5,114 research outputs found

    Architecture for intelligent power systems management, optimization, and storage.

    Get PDF
    The management of power and the optimization of systems generating and using power are critical technologies. A new architecture is developed to advance the current state of the art by providing an intelligent and autonomous solution for power systems management. The architecture is two-layered and implements a decentralized approach by defining software objects, similar to software agents, which provide for local optimization of power devices such as power generating, storage, and load devices. These software device objects also provide an interface to a higher level of optimization. This higher level of optimization implements the second layer in a centralized approach by coordinating the individual software device objects with an intelligent expert system thus resulting in architecture for total system power management. In this way, the architecture acquires the benefits of both the decentralized and centralized approaches. The architecture is designed to be portable, scalable, simple, and autonomous, with respect to devices and missions. Metrics for evaluating these characteristics are also defined. Decentralization achieves scalability and simplicity through modularization using software device objects that can be added and deleted as modules based on the devices of the power system are being optimized. Centralization coordinates these software device objects to bring autonomy and intelligence of the whole power system and mission to the architecture. The centralization approach is generic since it always coordinates software device objects; therefore it becomes another modular component of the architecture. Three example implementations illustrate the evolution of this power management system architecture. The first implementation is a coal-fired power generating station that utilized a neural network optimization for the reduction of nitrogen oxide emissions. This illustrates the limitations of this type of black-box optimization and serves as a motivation for developing a more functional architecture. The second implementation is of a hydro-generating power station where a white-box, software agent approach illustrates some of the benefits and provides initial justification of moving towards the proposed architecture. The third implementation applies the architecture to a vehicle to grid application where the previous hydro-generating application is ported and a new hybrid vehicle application is defined. This demonstrates portability and scalability in the architecture, and linking these two applications demonstrates autonomy. The simplicity of building this application is also evaluated

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Real-Time Analysis of an Active Distribution Network - Coordinated Frequency Control for Islanding Operation

    Get PDF

    Simulation of intelligent active distributed networks implementation of storage voltage control

    Get PDF
    Tese de mestrado. Engenharia Electrotécnica e de Computadores (área de especialização de Energias Renováveis). Faculdade de Engenharia. Universidade do Porto, OFPZ Arsenal Ges.m.b.H. 200

    Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009

    Get PDF
    The overall goal of Project 2 has been to provide a comprehensive understanding of the impacts of distributed energy (DG) on the Australian Electricity System. The research team at the UQ Energy Economics and Management Group (EEMG) has constructed a variety of sophisticated models to analyse the various impacts of significant increases in DG. These models stress that the spatial configuration of the grid really matters - this has tended to be neglected in economic discussions of the costs of DG relative to conventional, centralized power generation. The modelling also makes it clear that efficient storage systems will often be critical in solving transient stability problems on the grid as we move to the greater provision of renewable DG. We show that DG can help to defer of transmission investments in certain conditions. The existing grid structure was constructed with different priorities in mind and we show that its replacement can come at a prohibitive cost unless the capability of the local grid to accommodate DG is assessed very carefully.Distributed Generation. Energy Economics, Electricity Markets, Renewable Energy

    Agent-based technology applied to power systems reliability

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore