simulator. Our results show an improvement between 3.65in exploration task by exploiting 5G orchestration features for battery savings when using 3 robots.Peer ReviewedPostprint (author's final draft

    Optimal Mission Planning of Autonomous Mobile Agents for Applications in Microgrids, Sensor Networks, and Military Reconnaissance

    Get PDF
    As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long. This thesis explores solutions in determining optimal mission plans around the applications of autonomous mobile microgrids and resource scheduling with UGVs and UAVs. Optimal network connections, energy asset locations, and cabling trajectories are determined in the mobile microgrid application. The resource scheduling applications investigate the use of a UGV to recharge wireless sensors in a wireless sensor network. Optimal recharging of mobile distributed UAVs performing reconnaissance missions is also explored. With genetic algorithm solution approaches, the results show the proposed methods can provide reasonable a-priori mission plans, considering the applied constraints and objective functions in each application. The contributions of this thesis are: (1) The development and analysis of solution methodologies and mission simulators for a-priori mission plan development and testing, for applications in organizing and scheduling power delivery with mobile energy assets. Applying these methods results in (2) the development and analysis of reasonable a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios. This work could be extended to include a more diverse set of heterogeneous agents and incorporate dynamic loads to provide power to

    Discrete Path Planing Strategies for Coverage and Multi-Robot Rendezvous

    Get PDF
    This thesis addresses the problem of motion planning for autonomous robots, given a map and an estimate of the robot pose within it. The motion planning problem for a mobile robot can be defined as computing a trajectory in an environment from one pose to another while avoiding obstacles and optimizing some objective such as path length or travel time, subject to constraints like vehicle dynamics limitations. More complex planning problems such as multi-robot planning or complete coverage of an area can also be defined within a similar optimization structure. The computational complexity of path planning presents a considerable challenge for real-time execution with limited resources and various methods of simplifying the problem formulation by discretizing the solution space are grouped under the class of discrete planning methods. The approach suggests representing the environment as a roadmap graph and formulating shortest path problems to compute optimal robot trajectories on it. This thesis presents two main contributions under the framework of discrete planning. The first contribution addresses complete coverage of an unknown environment by a single omnidirectional ground rover. The 2D occupancy grid map of the environment is first converted into a polygonal representation and decomposed into a set of convex sectors. Second, a coverage path is computed through the sectors using a hierarchical inter-sector and intra-sector optimization structure. It should be noted that both convex decomposition and optimal sector ordering are known NP-hard problems, which are solved using a greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics, respectively. The second contribution presents multi-robot path-planning strategies for recharging autonomous robots performing a persistent task. The work considers the case of surveillance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to plan minimum cost paths for a separate team of dedicated charging robots such that they rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajectories are discretized into sets of charging locations and a partitioned directed acyclic graph subject to timing constraints is defined over them. Solutions consist of paths through the graph for each of the charging robots. The rendezvous planning problem for a single recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algorithmic approach, using a transformation to the TSP, is presented as a scalable heuristic alternative to the MILP. The solution is then extended to longer planning horizons using both a receding horizon and an optimal fixed horizon strategy. Simulation results are presented for both contributions, which demonstrate solution quality and performance of the presented algorithms

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Evolution of Swarm Robotics Systems with Novelty Search

    Full text link
    Novelty search is a recent artificial evolution technique that challenges traditional evolutionary approaches. In novelty search, solutions are rewarded based on their novelty, rather than their quality with respect to a predefined objective. The lack of a predefined objective precludes premature convergence caused by a deceptive fitness function. In this paper, we apply novelty search combined with NEAT to the evolution of neural controllers for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we use a common swarm robotics task - aggregation, and a more challenging task - sharing of an energy recharging station. Our results show that novelty search is unaffected by deception, is notably effective in bootstrapping the evolution, can find solutions with lower complexity than fitness-based evolution, and can find a broad diversity of solutions for the same task. Even in non-deceptive setups, novelty search achieves solution qualities similar to those obtained in traditional fitness-based evolution. Our study also encompasses variants of novelty search that work in concert with fitness-based evolution to combine the exploratory character of novelty search with the exploitatory character of objective-based evolution. We show that these variants can further improve the performance of novelty search. Overall, our study shows that novelty search is a promising alternative for the evolution of controllers for robotic swarms.Comment: To appear in Swarm Intelligence (2013), ANTS Special Issue. The final publication will be available at link.springer.co
    • …
    corecore