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ABSTRACT

ARCHITECTURE FOR INTELLIGENT POWER SYSTEMS MANAGEMENT,
OPTIMIZATION. AND STORAGE
J. Chris Foreman
August 2008
The management of power and the optimization of systems generating and using
power are critical technologies. A new architecture is developed to advance the current
state of the art by providing an intelligent and autonomous solution for power systems
management. The architecture is two-layered and implements a decentralized approach
by defining software objects, similar to software agents, which provide for local
optimization of power devices such as power generating, storage. and load devices. These
software device objects also provide an interface to a higher level of optimization. This
higher level of optimization implements the second layer in a centralized approach by
coordinating the individual software device objects with an intelligent expert system thus
resulting in architecture for total system power management. In this way, the architecture

acquires the benefits of both the decentralized and centralized approaches.

The architecture is designed to be portable, scalable, simple. and autonomous,
with respect to devices and missions. Metrics for evaluating these characteristics are also

defined. Decentralization achieves scalability and simplicity through modularization



using software device objects that can be added and deleted as modules based on the
devices of the power system are being optimized. Centralization coordinates these
software device objects to bring autonomy and intelligence of the whole power system
and mission to the architecture. The centralization approzch is generic since it always
coordinates software device objects; therefore it becomes another modular component of

the architecture.

Three example implementations illustrate the evolution of this power
management system architecture. The first implementation is a coal-fired power
generating station that utilized a neural network optimization for the reduction of nitrogen
oxide emissions. This illustrates the limitations of this type of black-box optimization and
serves as a motivation for developing a more tunctional architecture. The second
implementation is of a hydro-generating power station where a white-box, software agent
approach illustrates some of the benefits and provides initial justification of moving
towards the proposed architecture. The third implementation applies the architecture to a
vehicle to grid application where the previous hydro-generating application is ported and
a new hybrid vehicle application is defired. This demonstrates portability and scalability
in the architecture, and linking these two applications demonstrates autonomy. The

simplicity of building this application is also evaluated.
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CHAPTER 1

INTRODUCTION

What are Power Management Systems?

Management is a formalized approach to achieving the desired mission. Power
management refers to the managing of the devices in a power system. Therefore, power
management provides a formal approach to utilizing the power system to achieve its
mission within the mission of the whole system or process. While there are many
solutions to accomplish this, the desired path should be the optimal path in a responsible
management approacn. Optimization refers to finding the best-fit solution given a set of
criteria. This is typically a balanced solution based on multiple, weighted criteria.
Management supervises this optimizing process by collecting the criteria and boundary
conditions from the users, application and environment to achieve a solution that most
satisties the overall mission. Management also includes the responsibilities of observing
the status of the optimization to verify the solutions and handle unknown or trouble
conditions. Therefore, power optimization is a tool of power management. Power
management systems are the architecture implementing the management, optimization,

and storage strategies.



Problem Description

There has been much work on optimization of power processes and the
development of power management systems. The processes being optimized and the
systems being managed include a diverse range of missions; however they share some
common threads. Power needs to be generated as efficiently as possible to minimize costs
and reduce negative environmental impacts. Power also needs to be used as efficiently as
possible for these same reasons. Lastly, power needs to be stored for use in times when
generation is limited or unavailable. Many devices have been introduced into power
systems with hardware advancements occurring all the time. The dynamics of adding and
removing these devices in a power system adds another dimension of complexity.
Software-based management solutions have attempted to incorporate these devices to

provide an optimal solution for the missicn at hand.

The approaches thus far can be categorized into two groups, centralized and
decentralized architectures. Centralized architectures know the whole system and have
the benefit of superior coordination, but at the cost of being the most complex and
specialized of solutions [Vahidi, 2007]. Decentralization attempts to break the problem
into smaller pieces to achieve a simpler solution. but at the cost of coordination [Vahidi,
2007]. The preferred path has been to take the decentralized approach and attempt some
form of coordination cf the pieces to get back to a whole system solution. While there has

been success in these attempts, limitations still exist.
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The need is for an architecture that has the characteristics of: scalability — for
growing with the application and the mission expands; portability — to apply the
architecture to a wide range of devices and missions; autonomy - for missions where user
interaction is limited; and simplicity — to enable the solution to be implemented by
experts in the field and maintained by maintenance personnel. Metrics for quantifying

these are defined in Chapter 11 and applied in Chapter IV.

Architecture Description as a Solution

Architecture is developed for power systems management. The architecture is
realized in two layers. The first layer implements a decentralized approach by defining
software objects. similar to software agents, which provide for local optimization of
power devices such as power generating, storage, and load devices. These software
device objects also provide an interface to a higher level of optimization. This higher
level of optimization implements the second layer in a centralized approach by
coordinating the individual software device objects with a rule-based expert system. This
results in a solution that is intelligent for the whole power system while being constructed
of modular pieces that are simple and distributed. In this way, the architecture acquires

the benefits of both the de/centralized approaches.

Because the software objects in the first layer are only responsible for their single
power system device, they can be quickly developed and are portable to other power
management systems whose power systems utilize the same device. The scalable and

portable aspects of the architecture also address the problem of adding and removing



devices. Management is achieved by coordinating all software device objects in the
whole power system. By utilizing a rule-based expert system, an intelligent and
autonomous solution is achieved. Rules are a natural way for human experts to think
about optimization and management and therefore simplify the implementation process.
Rules are also modular themselves and can be added. modified. and deleted without

significant change to the architecture.

Why is Power Management Important?

Power is a limited resource that is generated and utilized in many ventures. This
generation and utilization provides certain benefits and comes at certain costs. In many
cases, a mission is severely limited or not possible without an optimal management
approach to balance these benetits and costs. Because of these. the importance of power
management and optimization is directly proportional to the importance of the mission

utilizing the power resource.

The proposed architecture is important because it provides a framework for
implementing a power management system that enables optimal power management. The
stmplicity enables the architecture to be developed quickly and cheaply. The intelligence
allows the architecture to be effective. The autonomy allows the architecture to function
automatically withour significant user guidance or interaction. These qualities are
important because they become mission-enabling characteristics. For example, a small
satellite operates in a severely power-limited environment with minimal opportunity for

user interaction. A hybrid vehicle needs to provide long-range use, minimal



environmental impact, high reliability. and low cost to be a marketable product. Power
generating plants need to be operated at peak efficiency and again with minimal
environmental impact. since the economies of scale make small gains or losses at these
facilities result in huge benefits or costs. Without power management and power

optimization, many of these missions would be difficult or impossible.

Motivation for the Architecture

There are several approaches to software-based power optimization and
management. Much of this work in the power generation industry has been achieved with
model predictive control or neural network optimization. These approaches require much
work to implement and do not handle multiple goals or changing conditions well. The
author has performed several neural network optimizations at power generating plants for
emissions reductions and etficiency improvements. While good results were obtained,
e.g. approximately 20% average reduction in nitrogen oxide emissions by software
optimization alone, the implementation was difficult, requiring large training sets and
much time spent validating process data patterns for these sets. Once the optimization
was completed, changes in goals, in the process equipment. or other conditions were not
handled well and required total retraining of the neural network. There had to be a better
way. In vehicular power systems, newer approaches had been successfully implemented.
These incorporated software agents and other object-oriented structures for autonomous
and intelligent decision-making solutions. These served as an inspiration for the problems
encountered in the power industry: however. these vehicular systems were designed for

small mobile implementations. Taking the best components of each approach, a scalable



architecture was developed in Chapter [11, which used a layered approach to incorporate
the mission as needed. A neural network was still used but only for pre-classification and
of a smaller size. Decisions were made by a rule-based expert system to provide a white-
box solution, which could be modified one rule at a time. At the lowest level, the concept
of software device objects was created to provide a local software interface to the power
system’s hardware components. This resulted in a solution that was scalable, portable,
and more autonomous than before while still being simple to understand and maintain.
Once the architecture was in place. additional layers could be added for enterprise-level

optimizations and beyond.

Brief Outline of Dissertation

Chapter Il will review the literature for current work relating to the proposed
work in power management systems. In addition to reviewing the literature, notes are
made illustrating how the proposed work utilizes and enhances the current state of the art.
Chapter I will define and develop the architecture and derive some methods by which
the metrics of portability, scalability, simplicity. and autonomy can be comparably
quantified. Chapter IV will discuss considerations for implementing the architecture in
real-world systems. Three implementation cases are presented to illustrate the motivation,
development, and application of the architecture. The first case is a coal-fired steam-
boiler generating plant optimization for emission reduction utilizing a monolithic neural
network. The limitations of this approach are discussed and this will serve as a
motivation for developing the architecture. The second case is a hydro-generation plant

optimization for efficiency using multiple software agents. This will introduce some

6



aspects of the architecture developed in Chapter Ill. The third case is a vehicle to grid
application using the hydro-generating plant coupled to a personal hybrid vehicle to
demonstrate a full implementation of the architecture. Chapter V will provide final

discussion of the architecture and suggest future directions.



CHAPTER 11

LITERATURE REVIEW

Software optimization research for coal-fired power plants will first be discussed
along with commercial applications and case studies. Hydro-generating plants in
particular will then be discussed as a special topic to power generating plants. Vehicular
power management systems will then be discussed to build on the power optimization
and management theme of the dissertation. Finally, research in enterprise-level business

entity software optimization and management systems are discussed briefly.

Research in Coal-Fired Power Plant Software Optimization

The major motivations for optimization at coal-fired generating plants are
efficiency, emissions reductions, and availability. Efficiency typically refers to generating
the maximum amount of power with the minimal input of fuel. The measure for this is
heat rate, which is a ratio of power generation divided by fuel burned expressed in units
of kitowatts per million BTU. Software optimizations for efficiency therefore attempt to
burn fuel more completely and capture the heat released tfrom the fuel more effectively.
Reducing auxiliary loads are also included in this optimization. Emissions reduction has
become an increasingly important topic. The combustion process releases several

pollutants in the form of sulfur oxide. nitrogen oxide, and carbon dioxide as well as



particulates and trace heavy metals. Software optimizations in these cases attempt to burn
the fuel cleaner or affect combustion that produces fewer emissions. In fact, most
software optimization implementations are justified and originated due to environmental
concerns. The last efforts have been in increasing availability and reliability. The
categories of preventative and predictive maintenance software optimization systems are
included in this case as a means of keeping the plant operational for longer periods with

reduced maintenance costs.

Software optimization in the power industry, as well as other industries, began as
an outgrowth from computer-based performance monitoring and data archiving.
Compared with hardware approaches that required large capital expenditures on
equipment and maintenance, software became viewed as a very cost effective means to
achieve improved performance with simple maintenance. With the advent of faster
computers starting in the 1990s, a more active role for software optimization became
possible. Initially, the complexity of the combustion process in terms of chaotic behavior
as well as the large number of variables made neural networks a natural choice. In the last
few years, however, limitations of neural networks have pushed the development of
alternative schemes such as agent-based architectures. The current research in these

optimization techniques are presented here.

Various types of artificial intelligence approaches have been surveyed for their
application in power generation control and optimization [Viswanathan, 1999]

[Oluwande, 2001]. Power plant control systems are dominantly based on the PID



(Proportional Integral Differential) algorithm [Astrom. 1995]. The PID controller is a
single-input single-output controller and although quite effective and simple to use, it is
limited in its application as most controllables are dependent on multiple variables. The
next logical step was multi-variable controllers [Oluwande, 2001]. As the name implies,
these built on the PID’s weakness by taking multiple inputs to influence a single output
or controllable. These were difficult to tune and still did not provide an intelligent
solution. Among the first of the advanced algorithms was Model Predictive Control
(MPC). Model predictive control. as the name implies, is an algorithm that uses an
iterative model of the process being controlled to predict the values for the outputs
(controllables) given a set of input variables. In this way, an optimal path of operation
can be determined by selecting the inputs that produce the desired outputs based on user-
defined criteria. Recent applications have had success: for example, [Havlena, 2002] and
[Havlena, 2005]. In both of these, MPC is used to model a coal-fired boiler so that air and
fuel control inputs can be selected to minimize nitrogen oxide emissions. Efficiency
improvement in the form of reduced heat rate was also obtained through better
combustion control. More cases are also given in the case studies later in this chapter.
There are still limitations [Hugo, 2000] with MPC. however. MPC is a difficult
technology to implement and tune. Most maintenance personnel cannot effectively
maintain it in the field. It is not an intelligent solution and is typically implemented with a
static model. MPC provides a local optimization solution and therefore is not expandable
to enterprise-level optimizations. By its central dependence on a model of the process,
MPC is not portable to other processes or even adaptable to configuration changes of the

existing process [Hugo, 2000].



