647 research outputs found

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters

    A Rule Based Control Algorithm for on-Ramp Merge With Connected and Automated Vehicles

    Get PDF
    One of the designs for future highways with the flow of Connected Automated Vehicles (CAVs) cars will be a dedicated lane for the CAVs to form platoons and travel with higher speeds and lower headways. The connectivity will enable the formation of platoons of CAVs traveling beside non-platoon lanes. The advent of connectivity between vehicles and the infrastructure will enable advanced control strategies ̶ improving the performance of the traffic ̶ to be incorporated in the traffic system. The merge area in a multilane highway with CAVs is one of the sections which can be enhanced by the operation of a control system. In this research, a model is developed for investigating the effects of a Rule Based control strategy yielding a more efficient and systematic method for the vehicles joining the highway mainlines comprised of platoon and non-platoon lanes. The actions tested for assisting the merge process included deceleration in the mainlines and lane change to join a platoon in the platoon lane. The model directs every CAV entering a multi-lane highway from an on-ramp, to the rightmost lane of the highway based on the appropriate action which is selected according to the traffic demand conditions and location of the on-ramp vehicle. To account for car following behavior, the vehicles in the platoon lanes are assumed to have a simplified CACC (cooperative adaptive cruise control) and those in the non-platoon lanes the IDM+ car-following model. The IDM+ car following model is modified with additional controls to incorporate the current technologies of Advanced Driver Assistant Systems (ADAS). The results of this study showed that the proposed car following model can increase the throughput of the non-platoon lane from approximately 2000 vehicle per hour (vph) to 3400 vph while the platoon lanes each had an average throughput of 3500 vph. The merge model enabled higher merging throughput for the merge area compared to current day conditions and displayed the potential for improved traffic performance in a connected environment comprised of platoon and non-platoon lanes. The results of this research will help in the design and development of advanced systems for controlling on-ramp merge sections in the future with CAVs

    Connected and Automated Vehicles in Urban Transportation Cyber-Physical Systems

    Get PDF
    Understanding the components of Transportation Cyber-Physical Systems (TCPS), and inter-relation and interactions among these components are key factors to leverage the full potentials of Connected and Automated Vehicles (CAVs). In a connected environment, CAVs can communicate with other components of TCPS, which include other CAVs, other connected road users, and digital infrastructure. Deploying supporting infrastructure for TCPS, and developing and testing CAV-specific applications in a TCPS environment are mandatory to achieve the CAV potentials. This dissertation specifically focuses on the study of current TCPS infrastructure (Part 1), and the development and verification of CAV applications for an urban TCPS environment (Part 2). Among the TCPS components, digital infrastructure bears sheer importance as without connected infrastructure, the Vehicle-to-Infrastructure (V2I) applications cannot be implemented. While focusing on the V2I applications in Part 1, this dissertation evaluates the current digital roadway infrastructure status. The dissertation presents a set of recommendations, based on a review of current practices and future needs. In Part 2, To synergize the digital infrastructure deployment with CAV deployments, two V2I applications are developed for CAVs for an urban TCPS environment. At first, a real-time adaptive traffic signal control algorithm is developed, which utilizes CAV data to compute the signal timing parameters for an urban arterial in the near-congested traffic condition. The analysis reveals that the CAV-based adaptive signal control provides operational benefits to both CVs and non-CVs with limited data from 5% CVs, with 5.6% average speed increase, and 66.7% and 32.4% average maximum queue length and stopped delay reduction, respectively, on a corridor compared to the actuated coordinated scenario. The second application includes the development of a situation-aware left-turning CAV controller module, which optimizes CAV speed based on the follower driver\u27s aggressiveness. Existing autonomous vehicle controllers do not consider the surrounding driver\u27s behavior, which may lead to road rage, and rear-end crashes. The analysis shows that the average travel time reduction for the scenarios with 600, 800 and 1000 veh/hr/lane opposite traffic stream are 61%, 23%, and 41%, respectively, for the follower vehicles, if the follower driver\u27s behavior is considered by CAVs

    Assessing the effectiveness of managed lane strategies for the rapid deployment of cooperative adaptive cruise control technology

    Get PDF
    Connected and Automated Vehicle (C/AV) technologies are fast expanding in the transportation and automotive markets. One of the highly researched examples of C/AV technologies is the Cooperative Adaptive Cruise Control (CACC) system, which exploits various vehicular sensors and vehicle-to-vehicle communication to automate vehicular longitudinal control. The operational strategies and network-level impacts of CACC have not been thoroughly discussed, especially in near-term deployment scenarios where Market Penetration Rate (MPR) is relatively low. Therefore, this study aims to assess CACC\u27s impacts with a combination of managed lane strategies to provide insights for CACC deployment. The proposed simulation framework incorporates 1) the Enhanced Intelligent Driver Model; 2) Nakagami-based radio propagation model; and 3) a multi-objective optimization (MOOP)-based CACC control algorithm. The operational impacts of CACC are assessed under four managed lane strategies (i.e., mixed traffic (UML), HOV (High Occupancy Vehicle)-CACC lane (MML), CACC dedicated lane (DL), and CACC dedicated lane with access control (DLA)). Simulation results show that the introduction of CACC, even with 10% MPR, is able to improve the network throughput by 7% in the absence of any managed lane strategies. The segment travel times for both CACC and non-CACC vehicles are reduced. The break-even point for implementing dedicated CACC lane is 30% MPR, below which the priority usage of the current HOV lane for CACC traffic is found to be more appropriate. It is also observed that DLA strategy is able to consistently increase the percentage of platooned CACC vehicles as MPR grows. The percentage of CACC vehicles within a platoon reaches 52% and 46% for DL and DLA, respectively. When it comes to the impact of vehicle-to-vehicle (V2V), it is found that DLA strategy provides more consistent transmission density in terms of median and variance when MPR reaches 20% or above. Moreover, the performance of the MOOP-based cooperative driving is examined. With average 75% likelihood of obtaining a feasible solution, the MOOP outperforms its counterpart which aims to minimize the headway objective solely. In UML, MML, and DL strategy, the proposed control algorithm achieves a balance spread among four objectives for each CACC vehicle. In the DLA strategy, however, the probability of obtaining feasible solution falls to 60% due to increasing size of platoon owing to DLA that constraints the feasible region by introduction more dimensions in the search space. In summary, UML or MML is the preferred managed lane strategy for improving traffic performance when MPR is less than 30%. When MRP reaches 30% or above, DL and DLA could improve the CACC performance by facilitating platoon formation. If available, priority access to an existing HOV lane can be adopted to encourage adaptation of CACC when CACC technology becomes publically available

    Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

    Get PDF
    Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026
    • …
    corecore