In an effort to address the limitations of MPC. intelligent algorithms began
appearing in industrial control. Due to the large number of variables involved and the
chaotic process of combustion, artificial neural networks seemed a logical choice. Neural
networks can learn a model-based training with historical data, thus simplifying the
model development process. Neural networks interpolate well and also allow some online
retraining to handle process changes. In fact, several vendors produce off-the-shelf
packages for neural network optimization [NeuCo, 2008] [Pavilion, 2008] [Pegasus,
2006], also discussed in the following section about commercial products and in the
section on case studies. In particular, Booth and Roland [Booth. 1998] summarize the
application of neural network software across eleven coal-fired boilers whose goals are
reduced nitrogen oxide and efficiency improvements similar to the efforts for MPC
above. Neural networks are still difficult for maintenance personnel to modify or tune, as
they are a black-box approach. Similar to MPC, neural networks are developed as process
specific and are therefore not portable. It is also difficult for neural networks to change
goals or handle multiple goals such as those that would arise in an enterprise-level

environment.

In recent years, software agents have begun to be applied to control systems.
Software agents are a progression from object-oriented programming and attempt a
modular, white-box approach to address these limitations in neural networks. Software
agents are “an encapsulated computer system that is situated in some environment and

can act flexibly and autonomously in that environment to meet its design objects.”



[Woodridge, 1997] Software agents enable a problem to be broken into simpler pieces.
Since these pieces are autonomous and can react to their environment. they can work
together for an optimal solution. For these reasons, they are ideally suited for optimizing
process control [Jennings, 2003]. Chang and Lee [Chang-1, 2003} [Chang-2, 2003]
developed a multi-agent-based control system for a whole coal-fired boiler that illustrates
the use and coordination of agents in feedback control for optimal and stable process
control. The use of software agents also strengthens the ability of the optimization to
handle enterprise-level solutions since the agents can also interact with outside users just
as they do with elements of the combustion process. These enterprise-level applications
of agents are discussed further in the section, Research in Enterprise-level and Business
Solutions, later in this chapter. Further discussion on using software agents in the

architecture is discussed in Chapter 111

Data mining has played a significant role in enhancing optimization efforts. While
data mining itself is not an optimization algorithm, the algorithms of data mining
discover many of the relations and other information that make advanced and intelligent
optimization systems possible. Ogilvie et al describes using data mining as a precursor to
optimization at gas and oil fired power plants [Ogilvie, 1998]. This also details how
process data can be mined for such cases. Kusiak et al describes a specific application
where data-mining techniques are used to detect events causing mill pluggage in fuel
delivery for a coal-fired boiler [Kusiak. 2005]. In Kusiak and Song, a data-mining
approach is then applied to the whole coal-fired boiler for optimization in great detail

[Kusiak, 2006]. Also included is virtual testing of optimizations that is beneficial to any



optimization system. In most cases. online testing is difficult since the power generation
process s critical and can often not be risked during the uncertainties of software
development. Online testing is also costly so virtual testing becomes an enabling

technology in many cases and is needed to persuade management for project approval.

The approach of this dissertation is developed in Chapter HI and demonstrated in
Chapter 1V. This approach creates an architecture that advances the state of the art with
respect to the above. The architecture includes software objects and agents to achieve a
modular. decentralized. and autonomous approach that are easy to develop quickly. The
architecture also incorporates a coordinating component consisting of a rule-based expert
system and neural network classifier. This achieves a centralized solution that i1s easily
controllable by providing a managed interface point for outside users; and maintainable
due to the use of rules, which is a natural way of thinking for maintenance personnel. The
use of a smaller neural network for state classification only gains the benefits of this
algorithm without the costs associated by having neural networks as the sole optimization
engine. The architecture is designed to be portable, not only across multiple power
generating applications but also in other systems such as vehicular power management
and enterprise-level optimizations. In Chapter 111, this architecture is developed in more

detail.

Commercial Software Optimization Products for Power Generating Plants
Software optimization has been applied to various industrial processes for a

number of years, but usually in an open loop or advisory mode system. In the 1990°s,



computer technology and control systems advanced to a point where closed-loop control
became feasible. As a result, several vendor products are available with various
approaches to optimization. These products typically consist of three main components.
The first is preprocessing to check the validity of the input data as well as the health and
communication status of the system. The second is the main analysis engine that
processes inputs and determines outputs. Finally, a post-processing step is incorporated to
check constraints or perform other functions before being sent to the control system as
outputs. Many packages also include some data analysis software to view trends and
compare data offline. Brief summaries of the most popular products are given below. A
general software optimization data flow diagram is also given in figure 2.1 at the end of
this section. The commercial platforms discussed here are:

o Pegasus Technologies. NeuSIGHT® Optimization Suite 2001

o Pavilion Technologies, Process Insights® and Process Perfecter®

o Ultramax Corporation, ULTRAMAX® Dynamic Optimization

o NeuCo, ProcessLink® Boiler Optimization Suite

Pegasus Technologies markets the NeuSIGHT Optimization Suite 2001, which is
an artificial neural network based system. The hardware platform used to implement the
optimization software is Sun Microsystems UNIX based Solaris running on their SPARC
processor based systems. Interfaces to the generating unit's distributed control system
(DCS) can be via Modbus (serial or Ethernet), OSI's PI Server (Ethernet), and OPC
(Ethernet) which is Microsoft’s OLE for Process Control. The neural network engine is

developed by Computer Associates and can include functional expansions of inputs to



produce a better model. The neural network gathers process data and uses this data to
partially retrain or retune the model. every two hours. This allows for equipment
condition changes (such as wear) or operational changes (such as fuel quality). NeuCo
acquired Pegasus Technologies in 2006 and their product offerings have since been
combined [Pegasus. 2006]. Discussion of Pegasus™ previous product is included here for

background information.

The general approach is for the software to calculate desired operating setpoints
and bias a set of controllables in the DCS to obtain those setpoints. Process data is
gathered typically every 30sec and then averaged over a 10-15min period to provide a
statistical smoothing for data entered into the model. The model is designed to provide
advisory values when in open-loop mode or directly entered control biases when in
closed-loop mode every [0-15min cycle during steady load operation. The software
incorporates a graphically user-programmable preprocessing and post-processing area to
perform data processing functions on incoming process data or outgoing biases
respectively. Constraints can be incorporated into the software to limit the influence over
the DCS as well as assist in validity checking of process data. Included in the software
suite is NeuWAVE® based on Visual Numeric's PV-WAVE® to provide 2D and 3D

graphs and analysis tools for handling process data to aid in model building.

Pavilion Technologies™ optimization suite includes: an offline analysis package
known as Process Insights®; the main neural network optimization engine Process

Perfecter® or Power Perfecter®, which is designed for the power generation industry;



and the RunTime Application Engine® for implementing the model and interfacing with
the DCS. The computing platform typically used is Microsoft's Windows NT® on Intel’s
Pentium® class machines, although UNIX and OpenVMS® platforms have been
available. Process Insights, as the name implies. is used to gain insight into the process
being optimized. Process data is collected into a database and Process Insights provides
statistical and graphical analysis tools to discover relevant variables and variable
interaction that would assist in the design of the optimization model. An additional and
very powerful feature 1s the software’s ability to incorporate data from various sources in
almost any format into a common database with relative case. The software has the
ability to correlate variables and build relations based on time. For example, the software
can determine that a change in overfire air damper setpoint affects the nitrogen oxide
emissions 45sec later, or that an increase in secondary airflow always precedes an
increase in excess oxygen and/or decrease in opacity Imin later. When analysis is
complete with Process Insights, enough information should be available to build a model
and train it with the process data in the database. In addition to building and training a
model, it is possible to overlay expert knowledge of the process to further enhance the
capability and accuracy of the model. For example, the model can be built to inhibit
decreasing excess oxygen when opacity is high; or create the relation that reducing
burner shroud opening is a method to lower combustion temperatures which would result

in a thermal nitrogen oxide reduction.

Optimization can be done on single or multiple parameters in a weighted balance

allowing the best overall solution or trade-offs to be taken when appropriate. As in other



products. user programmable data processing functions are available for validation,
constraint, and other purposes. Process Perfecter has two modes of operation being online
and offline. Online refers to interfacing the model with the DCS to gather process
information as inputs and supply target setpoints as outputs. Process Perfecter is a
dynamic model and will not only optimize a unit at steady load but optimize the
transition periods as well. This can keep emissions under control while greatly increasing
efficiency and stability during the most complex operating condition, being load-change.
The offline mode allows the model to be simulated for verification by writing output
setpomnts to memory and predicting the resulting inpurts. The RunTime Application
Engine acts as a server for the model and provides an interface with the DCS. It is

capable of monitoring and guiding the current optimization scheme.

Ultramax Corporation markets the ULTRAMAX Dynamic Optimization®
software for process optimization. The computing platform utilized is typically
Microsoft’s Windows NT® on Intel’s Pentium® class machines. In contrast with
offerings by Pavilion Technologies and Pegasus Technologies, ULTRAMAX does not
utilize a neural network based engine. Instead. the software employs an empirical
modeling and optimization approach that is based on Bayesian statistics and multivariate,
weighted-regression algorithms. In comparison with other mathematical methods,
ULTRAMAX does not require running experiments, instead learning during the normal
process. The software is less susceptible to noise in data and can compensate for
disturbances in uncontrolled inputs. Neural networks require large training sets and

numerous parametric tests that are not required with ULTRAMAX. The software also is
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much more capable at extrapolation to new operating states than neural networks, which

typically interpolate between known operating states [Ultramax, 2008].

LLTRAMAX has a capacity of 10 control outputs to the DCS and 20 input
variables from the DCS. As in other optimization products. single and multivariable
optimization goals are possible with user programmable data processing and operating
constraints capable of being specified. Included in the software are analysis tools
providing: 2D, 3D, and contour graphs: model predictability and interpretation; historical
performance and data reports: detected effects of outputs on inputs; and comparison of
predicted versus actual inputs. The software can be run in stand-alone mode as an
isolated system. linked to a control system to provide suggestion in advisory mode, and

closed-loop mode to influence process control [Ultramax, 2008].

NeuCo’s ProcessLink is another neural network based optimization product
similar 1n overall architecture to products by Pavilion Technologies and Pegasus
Technologies. The software is capable of validating data and retraining itself in real-time
during optimization, thus allowing for changing equipment and operating conditions.
ProcessLink can operate in both open-loop advisory and closed-loop control modes.
NeuCo's Boiler Optimization Suite is actually a family of several products including:
CombustionOpt  for combustion optimization such as nitrogen oxide or opacity;
PerformanceOpt for performance optimization such as heat rate; SCROpt, SNCROpt,
FGDOpt. SootBlowingOpt for SCR. SNCR, FGD, and sootblowing systems optimization

respectively: FuelOpt. ValueOpt, and ProtitOpt to optimize the goals of fuel, value, and
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profit respectively. The computing platform is Microsoft’s Windows® running on Intel
Pentium® class machines. The software enlists the standards of Active-X®, Visual
C++®, Microsoft Office®. Visual BASIC®, and Open Database Connectivity® (ODBC)

allowing for simple integration and future growth [NeuCo, 2008].
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Figure 2.1. Data flow in optimization software products.

Case Studies at Various Coal-fired Generating Stations

Software optimization has been applied for several years to various industries and
the quantity of research is extensive. Offline data analysis techniques such as
computational fluid dynamic modeling have been used as well as advisory mode neural
network based systems to suggest the best mode of unit operation. It is only recently with
advances in computing power have process industries begun to utilize optimization

schemes in their online control system.

In an optimization at Illinois Power [McVay, 1998], the Ultramax optimization
software is discussed for the purposes of nitrogen oxide reduction and efficiency
improvements at the Baldwin Generating Station and others. As is the case with most
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plants performing such optimizations, the goal was to provide a low-cost solution for
reducing nitrogen oxide as part of the company’s Phase II Clean Air Act Amendments

compliance plan without adversely affecting operation of the generating unit.

The decision was made to proceed with optimization at Baldwin based on the
success at Hennepin, another Illinois Power generating station. In both cases, the
distributed control system utilized at the plant was the Westinghouse WDPF II with data
archiving provided by OSI's PI Server system. Hennepin unit 2 was able to achieve
improvements of 3% in operating efficiency while reducing nitrogen oxide by 20% at full
load. The solution was known to work with the existing control system and had
acceptance by the operating staff. Hennepin unit 2 has a tangentially fired twin-furnace
boiler rated at 235MW. The greatest effects came from lowering excess oxygen and

tightening upper wind box dampers [McVay. 1998].

Baldwin Units | and 2 are 575SMW B&W cyclone boilers and unit 3 is an ABB-
CE tangentially fired S95MW boiler. The Ultramax system was interfaced to the Pl
Server at this site to obtain process information and communicate recommended settings
to the operator. The operator then implements these settings upon inspection thus
performing optimization in an open-loop advisory mode. Closed-loop control is also an
option of the software. Early results at Baldwin have shown positive results in efficiency
and nitrogen oxide reductions. The use of the optimization system has also proved to
provide a more consistent operation from shift to shift as the advisory data is utilized

[McVay, 1998].



In a research paper [Radl], the use of artificial intelligence software systems is
discussed for generating units. The software system primarily addressed is NeuSIGHT®
by Pegasus Technologies and its application to Ameren’s Labadie Station, Ontario
Power’s Lambton Station, and Houston Power and Light's Parish Station. Discussion of

implementation and process data flow is given after these three station studies.

The Labadie Station boiler is a 600MW tangentially fired unit with PRB coal as
the primary fuel. Prior to software optimization, the unit was fitted with ABB-CE’s Low
nitrogen oxide Concentric Firing System or LNCFS Level 3 nitrogen oxide control
technology including two levels of closed-coupled overfire air and five levels of
separated overfire air. The software optimization is interfaced directly to the distributed
control system to allow both advisory mode and closed-loop mode for automatically
introducing biases. Labadie has been able to achieve a 30% reduction in nitrogen oxide
beyond the existing reduction obtained by the LNCFS Level 3 hardware and switch to
PRB coal. Heat rate is calculated in real-time by the NeuSIGHT software and work is
continuing to evaluate the impact on heat rate and furnace gas exit temperature. The
optimization influences 24 controllables continuously over the 1/3 to full load range,
including overfire damper settings, excess oxygen, wind box to furnace differential

pressure, and mill feeder speeds [Radl].

Lambton Station units 3 and 4 were selected as a trial of the NeuSIGHT

optimization software as part of the company’s strategy to reduce heat rate by 2% and
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nitrogen oxide by 10% from the 1996 levels by the year 2000. Details of this project are
presented in the research paper [Henrikson]. Units 3 and 4 are tangentially fired 5SI0OMW
boilers controlled by a Bailey INFI-90 distributed control system. Nitrogen oxide

reductions of 10% to 25% were obtained with a 0.5% improvement in heat rate [Radl].

Parish Station unit 8 is a base-loaded tangentially fired 600MW CE boiler with
PRB coal as the primary fuel. Unit 8 did not have a distributed control system at the time
of optimization and most process data was collected by a Honeywell data acquisition
system. Originally. the project was not scoped to provide closed-loop control due to this
limitation. However, this capability was realized with the addition of an Allen-Bradley
PLC. The PLC was able to collect rernaining data that was not in the Honeywell system
such as excess oxygen, overfire air setpoints, etc. Optimized setpoints {rom the
NeuSIGHT system were sent to the existing boiler controls via this PLC. Nitrogen oxide
reductions of 15% were obtained with the system and an additional constraint on CO
emission below 5S0ppm was also met. Work is progressing to fit the NeuSIGHT system to
the other Parish units including a proposal to improve furnace cleanliness with soot

blower and water lance optimization [Radl].

In an optimization at Ontario Hydro's Lambton Generating Station [Henriksonl],
software optimization at units 3 and 4 are first discussed and then optimization at units |
and 2 are discussed in additional detail. The goal of optimization for all units was both a

reduction in nitrogen oxide and an improvement in heat rate.



Lambton units 3 and 4 are SIOMW tangentially fired SIOMW CE boilers with 48
burners. Each unit has 6 horizontal ball mills with two primary air fans, two forced draft
fans, two induced draft fans, and a precipitator. The distributed control system is a Bailey
INFI-90 with NeuSIGHT by Pegasus Technologies serving as the optimization system. A
total of 162 and 175 process variables are used as inputs to the NeuSIGHT model which
biases 26 and 38 outputs as controllables for units 3 and 4 respectively. The main
controllables for unit 3 are: 7 levels of auxiliary air dampers; excess oxygen; mill outlet
temperatures; mill feeder speeds: and primary air dampers for 6 mills. Since unit 4 is
fitted with low nitrogen oxide burners and separated overfire air ports (SOFA), the SOFA
dampers and burner tilts are also included as controllable parameters. Unit 3 has shown a
15% to 25% reduction in nitrogen oxide with a 0.5% improvement in heat rate. Since unit
4 was fitted with low nitrogen oxide burners and SOFA, the baseline nitrogen oxide level
was 60% of that for unit 3. Still, a 10% to 15% reduction in nitrogen oxide was

obtainable for unit 4 [Henriksonf}.

Given the success of Units 3 and 4 of the Lambton station, optimization of units |
and 2 were begun. During the optimization process of units 3 and 4, plant personnel
gained sufficient experience with the NeuSIGHT software to perform the optimization in
house. The first step was to upgrade the existing control systems of units 1 and 2 to the
Bailey INFI-90 similar to units 3 and 4. A more thorough optimization plan was to be
implemented for units | and 2 including advanced control schemes for various systems in

addition to the NeuSIGHT optimization. The control schemes were: [Henrikson]
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Pulverizer Optimization — This is both reactive and proactive to changing plant
conditions. Reactive optimization will allow the system to alter operating
parameters based on fuel changes. equipment wear and drifting sensor. The
proactive approach will incorporate a new technique called Visual Episoidal
Associative Memory (VEAM) along with typical pattern recognition and
clustering methods to monitor automatic settings in the software model to obtain
more knowledge from the model’s response to changing conditions. This would
allow real-time and on-line condition monitoring and prediction to provide cost
effective maintenance.

Sootblowing Optimization - Optimal cleaning of the boiler is required to maintain
efficiency and provide good control of steam and tube temperatures and exit gas
temperature. Proper use of soot blowers can prevent excessive tube wear and
reduce unplanned outages. Software optimization employs algorithms to detect
the buildup of soot on heat transter surfaces and to blow soot as needed while
avoiding excessive blowing of regions. Individual soot blowers can be actuated
for cleaning or utilized to reduce tube metal temperatures.

Advanced Calibration Monitoring — Like most modern distributed control
systems, the INFI-90 at Lambton has about 10,000 data points per unit. Of which,
60% are digitals, 10% are calculated or analog outputs, and 30% are analog inputs
from sensors. The 30% or 3000 analog inputs from sensors include thermocouples
and RTDs, oxygen. nitrogen oxide, pressures, flows. levels, etc which drift over
time and require recalibration or some other maintenance. Periodic maintenance

of these can be labor intensive and expensive. Advanced Calibration Monitoring



(ACM) is intended to monitor these sensors over time and detect when they
require maintenance by comparing their readings with other data values. Errors
that would be too small to detect by individual preliminary inspection are quickly
detected with a neural network model and flagged in an automated fashion for
easy maintenance. This can lower O&M costs by calibrating sensors only when
they need it while helping efficiency by controlling with accurate data. For
example, every +1F error in main steam temperature contributes a fuel cost
increase of $75,000 per year. This will also improve optimization performance by
ensuring that the data is of the best quality it can be.

Feed water Heater Level Optimization — Feed water heaters use extraction steam
to heat feed water, improving the unit’s thermal efficiency. Levels too high can
flood tubes, causing inetficiency, and levels too low can uncover the drain nozzle
and cause vibration and premature damage. The optimum level changes with load
and typical level controls are inadequate to maintain this level. As a result, heaters
can fail in as few as 7 years (when life expectancy should be greater than 20
years) and peak efficiency is not obtained. Optimization is to control the levels
with the distributed control system using a load-based setpoint derived from the
differential of the inlet and drain outlet temperatures. This is referred to as the
Drain Cooler Approach (DCA) and the level/DCA test is performed automatically
by a patented software system known as Mdc2000.

Turbine “Free Pressure™ Mode Control — “Free Pressure Mode™ is a term Bailey
uses to describe what has also been called Valve Point Control, Floating or

Sliding Pressure. Multiple Hybrid Variable Pressure, etc. The concept is that
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operating at valve point increases turbine efficiency and therefore the turbine
valves should be at valve point for a given load and throttle pressure allowed to
vary within determined limits. Valve point is defined with sequential turbine
valves as when the current valve is 100% open and the next valve is just about to
open. Typically this has been difficult to control and reduced the responsiveness
of the unit to load changes and, though reducing turbine wear, may increase boiler
wear. Free Pressure Mode solves these problems by allowing the valves to
participate in load changes and then return to valve point at stable load. The limits
on varying throttle pressure and this participation provide tuning to alleviate these

problems.

Results of these optimizations were not available at the time of this publication
but are expected to produce excellent emissions and heat rate reductions along with

valuable insight in unit operation [Henrikson].

Sample Cost Comparisons for Hardware vs. Software Nitrogen Oxide Reduction
Efforts

As a final justification of software optimization techniques versus hardware
techniques in power generating plants. the case of a nitrogen oxide reduction effort is
examined. The reduction of nitrogen oxide, various oxides of nitrogen, is a key pollution
parameter and greenhouse gas of current notoriety. There exist several technologies for
the reduction of nitrogen oxide emissions in coal-fired plants. Systems such as Selective

Catalytic and Non-Catalytic Reduction, or SCR and SNCR respectively, attempt to



chemically alter the post-combustion flue gas such that nitrogen oxide is reduced to
nitrogen and water. These systems have excellent nitrogen oxide reduction capabilities
but are very expensive to install and operate. Rotating over-fire air systems and low
nitrogen oxide burners attempt to improve the combustion process to reduce nitrogen
oxide formation and are almost as effective as SNCRs and SCRs. Rotating Overfire Air
systems have the highest costs but are relatively cheap to operate. Low nitrogen oxide
burners have both reduced installation and operating costs. Software optimization also
seeks to reduce the formation of nitrogen oxide but does so via dynamic tuning of the
combustion controls. Software optimization often has widely varying reductions
depending on the characteristics of the particular boiler and is usually the least effective
in quantity reduction. However, the greatly reduced costs of installation and operation are

proving to give software optimization the best cost-to-performance ratio in the industry.

A cost and benefit comparison of these systems is given in figures 2.2, 2.3, 2.4,
and 2.5. The first two figures compare installation and yearly operating costs for a typical
configuration. The third chart is a relative comparison of nitrogen oxide reduction by
solution. The fourth chart attempts to compare a cost / reduction benefit by taking
installation costs plus a 10year operating cost estimate divided by the expected nitrogen
oxide reduction. Therefore, lower numbers indicate a comparative quantity of nitrogen
oxide emissions was reduced for lower costs. Several factors should be considered with
these charts, as installation costs will vary depending on the plant configuration. The
effectiveness or appropriateness of certain solutions may also be dictated by plant

configuration. For example, SCRs / SNCRs / Rotating Overfire Air may not be



implementable if space does not permit. Rotating Overfire Air typically performs better
for wall-fired units versus tangentially fired units. The values for these figures come from
the analysis of a generating unit at the Duke Energy Gallagher Generating Station in New
Albany. Indiana. This is a coal-wall-fired 18 burner steam-generating boiler with a gross

generating capacity of approximately 150MW.
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Research in Hydro Power Generating Plants in Particular

Due to the low negative environmental impact and relatively free fuel in the form
of water flow available to hydro-generating units, hydropower remains one of the most
practical forms of green power production. Incremental increases in hydropower
production directly offset carbon dioxide, nitrogen oxides, and other emissions typical of
fossil-based generation in addition to the monetary returns of increased power

production.

There 1s some work on hydro research but because hydro-generating units are
already environmentally friendly, they do not always get the level of research and
optimization afforded to fossil fuel generating units. Several approaches have utilized a
combination of artificial neural networks and fuzzy logic either replacing or enhancing
legacy PID control. Zhang and Yuan [Zhang-1, 2006] achieve good performance by

replacing conventional control with a fuzzy neural network controller on a single unit.



They claim hydro-generating units are non-linear and high-order systems that cannot be
controlled optimally with classical control. They use a rule-based fuzzy neural network
for unit characterization and a fuzzy neural network controller for affecting control.
Djukanovic et al [Djukanovic, 1997] also utilize a neuro-fuzzy controller with self-
learning capabilities to handle hydro-generator transients. They use a back-propagation-
type gradient descent method, remporal back propagation, to propagate the error signal
through different time stages. Precup et al [Precup, 2005] developed a Takagi-Sugeno
based fuzzy controller dedicated to turbine speed control. They provide a thorough
mathematical analysis incorporating their controller in the PID algorithm. Zhang and
Zhang [Zhang-2, 2006] place an adaptive fuzzy controller between the existing PID
control and the turbine governor for static and dynamic improvements to the governing
system. Ramond et al [Ramond, 2001] examine direct adaptive predictive control and its
application to improve the performance of existing PID control for a hydro plant. While
these approaches have produced good results, the use of fuzzy control and predictive
models are not as modular and simple as a multiple software agent structure and do not

scale well when applying to multiple units and multiple plants [Huang, 2001].

Software agents are a new technology being explored in hydro generation. In
contrast to the neuro-fuzzy and other approaches above, Huang explores using an ant
colony system implemented by multiple software agents to determine optimal dispatching
of hydro-generating units, although this work groups multiple units at a single plant
together [Huang, 2001]. The author’s paper [Foreman, 2008], develops sofiware agents

that optimize individual hydro-generating units. These agents are rule-based based and



locally influence the turbine blade angle and wicket gate positions, also defined in [Paul,
1996]. controlled by the existing control system. These agents incorporate a rule-based
expert system and can autonomously negotiate with each other in order to achieve the
additional benefits of total plant optimization. This also enables the system to scale well
to other plants and provides a mechanism for outside business entities to influence the

control as well, thus achieving an enterprise-level solution.

A commercial application, WaterView®, is discussed by March and Wolff
[March, 2003] as applied to the Tennessee Valley Authority’s fleet of hydro plants. This
is described as an “optimization-based hydro performance indicator” and explores

individual unit optimization as well as coordination with the hydro fleet.

Research in Enterprise-level and Business Solutions

Recently, power-generating companies have strived to be more competitive and
as information technology continues to advance, enterprise-level solutions have grown in
demand. Kulhavy et al [Kulhavy, 2001] discusses three types of enterprise optimizing
technologies. The First is model predictive control (MPC), as discussed above. MPC
already has much history in industrial control systems so it is natural to research this
option. There are still limitations [Hugo, 2000] as MPC is best suited for local
optimizations and does not handle changing goals and multiple users well. The next
technology explored is data-centric forecasting and optimization, which is similar to data
mining as mentioned above. Since power generating plant data has high dimensionality

and multiple plants result in a large quantity of data, the data-centric approach focuses on



the asset that is most plentiful, being the process data. This approach has yielded several
interesting relations and with sufficient history, performs well in market forecasting. The
data-centric approach also scales and interfaces well with corporate databases that are a
more natural way for business entities to deal with information rather than scientific
process relations. However. this approach is passive and lacks intelligence and autonomy.
The final technology is based on software agents and this seems to dominate successful

research.

Software agents are well suited to control optimization and, as the name implies,
also provides an agency relationship between business entity users and the processes
being optimized. The Electric Power Research Institute (EPRI) has developed a tool,
SEPIA (Simulator for Electric Power Industry Agents), that simulates the integration of
the power generating process with corporate business entities [Wildberger, 1999].
Another survey paper [Amin, 2002] focuses specifically on agent-based systems and how
the evolution of such enterprise-level solutions is necessary in our global market for
competitiveness. SEPIA is also discussed in more detail in this paper as well as
application of agent technology in general. AspenTech is one company that has defined a
strategic model of applying such enterprise-level optimizations across diverse business
entities (operations, transmission, marketing, power trading, management, etc) and for
the multiple goals (emissions, efficiency, reliability, profit, etc) [Aspen, 2002]. Specific
applications include the JAVA-based MASPOWER [Vishwanathan, 2001], which is
designed to provide an infrastructure for a multi-agent system that elicits coordinated and

negotiated decisions from the decision makers of the enterprise. This system builds a
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negotiation framework for the power systems environment. Tolbert et al [Tolbert, 2001]
developed a scalable multi-agent system for real-time management of multiple generating
plants. This system attempts to manage power delivery from various generating assets for
maximum efficiency while incorporating the ability to stabilize the power delivery grid

during transient conditions for enhanced reliability in power delivery.

The architecture in this dissertation includes software device objects and software
agents as necessary for handling individual components of the power system. These
objects and agents are coordinated by an expert system that also provides influence with
the business enterprise. Therefore, the architecture builds on the above efforts to both
manage the finest details of individual components all the way up to the various business
entities in the enterprise-level solution. Details of how the enterprise-level solution is
handled in the architecture is discussed in Chapter I, section Business Entities and the

Enterprise-level Solution.

Research in Vehicular Systems for Power Management

Vehicular systems are small and mobile. They incorporate the power generation
and load components together in one power system. While there is an optimizing
element, the efforts in vehicular systems are typically referred to as power management,
since the multiple components of the power system are all available to be managed. The
optimization and management of vehicular power systems are becoming more important
and their application increasingly demanding and complex [Vahidi, 2007]. In automotive

systems, operating range. cost, and longevity are key factors needed to gain adoption as



viable consumer products. Minimization of fossil fuel use is also a defining reason for
such automotive systems and with the many vchicles in use today, even marginal
improvements produce large results. In spacecraft and other specialized systems, size,
mass, and available power have always been limiting factors that correlate directly with
cost and feasibility. Software management provides a theoretically zero footprint
technology that can aid in reducing the size and mass expenditures while improving the

availability of power.

Power systems management software began with the classical programming
approach whereby power system devices were inter-connected on a power bus and then
“managed” by simple logic, either enabling or disabling select devices. However, the
increasing demands and complexity of such power systems has quickly ruled out the
classical approach and an intelligent scheme has become necessary to realize true
management. Lin et al [Lin, 2003] explores a dynamic programming approach in the
application of a hybrid truck. The truck has two power sources for propulsion, a diesel
engine and an electric motor. The power management system uses the dynamic
programming approach to determine the power needs of the truck and how to split this

need between two sources.

In Vahidi et al [Vahidi, 2006], a centralized approach for model predictive control
is explored in a mild fuel cell hybrid vehicle that incorporates an ultra-capacitor
[ Schindall, 2007] for handling transients. The benefits of centralized control in general

are also summarized. In Vahidi and Greenwell [Vahidi, 2007], the alternative approach of
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decentralized model predictive control is explored for a similar vehicle. These papers
compare and contrast the benefits between the centralized and decentralized approaches.
Centralized approaches manage the whole power system as one entity, thus automatically
achieving a system-wide optimal solution. However, this approach is very, if not
prohibitively, complex and changes to any part of the power system require updating the
whole optimization [Vahidi, 2007]. The decentralized approach is simple, modular, and
transportable [Vahidi, 2007]. When coordinated, it can still provide solutions near the
centralized approach in performance [Camponogara, 2002]. In Vahidi et al [Vahidi,
2006], work is done to model power devices yet the coordination of these devices is
alluded to and left for a future paper. Also in Bauman and Kazerani [Bauman, 2007],
detailed mathematical models of power devices were explored from a hardware
comparison aspect. Their power management system was still of a centralized approach
but they demonstrated that device management is a key layer to power systems

management.

Software agents have also been used in vehicular power management. For
example, Luk and Rosario [Luk, 2005] explore a negotiation-based multiple agent system
for power management in electric vehicles. In this work, the agents act intelligently and
autonomously on behalf of the vehicle's various load devices to negotiate for power.
However, this work does not involve the power generating devices to realize a total
power management system. In Chapter Ill. developing a layered power management
system whereby software objects perform local management functions while a higher

layer performs intelligent coordination of these enhances this concept. The architecture



defined in this chapter achieves the modularity, simplicity, and portability characteristic
of decentralized approaches while obtaining the benefits of centralized approaches
through the use of a coordinating layer. The specific problem of suboptimal performance
resulting from a lack of a classical model or « priori knowledge [Schupback, 2003] is
addressed by having the proposed architecture handle both the current and next operating
states together. This is only possible with the coordinating layer since some other

centralized entity would be required to determine future operating states.

Figure 2.6 illustrates how the best characteristics are included in the architecture.
The architecture incorporates a rule-based expert system for the autonomous decision
process with a small neural network to get some pre-classification benefits from this
approach. These are then interfaced with a software device object or agent that achieves

the benefits of model predictive control at the lowest level.
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Autonomy, simplicity, portability. and scalability influence the definition of the
architecture so that the best of these can be formed into a solution without the penalties of

the worst of these. This is discussed in more detail in Chapter I11.
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CHAPTER I

ARCHITECTURE

The architecture defines a framework for realizing an intelligent power
management system in software. The architecture is designed to reside within the existing
control system of the process to provide a zero-footprint solution. The architecture has
the general structure of being modular software objects or agents, which are designed to
handle individual components and devices of the process while being coordinated with a
rule-based expert system to achieve a whole system optimization. The application of this
architecture is for power systems management and includes the goals of: reducing power
consumption; increasing power generation: increasing pcwer storage efficiency; and
reducing environmental impacts. The user interacts with the architecture similar to a
model-view-controller approach. Depending on the user type, ¢.g. manager, engineer, or
an intelligent software application, different user interfaces are utilized. These interfaces
may include a custom database, SCADA type (Supervisory Control And Data
Acquisition), or may be transparent, i.e. the user may interact directly with the whole
system while the architecture autonomously handles management and optimization
functions, e.g. automotive applications. The use of SCADA and similar interfaces also

affords the ability to implement security into the architecture. Although security is not the



focus of this dissertation, there is some discussion towards the end of this chapter in the

section Business Entities and the Enterprise-level layer.

Evolution of the Architecture

Power management and optimization have been an integral part of power systems
and the processes supported by these for some time. Starting in the 1990’s, computers
became powerful enough to start performing rcal-time management and optimization
functions. In the beginning. this was limited to simple data collection and reporting and in
some cases, the results of these reports would be sent back to the process control system
to take some action based on the output. However, this has now evolved into intelligent
approaches utilizing more advanced tools such as pattern classification, data mining, and
sophisticated software structures. While the benefits of these advancements are obvious,
as discussed in Chapter II, the varying approaches have complicated the process of
building new implementations. In many cases, the architecture is redefined each time.
This dissertation seeks to define a scalable and portable architecture that can be utilized
across varying system devices, processes, and missions. This will minimize duplication in
the design process and simplify implementation allowing a quick and standardized

solution to be obtained.

In the power generation industry. there is much demand for management and
optimization of power. In addition to the obvious benefit of increased power production,
there are significant gains to be obtained in optimizing the process to reduce emissions

and improve reliability of power delivery. There are environmental factors, especially
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when dealing with fossil-fuel combustion processes. which are of increasing importance.
There have been attempts to standardize approaches for achieving these goals, such as
EPRI [Stallings-1, 1998] [Stallings-2, 1998]. but such approaches are both difficult (o
implement and very specific in application and therefore not portable or adaptable.
Beyond these considerations., effective power management is beginning to mature and
there is a desire for an enterprise-level solution to management. Such a solution allows
other entities in the business enterprise to become an intimate part of the power
generation process so that the whole company can make better strategic decisions.
Therefore, scalability is becoming a key feature so the application can grow with the
business” needs. Details on how differing business entities utilize the architecture are
discussed further in the section. Business Entities and the Enterprise-level Solution, later

in this chapter.

In other areas., power management and optimization have become key
components of vehicular systems in recent years. Vehicular systems include hybrid
automobiles but also more exotic applications such as spacecraft and remotely operated
vehicles or ROVers. The mobility of these vehicles requires them to carry their power
systems with them and occasionally be without any power generating resources. Size and
cost become factors in consumer vehicles and environmental benefits can be achieved
where power management reduces consumption of fossil fuels. This often results in
power management and optimization becoming a mission-enabling technology for such

vehicles.



Detailed considerations of these application areas are given at the beginning of
Chapter IV where the implementation is discussed. The architecture is developed here, in

Chapter 111, independent of implementation environment.

Quantifying the Criteria of the Architecture

In order to effectively compare different approaches and determine the benefits of
this architecture, quantitative metrics need to be derived for our criteria of portability,
scalability, simplicity, and autonomy. In this section, methods for quantifying these

criteria are defined. These are quantified in the implementation cases of Chapter IV.

When computing metrics, the power management software is broken down into
its fundamental modules. A fundamental module is the smallest component of the
application that can be considered independently of the other modules, i.e. it contains its
dependencies. at least with respect to quantifying the metrics. For example, an artificial
neural network cannot be further divided without destroying its functionality due to the
interdependency of the neurons and thus becomes one module. Sequential logic can be
divided into functional groups, such as battery control, solar cell control, etc. These
groups would be code modules that pertain to a common controllable parameter. A rule-
based expert system can be subdivided into interdependent rule sets based on their inputs

and outputs. Below, a sample set of rules is segregated into fundamental modules.

Rule 1: I? f£(a,b,c) THEN g(x) ; independent rule

Rule 2: I7 f(x, TEEN gly) ; depends on output of rule 1
Rule 3: I7 f{a) THEN g(z} ; indeprendent of rule
Therefore. ..

Module 1:
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Rule 1
Rule 2
Module 2:

Rule 3

This modular break down results in a more granular metric calculation.

Quantifving Portability

Portability is defined in this dissertation to provide a measurement of the
development effort required for a given architecture to move from one application to
another in order to compare architecture. This is a measure of how easily the architecture
can be moved horizontally. i.e. moving the application from one power system to another
power system but with similar functional scope. This is in contrast to scalability
(discussed later), which seeks to give a measurement of the development effort required
to add new scope and functionality to an existing application. Functional scope in this
case would refer to the intended goals. or responsibility, of the power management
system, which would not change in a portable, horizontal case. This is normalized onto a
scale of 0% to 100%. A portability metric of 80% would imply that 20% of the effort to
initially build the application would have to be duplicated when porting to the new

application, i.e. 80% of the application is portable.

Once the application is broken down into its fundamental modules, the modules
that can be ported to the new application without modification contribute towards the
portability metric. The portability of individual medules would be either 1 if portable or O
if not portable without modification, or a fraction thereof. Since these modules should be

divided into as small a functional unit as practical, i.e. fundamental modules, any
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modification will involve reviewing the whole module and thus the choice of 0 as the

metric in this case. Equation 3.1 quantifies this metric.

P=—— (3.1)

Where P is the portability metric, N is the number of fundamental modules, w is a
weighting factor representing the effort for the specific module (since modules may have
unequal different development efforts), and p is the portability (0...1) of the specific
module i. The rule sets below illustrate this along with figure 3.1 for a sample application

composed of 10 rules.

Module 1i: portable p=1
IF f(a) THEN g(x) ; £ and g do not change when porting
; one rule or 10% of application
Module 2: not portable without modification p=0
IF f(b) THEN g(y)
IF h(b) THEN i(z)}

two rules or 20% of application

’

Module 2’ :
IF £’ (b) THEN gly) ; needed to change conditional
IF h(b) THEN i’ (z) ; needed to change action

And so on...
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Existing New Development

Application Application Effort (w)
" T p=1 [
Ports without modification Module 1 - - Module 1 10%
i - I - -
| poopPs0
Ports with modification | Module 2 - ﬂ Module 2' 20%
. . . p=0 ; |
Ports with modification i Module 3 »  Modute 3" | 30%
_ D=0 I
Ports with modification Module 4 - A Module 4' J 20%
, o e p=1 |
Ports without modification = Module N | »  Mocule N 10%

Figure 3.1. The portability metric.

In figure 3.1, the portability metric of the five modules is 1*10% + 0%20% + 0*30% +
0%20% + 1¥10%. or 20%. Therefore, 20% of the initial effort would be retainable and

80% would require modification or rework.

Quantifving Scalability

Scalability is defined in this dissertation to afford comparison between
architectural approaches to power management systems when enhancing the scope of the
application. Scalability has some similarity with portability in that it also quantifies the
architecture’s ability to handle changes in the application. In contrast to portability,
however, scalability predicts the effort required for the architecture to enhance the scope
of the application. This enhanced scope would represent additional goals, mission
environments, interaction with new users, or higher level coordination with other
systems. This is normalized onto a scale of 0% 1o 100%. A scalability metric of 80%
would imply that 20% of initial application would have to be modified to scale to the new

scope requirement, i.e. 80% of the architecture is scalable. When evaluating the



scalability of the architecture, it is broken down into its fundamental modules. Equation

(3.2) quantifies the computation of the scalability metric and figure 3.2 demonstrates this.

N

E:H”&
i
§= N
32 W,
i

(3.2)

Where § is the scalability metric, N is the number of fundamental modules, w is a
weighting factor representing the effort for the specific module (since modules may have
unequal different development efforts), and s is the scalability factor of the specific
module 1. Table 3.1 determines this scalability factor and an example of scaling rules is

presented following the table.

Scalability factor s; Degree of change
3 No change
2 Parameter-level changes
| Code-level changes
0 Not scalable

Table 3.1. Scalability factors.

For example, a rule that performs some action based on the current number of users

might look like this.

b = 3 ; number of users
IF b = 1 or b = 2 THEN ; take action based on number of users
g(x)

ELSE IF b = 3 THEN

gly)

ENDIF
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If a new user is integrated into the application, b can be simply changed from 3 to 4 and
thus this is a parameter-level change. If the new user is of a different type then a new

coordinating rule is required to handle this type, which becomes a code-level change.

3 ; number of users

IF b = 1 or b = 2 THEN ; take action based on number of users

gly)

ENDIF

IF b = 4 THEN ; do special case to handle this new user
h(x)

ENDIF

When the module cannot handle a new user without a complete redesign, this becomes a

non-scalable module.

Existing New
Application Appl.cation
I s=3 )
Scales without modification ~ Module 1 -—— - J Mcdute 1
— ,77777 8:2 ——
Scales with parameter change ! Module 2 - 4 Module 2 ‘
: ey s=1 e
Scales with code change l Module 3 ‘L e >1 Moduie 3' J
Cannot be ported Module 4 J,,,,,,x §=0
- s=3 '
Scales without modification Module N r———- - Module N

| i

Figure 3.2. The scalability metric.

In figure 3.2, the scalability factor would be 3 +2 + 1 + 0+ 3)/ 15 * 100%, or 60%.
Therefore, 60% of the initial development effort would be retainable and 40%
modification would be required to incorporate the new scope. In this example, all the

development effort weights were considered equal.

47



When the comparison of scalability needs to include multiple enhancements that
are different in type, e.g. handling a new user and handling a new goal, it may be
beneficial to compute the scalability of each enhancement separately and then average the
individual scalability metrics to achieve a scalability metric for the total application
enhancement. This is the case for the coal-fired boiler implementation in Chapter IV.

Additional applications of this metric are also in Chapter IV.

Quantifyving Simiplicity

In this dissertation. simplicity implies the characteristics of being easily
understood and maintainable from a maintainer’s perspective while also being of minimal
structural complexity from a software design perspective. Simplicity is difficult to
measure directly so it is inferred by minimizing difficulty within the architecture. This is
accomplished with a unit-less measure for relative comparisons among applications. We
determine the difficulty by defining a metric that quantifies the characteristics above.
Being easily understood and maintainable is synonymous with having easily readable and
interpretable code. Structural complexity is well defined in software science. The
difficulty metric is defined in the following equations for a fundamental module. The

difficulty for a whole application would be the sum of the module complexities.
D, =C,C, (3.3)

Where Dy, is the difficulty of a fundamental module and Cy is the readability complexity
defined in table 3.2 that quantifies difficulty in interpretation. Cy is the structure
complexity defined by (3.4) from Henry and Selig's work [Henry, 1990] based on the

information-flow metric of Henry and Katura’s work [Henry, 1981].
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Readability Cg Difficulty

I Natural language (simplest, straightforward reading of
meaning)
2 Computable equation (requires computing equations

to determine meaning)

|98

Procedural computation (requires following a difficult
procedure to determine meaning)

Table 3.2. Readability complexity.

C, = C( faninx fanour)’ (3.4)

Where C¢ is McCabe's cyclomatic complexity defined by the number of decision points
plus one, fanin is the number of inputs to the module and fanout is the number of outputs
from the module. The power of two used in this weighting is the same as Brooks’ law of
programmer interaction [Brooks. 1975] and Belady's formula for system partitioning
[Belady, 1979]. Thus, an established method of measuring complexity is modified to
include human readability as a characteristic. This is demonstrated in the pseudo code
here and in the implementations of Chapter 1V.

Module 1:
IF a = TRUE THEN x = TRUE
; readability C =1
; C. = 1 conditional + 1 = 2
; fanin = 1, fanout =1
;D=1 %2 (1*1) =2
Module 2:
IF (b2 + 2b - 2gin{c) > 0) THEN y = TRUE
readability C = 2
; C. = 1 conditional + 1 = 2

; fanin = 2, fanout =1
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;D=2 %2 % (2% 1) = 16
Module 3:
NeuralNetwork (input=(a,b,c,d), output=(w,z) |
Foreach layer |
Foreach neuron {

Foreach input { f{(input) }

}
}
}
; readability C = 3
; C = 3 conditional + 1 = 4
; fanin = 4, fanout = 2
;D =3 % 4 % (4 * 2) = 768

The sum of D;, D:, and D; is 786 in the above example and this becomes the difficulty

metric for the application.

Once difficulty is calculated, the comparative simplicity can be inferred from a
lower ratio of the difficulty metrics between compared applications. If application A has
a difficulty metric of 2000 and application B has a difficulty metric of 3000, then the
ratio A:B, or 2000/3000, indicates that application A is 67% of the difficulty of
application B. A difficulty of 1, this would imply readability of 1, no conditional

statements, and a fanin and fanout of 1; for example the statement a = 4.

Quantifving Autonomy

Autonomy is a measure of the architecture’s ability to make decisions and
perform the mission at hand with minimal human intervention. Achieving autonomy frees
the operator from control tasks, handles trouble conditions automatically, allows strategic

decisions to be automated, and finally enables cooperation with peer systems within the

50



environment for a coordinated solution. Unlike the previous metrics, autonomy is

measured on the whole application as opposed to fundamental modules.

There has been some work on quantifying autonomy [Clough, 2002], and
meaningful application of this metric depends largely on the mission being evaluated. In
power management systems, the key parameters chosen in this dissertation are:
® Operator independence — requiring minimal user interaction, having automation.

e Self-preservation — the ability to handle trouble conditions (alarms) automatically,
recover and continue the mission, and fail in a safe manner.

e Strategy — the ability to enhance the control of the power system and thus add to its
capabilities.

e Coordination — the ability to cooperate with other users and power management
systems.

These parameters are quantified in the tables below, with examples following, to form the

autonomy metric, A, in (3.5).

Independence A; Level
3 >90% of previously manual tasks automated
2 67% of previously manual tasks automated
1 33% of previously manual tasks automated
0 <5% of previously manual tasks automated

Table 3.3. Operator independence.



For example, a power process that requires the regular entry of 10 operator-entered
parameters could have 9 of these parameters automated by the application, thus saving

the operator from 70% of his normal workload resulting in A, = 3.

Preservation A p Level
3 >90% trouble conditions handled
2 67% trouble conditions handled
I 33% trouble conditions handled
0 <5% trouble conditions handled

Table 3.4. Self-preservation.

For example, a power process that has 10 pre-defined alarm conditions could have 7 of
alarm conditions handled by the application, thus saving the operator 70% of his alarm-

handling workload resulting in Ap = 2.

Strategy Ay Level

3 Many new goals. or strategies, applied to enhance the
system capabilities

2 Some new goals, or strategies, applied to enhance the
system capabilities, multi-goal optimization

1 One new goal, or strategy, applied to enhance the
system capabilities, single-goal optimization

0 No enhancement

Table 3.5. Strategy.



For example, a power process that currently depends on the operator to make all its
strategic decisions is enhanced with the application autonomously seeking solutions for a
few goals, e.g. reducing a particular pollutant from power production, minimizing
equipment wear on a certain actuator, etc. These few goals enhance the power

management solution and result in Ag = 2.

When assessing coordination, the architecture is evaluated by the ability of the
application to coordinate its actions with other power management systems and software
applications, and other users. At level O, the application behaves as a typical piece of
control logic. At level 1, information of other systems can be input to perform fixed
calculations only. More than one user may direct control parameters. At level 2, the
application begins to balance the control influence of multiple users and perform limited
bidirectional communications with other applications. At level 3, full cooperation with all
other entities (human and application) is achieved with at least some intuition. Table 3.6

quantifies this metric.

Coordination A Level

3 Full cooperation with all entities, intuitive.

2 Limited coordination with other applications and
coordination of the influence of multiple users.

1 Aware of other applications but little or no
coordination. Ability to handle multiple user types.

0 Unaware of other applications. Only operator-level
control by users.

Table 3.6. Coordination.



For example, a power process is currently operated as a standalone application, e.g. a
single generating unit in a multi-unit power plant. When the power management
application is applied to each of these units, they can be linked together to share some
information about each other to influence their control. This simple awareness results in

A¢ = 1. Higher levels of coordination would achieve a higher Ac.

The autonomy metric, as defined, becomes a four-dimensional quantity. When
comparing simple magnitudes between applications, a vector distance measure provides
the best measurement. This is the distance from the origin in four dimensions where the

origin represents no autonomy, i.e. all autonomy metrics equal zero.

A=A+ A+ A + A (3.5)

Often, a more granular measure of the autonomy metric is required to qualitatively assess
the differences between applications. In this case, it may be preferable to view the

autonomy metric on a four-dimensional radar graph as in figure 3.3.

A =3 A A, A=2
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i ] H L
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Figure 3.3. The autonomy metric.



In figure 3.3, the left-hand graph illustrates the above examples following the tables with
a total autonomy metric of V18. The right-hand graph illustrates another application with
a total autonomy metric of V16. Using the four-dimensional radar graph, however, allows
us to see how the applications differ in cach metric as a simple rectangle for a more
qualitative analysis. Since total rectangular height is the sum of operator independence
and self-preservation, this can represent a measure of simple automation, i.e. taller =
more automated. Since total rectangular width is the sum of strategy and coordination,

this can represent a measure of capability enhancement, i.e. wider = more capability.

These metrics are applied in the implementation cases in Chapter IV. The first
implementation case will evaluate an existing approach of an artificial neural network
optimization of a coal-fired power plant. The second case begins preliminary
development of the architecture with the application of software agents to a hydro-
generating plant. The third implementation case is a power management system for the
hydro-generating plant coupled to a personal hybrid vehicle, both utilizing the
architecture presented in this chapter. In Chapter V. these metrics are discussed with

relation to the architecture.

A Layered Approach
The architecture is designed as a layered approach, illustrated in figure 3.4.
Individual devices in the power system are associated with software device objects and

this constitutes the device layer. In this layer, the software device objects individually



optimize the operation of the devices. In some cases, these objects may be able to act on
their own or autonomously negotiate with other software device objects. In these cases,
the software device objects act as agents [Foreman, 2008]. In other cases, these software
device objects may only perform a few simple functions or even be limited to providing

an interface to the next layer, which is the system layer.

In the system layer, the software device objects are coordinated to achieve a
whole power system management scheme. This system layer incorporates an expert
system to determine a management strategy based on the goals of the power management
system and the statuses of the devices being managed. The use of an expert system allows
an intelligent strategy to be produced based on deductive reasoning. The expert system is
typically implemented with a set of rules that most closely resembles the way human
experts understand the process, thus resulting in a more direct method of programming.
In many cases, a classifier such as an artificial neural network can be used to reduce the
number of inputs to the expert system and/or perform online feature extraction of the

input data.

The layered approach is illustrated below in figure 3.4. This shows how the
architecture is built from individual components up to a coordinated and intelligent power
management solution. On the bottom are the devices to be managed. The next two layers
are typically an existing part of the device provided by the device vendor. They provide
an interface to the device from which the software device object layer can be constructed.

Simple devices may not even have these layers. A smart battery, for example, may
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simply have methods for measuring the cell voltages and current draw and that is all. A
solar cell may not have anything. A combustion engine may have the whole engine
control system implemented here. In this case, the proposed power management system
would sit on top of the existing control system. The final two layers are those explicitly

defined by the architecture and are discussed next.

User interaction is with the system layer.

/ Intelligent Coordinating \\ This is the expert system that coordinates the software

/ System Layer device objects.

A

/ Software Device Object Layer \ These are the software device objects that interface the

devices with the system laver.

/ Device control layer \\\ If applicable, this is the firmware of the device that the
/ firmware \\ software device objects can access for information.
/ Device m}c/egace layer “\‘ This is the hardware interface to the device.
\ . ‘ These are the devices being managed such as:
I i |— § batteries; ultracapacitors; processors; motors; and other
‘ loads.

Devices

Figure 3.4. Lavered approach.

The Device Layer

Power systems consist of various hardware devices of three types. The first type is
a storage device, such as batteries and ultra-capacitors, which collect power through
charging for later use. The second type is a source device, such as fuel cells, solar
photovoltaic cells, and combustion engines. which generate power for both charging and
operation. The third type is an electrical load device, such as motors, processors, and

lighting, which consume the power to perform their mission. These basic types span



missions that range from picosatellites to power generating stations. In picosatellites, for
example, batteries and solar photovoltaic cells are relatively simple by design and
therefore may have simple software device object definitions. In contrast, for power
generating stations it may be more efficient to have a device definition that is a group of
smaller components. For example, the whole turbine generator of a hydro-generating
station may be more appropriately described as a single power source device, even
though it consists of many components. The device definitions in this case may even
include the classical control system software as one of its parts, similar to the firmware
layer in figure 3.4. In this architecture, the software device objects represent the smallest
component in which the power management system should be subdivided. The
granularity of this breakdown would normally not go below the basic three device types

of storage, source, or load as described above.

A loosely coupled architecture for the software device object is defined to
characterize these devices so that the system layer can coordinate them as peers. While
the internal methods vary according to the respective device being characterized, the
same inputs and outputs for the software object are defined to achieve encapsulation.
Figure 3.5 illustrates the basic architecture and the inputs and outputs of the software

device object.
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Figure 3.5. Software device object architecture.

The device object contains parameters that characterize the device, for example:
dis/charging rates: operating limits: specifications; etc. The device object also contains
methods that define how to calculate the outputs and utilize the command input for
coordination with the system layer. The outputs of demand and reserve are normalized on

a 0-100% scale and can be determined by the below pseudo code.

Params = { list } ; parameters that specify device characteristics
Device.Type = istorageDevice, sourceDevice, or loadDevice) ; choose type
IF Device.Type = storageDevice THEN
Device.Demand = f {Params) ; calc power demand from device
Device .Reserve = g(Params) ; calc reserve capacity of device
IF Device.Reserve < Params.BatteryLow THEN
Device.Status = { currentStatus, BatteryLow }
ENDIF ; add the BatteryLow status to the device status list
IF Device.Command = chargeBattery THEN
setMode (chargeBattery) ; allow kattery to charge
ENDIF
ELSE IF Device.Type = sourceDevice THEN
Device.Demand = f(Params: ; calc power demand from device
Device.Reserve = g(Params) ; calc power available from device
ELSE IF Device.Type = loadDevice THEN
Device.Demand = f(Params! ; calc power utilized by device

Device.Reserve = g(Params) ; calc power reqguested by device
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for next mode of operation
Device.Status = { currentStatus, ChanceMode to nextMode }
IF Device.Command = permitModeChange THEN
setMode (nextMode) ; put the device into the next mode
ENDIF

ENDIF

The status output provides the ability to report errors, trouble condition, or other
general status messages, e.g. the status BattervLow in the above pseudo code, to the
system layer in order to assist the decision-making process of the expert system. The
command input is the management response from the system layer that controls the
device’s power strategy to achieve coordination among all the devices, such as in the

above pseudo code for chargeBattery or permitModeChange as a load device permissive.

The software device object utilizes methods and user-defined parameters to
calculate the outputs and handle the command input. The method can be a simple
equation, such as in (3.6) the demand for a battery. or a lookup table cross-referencing a

set of operating modes versus power consumption for a complex load device.

D

hatrery

=kVI where & is a constant, V' is voltage, and / is current (3.6)

More advanced methods are used to generate status messages based on device
error or alarm conditions, or to handle the command input and change the operating mode
of the device. Better methods enhance the information sent to the system layer and
therefore improve the capability of the power management system. For example, a solar

photovoltaic cell method may simply report the power generation available as a function
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of incident light, or it may report this value and additionally send a status message that

more power generation is available if the cell’s orientation towards the sun is changed.

Methods can also be used for local device power optimization for an enhanced
power management solution. This is particularly applicable for complex devices such as
loads that can manage their own power usage but still need to be coordinated with the
system layer to achieve power management for the whole power system. For example, a
communications system may employ a sleep mode or a burst transmission mode to
achieve local power optimization, and the software device object will enhance this by

interfacing with the system layer so that cooperation among other devices is achieved.

The software device objects are typically resident in the same computer-
processing level as the system layer, although smart devices with their own firmware
environment may implement their software device objects at their local device level.

Figure 3.6 illustrates an expanded software device object highlighting this.
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Figure 3.6. Software device object architecture expanded with optimization.

In figure 3.6. the software device object is expanded to include optimization for a
more complex device object. The interface sub-layer provides the same input and outputs
that are utilized by the system layer for coordination as discussed for figure 3.5. The
optimization sub-layer, however, acts between the interface sub-layer and the device so
that more advanced methods can be included in the software device architecture. The
optimization has its own parameters that define the boundaries of the optimization and its
own methods that implement the optimization. These methods are designed to handle
devices with multiple power modes or where the same device operation could be
obtained in multiple ways, thus requiring an optimization method to determine the
approach of minimum cost with respect to the optimization parameters. The device and

whole power system benefits from this software device object enhancement.



In power generating stations for example, the software device objects may be
sophisticated enough to be classified as software agents. Software agents are software
objects that function as autonomous entities, which act with an agency-type relationship
for users or other software objects. That is. software agents can automatically make
decisions and take actions on behalf of users or other software objects to achieve the
goals of the power management system. Because the devices being managed (typically
power source devices) are combinations of many subsystems and have an existing control
system for their general operation, the system layer relies on the device layer to negotiate
with the device’s existing control system. This is illustrated in figure 3.7 as another

expansion of the software device architecture in figure 3.5.
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Figure 3.7. Software device object as a software agent.

In figure 3.7, the software device object is implemented as a software device
agent for a power-generating unit. The interface sub-layer again provides the same input
and outputs that are utilized by the system layer for coordination. The generating unit has
its own existing control system for general operation incorporating PID control,
sequential logic control, and a device I/O interface. These elements of the generating
unit’s control system are discussed further in Chapter IV. The distinction for a software
device agent, however, is that an agent sub-layer exists between the interface sub-layer
and the generating unit's control system and acts with an agency relationship on behalf of

these autonomously. Therefore, the agent sub-layer gathers status information from the
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generating unit’s control system based on what the software device agent thinks is
necessary to provide the output information to the system layer. Furthermore, the agent
sub-layer performs command negotiation taking the command input from the system

layer and merging this into the generating unit’s existing control scheme.

Details of the implementation of software device objects and agents, including
example case studies. are discussed in Chapter IV. Use cases of the architecture are

presented in a following section of this chapter.

The System Layer

The system layer coordinates the software device objects, and subsequently the
power system devices, to achieve an intelligent power management system. The system
layer utilizes outputs of the software device objects and coordinates them by sending a
command input back to them. All communication in the architecture is in a star network
configuration whereby each software device object communicates individually with the
system layer. Thus, all software device objects or agents both with and without internal
optimization appear the same to the system layer. The core component of the system
layer is a rule-based expert system. An expert system allows an intelligent solution to be
deduced logically. Employing a rule-based approach simplifies coding in that rules are a
natural way for human experts to think about processes. Rules are modular, so they can
be added and removed easily. Rules are also a white-box approach so that their probable

actions can be determined by observation of the rule syntax.



In the device layer section, software device objects were defined with the outputs
of demand, reserve, and status. Utilizing the demand and status outputs enables the
system layer to determine the current operating state of each device. By utilizing the
reserve output, the system layer can also determine the next operating state of each
device since this variable includes reserve capacities for power storage and power source
devices, as well as the reserve power requested by load devices for their next operating
state. Therefore, the operating state sent to the system layer includes both existing and
tuture information, providing a faster than real-time classification. This helps address the
limitations of optimizations that do not know the process a priori and therefore result in

suboptimal results [Schupback. 2003].
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Figure 3.8. Svstem laver coordinating multiple software device objects.

In figure 3.8, each software device object sends its outputs to the expert system.
This results in a set of variables or a vector denoted by I, device states, that are inputs to
the expert system. These variables are used in building the rules, which then assemble the
device command as an output tfrom the expert system. The device command, C, is
defined so that when input to the software device objects, the desired action is taken by
the software device object. The device command may be a single command sent to a
single software device object or multiple commands sent to multiple software device
objects. Details of how the device commands are formed and addressed are discussed in

Chapter IV. A user interface is also shown as the interaction point for the user utilizing



the power management system. Use cases of the architecture are discussed in the so-

named following section in this chapter.

With a large number of power system devices, widely varying device types, or
complex rule sets, it may be desirable to have some classification performed on the
devices states, I, prior to processing with the expert system. This simplifies applications
when there are a large number of operating states by reducing dimensionality and/or
when preprocessing for data feature extraction is beneficial for rule definition. In these
cases, artificial neural networks can be included to perform this classification for the
expert system. Since neural networks accept analog data and provide analog output, they
result in fuzzy classification and do well interpolating over the operating state space. The
enhancement of the system layer by a neural network classifier is illustrated in figure 3.9.
This enhancement becomes the typical architecture for implementation as all but the

simplest of power systems benefit {from this additional functionality.
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The neural network classifier is added inline between the software device objects’
device state vector, I, and the expert system. The output of the neural network is a
classified state vector, O. that is a superset of the current and next power system
operating states. This vector, O, becomes the new input to the expert system and provides

the variable set that is utilized by the rule set to form the device commands vector, C. The
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The neural network is characterized by weight matrix, W, of dimension m x n
determined by n, the dimension of the device state vector, I, and m, the arbitrary
dimension of the classified state vector. O, that is the result of the neuron activation
function, N. The neural network may be implemented in multiple layers by a nested
application of (3.7) although two layers are typical. The neural network can be
developed, or trained, offline and before deployment so that once in place, the power
management system needs to perform only the function in (3.7), thus minimizing the

processing footprint.

Also included in the classified state vector, O, would be any data feature
extraction with respect to the device operating states. For example, a quantized measure
of the power system’s stability might be too difficult to code directly, but a neural
network can learn to recognize this quantity from the device state vector, I, similar to
pattern recognition. Details on neural network classification and rule development are

discussed later in this chapter.

Integrating the Device and System Layers Together

The device layer and system layer together form the power management system,
which manages the power system. This power management system provides for
individual management and optimization capabilities through the custom methods in the
software device objects. The power management system also integrates the power

devices through their software device objects to achieve coordination of the whole power
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system. This addresses the respective limitations of the de/centralized designs while still

providing the benefits of such designs [Vahidi, 2007].

The pseudo-format of variables used for data communication between the device
and system layers 1S proposed as the following, where n is the number of software device
objects:
¢ Inputs and outputs for software device objects (SDO):

ocommand = <device.id, device.commandcode>
o status = <device.id, status.statuscode>
o {demands, reserves} = analog value of 0..1, (0-100%)
e Input and output for neural network classifier (NNC):
olnput vector, I =[[  SDOI.{demand, reserve, status}
SDO2.{demand, reserve, status}
SDOn.{demand, reserve, status} 1]
o Classified vector, O = [[ class characteristicl
class characteristic2
class characteristicnn = ]
e Input and output for rule-based expert system (RBES):
o Classified vector, O as above for NNC
o Command vector, C = [[ SDO1.command
SDO2.command

SDO#n.command 11
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For the software device objects, the device.id, device.commandcode, and
status.statuscode are user defined for the implementation. Demand and reserve values are
normalized on a 0-100% scale of capability as previously defined. The neural network
classifier takes a vector of all software device object outputs as its input, I, and supplies
the classification as, 0. Class characteristics are determined by training the neural
network to recognize patterns in I and would include user-defined feature extraction such
as: measure of transient demand; measure of steady-state demand; measure of power
storage; health of power generation; urgency of next requested state; and any additional
characterizing quantities. The rule-based expert system then takes O and uses the rule set
to deduce the command vector, C. which is a vector of all the commands to be sent to the
software device objects on the current calculation cycle. Further details such as those of
the neural network classification characteristics or of calculation cycle timing are left in

Chapter 1V as they are application specific.

The software implementing these layers can reside on a single or multiple
processor system and is typically coded in an embedded, object-oriented environment
designed for real-time process control. Communications would utilize the existing
network and device I/O infrastructures that are typically a part of such control systems. In
Chapter IV, it is described how the architecture is coded in various control schemes from
micro-controllers to plant-scale distributed control systems (DCS). Such systems include
special data structures commonly referred to as process points, data points, tags, etc, that
natively utilize the communications infrastructure of their control system to enable real-

time control.
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Use Cases of the Architecture

In most applications, the power system is a critical yet secondary sub-system. In
other words, while the power management system is necessary for completing the
mission, the user uses the whole machine to affect completion of the mission and
typically relies on the power management system to autonomously work in the
background. For those cases when a user needs to interact with the power management

system, the following use case in figure 3.10 demonstrates how this user can utilize the

architecture.
System Layer User Interface
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Figure 3.10. Use case for human users of the architecture,

In figure 3.10, two user types are presented. The wuser will monitor the power
management system and enter commands to guide the power management system’s

optimization of the power system. In the case where the software device objects were
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replaced with software agents, as in figure 3.7, the user would interact further through
these commands to influence operation of the individual devices when desired. The
programmer may also monitor the power management system but would additionally
make modifications when necessary to handle changes in the power management

system’s mission objectives.

In figure 3.11, the use case of the power system devices utilizing the architecture

1s presented to further illustrate how these devices interact with the architecture.
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Figure 3.11. Use case for power devices of the architecture.
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In figure 3.11, the devices, depicted as users, interact with the architecture,
specifically with the software device objects in the device layer, in two generic paths
regardless of device type. First, the devices supply their statuses to the software device
objects through the ger status method via the status path. Second, the devices receive
control inputs from the software device objects through the ser mode method via the
command path. Some software device objects may include a local optimization method,
for example maximum power point tracking (MPPT) for solar cells, to provide additional
optimization of the devices, although interaction with the device is still along the control
path. Lastly, the software device objects implement the previously discussed svstem laver
methods for interaction with the system layer, although the devices do not typically use

these methods directly.

Also in figure 3.11, the devices have included components illustrating how they
would provide the statuses and utilize the commands received from the software device
objects. Internal sensors, such as for voltage and current, measure and provide these
quantities to the software device objects. A bus switch may be available that connects the
devices to the power bus. This can provide either a dis/connect functionality or perform
voltage matching via DC-to-DC converters. More complex devices have firmware that
can provide a library of methods that a software device object can utilize. Other devices
may have special functionality such as a motor drive for motors that software device
objects can query for status and tune for performance. Further details are application

specific and are given in Chapter IV.
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Additional Layers of Enhancement

In the preceding sections, the architecture has been developed for power
management and optimization systems residing within the existing control system and in
direct application with the process at its fundamental level, i.e. control of the process
through direct influence of the physical devices in contact with the process. This
represents the core application of the architecture. In larger implementations, additional
layers may be necessary as an expansion of the core application to build a complete
power systems solution. Two expansions that are investigated here are a data-mining
laver and an enterprise-level laver. An expanded version of figure 3.4 is given as figure

3.13 illustrating these additional layers after their discussion.

Data Mining Laver

The layered approach of the architecture data-mining layer is expanded to include
the data-mining layer, which resides alongside the device layer and system layers. This
layer performs two functions that may be essential for some applications. The first
function of this layer is to collect and store data of the process. This data contains
periodic real-time data from the power system and the overall process and itself. Since
the data is real-time and may come from multiple sources, it is important to ensure that
the data is time-synchronized such that variables from different sources can be correlated.
This first function, therefore, forms a data warehouse providing historical operating data
that serves as a resource for the device layer and system layer to aid in their optimization

and management efforts. The second function of the data-mining layer is to perform
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analysis of the data, as needed, in the form of data mining. This analysis can uncover
previously unknown relations in the data and enhance the capabilities of the device and

system layers.

Business Entities and the Enterprise-level Laver

The layered approach of the architecture is expanded to include the enterprise-
level layer, which resides atop the system layer. The enterprise-level layer handles all the
outside users of the architecture providing them with status information and accepting
control influence from them. In small or mobile applications, such as a vehicle, this may
be anywhere from zero to a few users and in these cases, a simple human machine
interface (HMI} would suffice. For larger implementations such as power generating
plants, the enterprise-level layer handles several business entities. In this case, many user
types will have differing goals and need differing levels of access. These user types are
business entities beyond just operators and engineers to include marketing, power
trading, corporate management, environmental compliance, etc. Figure 3.12 demonstrates

the business entities for a typical power generating enterprise.
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Figure 3.12. Power generating enterprise example.

The enterprise-level layer is where the application of the architecture includes
diverse business entities intended to implement an enterprise-level solution. Business
entities have differing needs of the architecture and therefore attempt a local optimization
from their perspective, i.e. the environmental compliance entity attempts to minimize the
emission of pollutants. A global SCADA or database server controls security access to
the system layer. The system layer then prioritizes and incorporates these business entity
directives into the solution using the previously mentioned rule set for power

management.
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Power scalability, i.e. the size of power resources handled, has an affect on the
architecture. Large amounts of power typical of generating plants for profit call for
special structures and hence the enterprise-level solution. Alternatively, power storage is
a limitation in mobile systems that manage small power resources. The architecture
handles power scalability by continuing the layered approach to achieve a complete and

balanced solution at all hierarchical levels.
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Figure 3.13. Data mining and enterprise-level lavers.

Conflict Resolution in the Architecture

To understand how contlict resolution is achieved by the architecture, the sources
of conflict are first determined. Conflict is a disagreement between entities regarding a
common point. The inability of a slave entity to follow a command from the master, and
multiple entities trying to utilize a limited resource are examples. Sources of conflict arise
between multiple software device objects in the device layer, between a software device
object and the system layer, and between the system layer and external users. The rule-

based approach provides natural resolution ability in the architecture.
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Software device object conflicts

The architecture is defined such that the software device objects and software
agents in the device layer only provide local control for their respective device and rely
on the system layer for coordination. The system layer thus acts as a centralized governor
based on its rule sets to resolve device layer conflicts. An example of software agents
resolving their conflict is given in the hydro-generation case in the implementations in
Chapter IV. In this case, agents compete when the limited resource of available river flow
is increased. The most efficient agent has first priority over taking additional flow. Since
the agents each know their efficiency and the efficiency of the others, the agents resolve

this conflict using their rule sets. These are presented in the implementation case.

Software device objects and the system layer

Contlicts between the software device objects and the system layer are the result
of commands sent by the system layer not being able to be performed by the software
device object. For example, the system layer commands a generating unit to increase its
power output, however, the generating unit cannot provide this increased output due to
some problem. The software device object would respond to the system layer through the
reserve output what power was available. The software device object, through its status
output, would also report any trouble conditions. The system layer would then take this
information and adjust its management strategy to cope with the limitation. This strategy
may be to seek the power resource elsewhere in the system or to reduce the requirements

of the process until such resources are available.
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The system layer and external users

Conflicts between the system layer and external users arise can arise when
external users make demands the power management system cannot satisfy or resolve.
This is handled the same as the above case between the software device objects and the
system layer. When multiple users are attempting to influence the system layer
simultaneously, the system layer will need to prioritize these requests to resolve them.
The hydro-generating case in the implementations of Chapter IV, as well as the
enterprise-level discussion above, addresses this scenario by providing security through
the control system SCADA interface. External users are assigned pre-defined process
points to communicate with the system layer. The system layer can then internally
prioritize the users’ needs and deliver an optimized solution. This also prevents external

users from accessing control areas that are restricted to them.

State Transitions of the Power System Utilizing this Architecture

The operating state is classified by the neural network as a combination of the
current and next requested operating states from the supplied outputs of the software
devices objects. This allows the architecture to have a faster than real-time performance
to anticipate future power demands. Figure 3.14 illustrates a sample operating state

transition cycle.
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Figure 3.14. Sample power system state transition scenario.

Each operating state is summarized as currentState || requestedState as determined
from the demands (current power demand), reserves (reserve capacity or requested load
state), and statuses (device condition) provided by the software device objects of the
respective power system devices. In this example, this classification is sent to the expert
system, which either sends the command to the load devices permitting their desired
transition path, or computes an alternate path for optimal power management. In figure
3.14, the states are defined as:

A. System is idle

B. Radio is receiving message data

C. Message data processing to calculate response

D. Transmit the response

E. Direct solar cell charging of ultra-capacitor

For this scenario, the power system starts in state A and must transit to state B, since
radio reception is an outside influence and cannot be scheduled. The power system
transits to state C and attempts to subsequently transit to state D. However, this radio
transmits in a short high-power burst requiring the ultra-capacitor, which is currently not

charged. Therefore, the expert system allows A—B—C and denies C—D, instead forcing
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C—E—D as an optimal power management strategy. Thus, the neural network
determines the state classifications, and the expert system determines the paths between

states.

Comimunications Timing in the Architecture

The power system and overall process produce and process real-time data from
multiple components of the system. When coding the software components of the device
and system layers, it 1s important to consider the paths that the process data takes within
the control system and their respective delays. Vehicular systems are tightly integrated
and often incorporate a high-speed network. Industrial control systems are often less
intimately connected as a result of being composed of components from various vendors
and implemented at various times. Therefore, communications timing is a larger design
factor for these systems and it is easier to illustrate the complexity of paths in this
environment. Figure 3.15 illustrates some process data paths with typical delay times

between various components for a distributed industrial control system.



Packet transit times
Based on typical sampling frequencies

‘ | fewms ]
| Field /O €—————3 DPU/PLC ‘
N L
PY [ ]
PY o
° ®
‘ fewms [ 0 fewsecs T poo
| Field /0 <————— DPU/PLC
| | - ‘ - I Warehouse |
! \ . §
. 8 ﬂ
Local wiring 3‘»‘ - _, Control
q;)““’ network

HMI / ‘ ~ few secs

~ Software [f

Figure 3.15. Data pathway timing for industrial control system.

In figure 3.15, it is seen that while the Distributed Processing Unit’s (DPU)
communications with the field /O is on the order of a few milliseconds, access to that
process data by a human operator or even another computer system is on the order of a
few seconds. These time delays will influence the configuration of expert system rules,
device layer methods and even location of these software components in the overall

control system.
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CHAPTER IV

IMPLEMENTATION

In the first section of this chapter. considerations for the unique environments are
presented for power generating plants and vehicular systems. The special topics of
proprietary systems, safe and reliable operation, and the PID algorithm are discussed
briefly as well as a precursor to the implementations. The implementations presented here
will first be a coal-fired generating unit with optimization to reduce emissions. This
implementation demonstrates the limitations of monolithic neural network optimizations
and serves as a motivation for a better architecture. The second implementation is a
hydro-generating plant to optimize efficiency. In this implementation, some aspects of
the architecture are introduced to address the limitations discovered in the previous coal-
fired implementation. The third implementation is of a power management system for the
hydro-generating plant coupled to a personal hybrid vehicle. This case demonstrates the
industrial-scale application in cooperation with a small and mobile application. This
encompasses power generation, storage, and utilization in a mission dependent on an
autonomous management solution. Together, these implementations demonstrate the
inspiration, growth, and development of the architecture and its ability to be applied

across multiple applications.



Power Generating Plants vs. Vehicular Systems

While there are significant differences between the large industrial power
generation plants and the small mobile vehicular systems, the architecture applies well to
both platforms. Power generation and power utilization are key elements to optimize and
manage in both cases. In power generation, the benefits of generating power in an
environmentally clean and cost efficient manner scale with the quantity of power being
produced. The generating company can manage its generating assets but often 1s unable
to affect meaningful control over the load of the many individual customers. For this
reason, industrizl-scale optimization efforts only focus on one part of the solution, that of
generation. It is important to note, however, that since the architecture is co-developed to
manage vehicular systems as well, the components needed to enhance power generation
optimization with the many customers representing the load is also present. Developing
power management and optimization for vehicular systems therefore enables a more
comprehensive power generating plant scheme. Similarly, vehicular systems represent a
microcosm of the industrial power-generating platform. In their case, the generation and
load components are more intimately joined and are both available to be managed by the
software. This provides an opportunity to demonstrate the full potential of the

architecture.

Considerations for Power Generating Plants
The typical power generating plant employs a Distributed Control System (DCS)
for its primary process control. The DCS is comprised of multiple distributed processing

units (DPUs), each with their own memory, control logic, and field I/O. The DPU is
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capable of handling thousands of points of /O for controlling multiple sub-processes in
parallel. The DPUs are networked together to provide a total process control solution.
Often programmable logic controllers (PLCs) and/or other devices are used to provide
ancillary or balance-of-plant type process control, such as when new stand-alone systems
are added or when incorporation into the existing DCS is not feastble for some reason. In
the last several years, the functional division line between the DCS and the PLC has
become blurred with the advancement of PLC technology and PLCs are taking on a
larger process control role. Therefore, both DPUs and PLCs are similar as controllers,
typically varying in size more than other aspects. There are human-machine interfaces
(HMIs) that allow operator interaction with the control system and subsequently the
process. Finally, a data acquisition system (DAS) for archiving of process data is present
in most modern control systems to serve as a baseline for plant operation and a diagnostic
tool for fault analysis. These components may be interconnected with an Ethernet or
similar network infrastructure. Figure 4.1 illustrates this layout. Figure 4.2 illustrates the

functional diagram of the DPU and PLC controllers.
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Figure 4.1. Industrial control sysiem overview.
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Figure 4.2. Functional architecture of DPU and PLC.

The I/O section consists of multiple input and output interface cards with
termination blocks for field device wiring. These interface to the I/O memory via analog-
digital converters or relays as appropriate to communicate analog and digital data to
points mapped in the point database. These data points can then be manipulated as
variable registers in the program logic allowing field sensory data to be utilized as inputs
and field actuation devices to be controlled as outputs, thus effecting control of the

process. A network component is included for communications to other controllers,

HMIs, and other devices as needed.

Proprietary Svstems in Power Generation Control

Control systems are not typically developed with the standard programming
languages used in other fields. This is particularly true of legacy systems although some
newer systems are beginning to incorporate interfaces to popular languages. Process

control logic can be developed in formats of: structured text; functional block or

88



SAMMA diagrams; ladder logic; etc. Structured text is often similar to BASIC and other
standard sequential languages with special functions for process control. Functional block
diagrams are used to graphically connect blocks of algorithm code to produce a program.
Figure 4.3 illustrates a sample function block diagram. Ladder logic is derived from relay
logic used before the advent of computer-based control. It is designed to be easily
readable and perform digital logic well. Figure 4.4 illustrates a sample ladder logic

diagram.
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Figure 4.3. Sample of function block diagram or SAMMA.

&9



Relay contact Relay coil
GND / \ Ry

rlA B% —{X}— X=Aand (BorNotC)
(o}
+/

‘ Timer
t=10s
X i

i
__] —_ ! Set Out ‘._( Y H Y = ( X or D) after 10sec delay
- | |

Current flow

Figure 4.4. Sample of ladder logic diagram.

Proportional Integral Differential Control - PID

The cornerstone of industrial process control remains the proportional, integral,
and differential algorithm or PID. PID control is used in more than 90% of control loops
and predates digital control systems [Knospe, 2006]. A simple PID algorithm is given in
(4.1). The constants &, T;, and T, refer to tuning parameters for the proportional, integral,
and differential aspects of the algorithm, respectively. The attribute AO refers to the
analog output of the PID. which drives the control element. PV refers to the real-time
process value to be controlled. SP refers to the process setpoint for control. The exact
mathematical implementation may vary among manufacturers but the general definition

is maintained. The error is represented in (4.2) as &
| d
PIDAO=k, £+ — [epar+T, G 4.1)
' : dt

E=%(PID.PV — PIDSP) (4.2)
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Therefore the control action of the PID output includes: a linear gain component
proportional to the error; an integral component that accumulates as the error persists in
time; and a derivative component that accounts for the rate of change in the error signal.
The PID algorithm provides an excellent source already existing in the control platform
for real-time error control of an analog process. For a more in depth study of PID theory
and control principles, refer to PID Controllers: Theory, Design, and Tuning by K.

Astrom and T. Hagglund [Astrom. 1995].

While PID loops are the foundation upon which industrial control systems are
built, it has been estimated that 50% of PID loops display undesirable characteristics,
37% need retuning once per year or more, and only 22% of those retuned show
improvement [Morrison, 2005]. It is also estimated that PID loops are operated manually
or in a suboptimal mode 65% of the time [Astrom, 1995]. This indicates the need for a
power management system designed to fit within the existing control framework. The

architecture of Chapter I11 fits into this framework.

Considerations for Safe and Reliable Operation

Since the program code or logic is used for controlling a physical process, safe
and reliable operation becomes important. Interlocks, or permissives, are often used to
provide a checklist before permitting certain actions to be taken. For example, before
starting a motor, ensure the area is free of personnel and that the load is ready to be
driven. It may also be necessary to check that sensory input data is valid. For example, if

a pressure sensor fails by ceasing to give valid data, control logic needs to alert the
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operator to this condition and either handle the event or fail in a safe mode. Likewise,
calculated outputs to field actuation may need other limit or sanity checks to ensure
proper process control. Process control systems operate in real time. Therefore data can
become obsolete and commands need to be executed on a strict schedule. The process
also incorporates time constants. When commands are given, the process requires a
settling or response time to react. Analog commands may need to be gradually

incorporated or ramped in to avoid process instability.

Considerations for Vehicular Systems

Vehicular systems represent a microcosm of the industrial-sized implementations
in that power generation, storage, and utilization are all incorporated into a small single
mobile system. This provides an excellent demonstration of scalability in the architecture
and allows the power management features to be explored from the perspectives of all the

device types in one application.

Motivations for Vehicular Power Management Svstems

There are three main motivations for vehicular power management and
optimization. First is the reduction of emissions and fossil-fuel dependency. Automobiles
represent the majority of vehicular implementations and given the large number of them
in use, automobiles become a significant consumer of fossil fuels and a significant
producer of greenhouse-gas emissions. Hybrid and all-electric automobiles are becoming
popular and yet have much development ahead. An improvement in efficiency for these

vehicles directly benefits the environment and reduces foreign dependence on resources.



The second motivation is the optimal use of power given limited storage and generating
options. Vehicular systems are mobile by definition and therefore have size and mass
limitations in addition to limitations in field maintenance for some applications, e.g.
spacecraft. The third motivation is handling the complexity of many diverse power
devices and integrating mission parameters into an intelligent management solution.
When new devices, systems, and missions are developed, new management solutions
must be developed as well. The architecture 1s designed to grow with these developments
and minimize redesign costs. The intelligent power management system also integrates
the power system with the overall mission and user in a way that new benefits through
superior use are achieved. Autonomy in the architecture simplifies operation from the

user perspective by freeing the user of continuous supervision.

Classifications of Vehicles and Architectural Considerations

Vehicles refer to a broad range of systems and can be classified in several ways.
In figure 4.5, vehicles are classified by type within user areas and a few examples of each
are given. Classification in this manner allows the architecture to consider the mission of

the vehicle as well as its design.
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Figure 4.5. Vehicle tvpes and examples.

The user area determines the mission parameters by which goals are defined.
Commercial vehicles are typically operated by businesses to perform formal functions.
For example, bulldozers for construction and busses for mass transit. Consumer vehicles
are operated by individuals in the general public for personal transportation or sporting /
recreational use. Military vehicles are also operated professionally similar to commercial
vehicles but used for reconnaissance or combat missions instead. Space applications are
operated with limited access and utilized for exploration or other technological support
missions. In all of these missions, reliability, efficiency, autonomy, and flexibility are
important but have different meanings. These are listed belcw.

e Reliability is a measure of how dependable a vehicle is at performing its mission.
o Commercial reliability allows the business to utilize the vehicle for profit over
a long life span for good return on investment.

o Consumer reliability allows the consumer to utilize the vehicle at minimal

cost since this is a major consumer motivation.

o Military reliability allows the vehicle to perform its mission accurately in

diverse and hostile environments and tolerate failure since the mission is

critical to human life and freedom.
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o Space reliability allows the vehicle to function autonomously and tolerate
failure since communications is limited and repairs are difficult or impossible
in space.

Efficiency is a measure of how much work can be done versus the resources
consumed to perform that work. In all cases, this intends to reduce the consumption
of power for a given task.

o Commercial and consumer efficiency reduces operating costs and can offset
fossil-fuel reliance in many cases.

o Military efficiency extends the time of operation so that recharging / refueling
is minimized since these resources may be limited in the combat theater.

o Space efficiency extends, and often enables, the ability of mission tasks to be
performed given the small size constraints and limited power available from
solar photovoltaic cells and batteries.

Autonomy is the ability of the power management system to operate itself and make
decisions in the absence of human interaction.

o Commercial and consumer autonomy frees the operator up from performing
the more mundane tasks of power management and allows them to focus on
their direct mission.

o Military and space autonomy allows the vehicle to continue performing its
mission when communications are lost or make real-time decisions faster than
human operators can respond in critical situations.

Flexibility applies equally to all vehicular classes and refers to the ease with which

the architecture is created or modified to handle changing mission parameters. The
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modularity of the architecture and rule-based approach allows this flexibility since
this is a white-box method and can be changed incrementally or adapted to different

missions by adding or removing the software device object components.

Safety in Vehicular Svstems

Safety considerations for vehicular systems are of similar importance to those
previously mentioned in industrial control. Vehicular systems are mobile which presents
a special hazard to the environment around them in the form of collisions. Humans are
also occupants of most vehicle classes and must be protected as well. Although these
safety systems usually fall outside the domain of the power management system, there
are some permissive-based actions for the power management system to handle. For
example: shut down in a catastrophic event; warnings of impending failures or power

depletions; and emergency backup power management.

Vehicular Control Svstems Environments

Vehicular systems typically employ an embedded control model with specialized
software libraries and a C compiler. As such, they have been limited in memory and
processing speed compared with traditional computers; however, these limitations are
quickly disappearing and complex software designs with large data structures are now
possible. These embedded systems are real-time systems and employ real-time networks
to ensure critical process data delivery. In automobiles, the CAN standard for a control
area network is often utilized in one version or another [Yongqin, 2006]. There has also

been much work in control software development environments for automobiles
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[Beaumont, 1999] [Miller, 1998] [Smith, 1999]. Simulation of systems has been done in
off-the-shelf applications such as Matlab’s Simulink®. Therefore, software development
is not outside the realm of typical development environments in the same way that

industrial control systems traditionally have been.

Example Application of Nitrogen Oxide Reduction for a Coal-fired Boiler
Plant description

The author has developed and installed four applications based on the Pegasus
NeuSIGHT® neural network optimization software at the Cinergy Gallagher Generating
Station in New Albany, Indiana. The four applications were developed for four similar
coal-fired steam-generating boilers for the purpose of reduced nitrogen oxide emissions.
A Metso Automation Max1/Max1000++ distributed control system provides data
acquisition and boiler control. Each unit is comprised of an Allis Chalmers steam turbine
powered by a Riley Stoker wall-fired 18-burner boiler. Steam is delivered at
1,000,0001bs/hr at 1800psi at 1005F to produce 150MW by each generator at full load.
Details of the Pegasus neural network application in general are discussed in Chapter 11

and process data flow is as illustrated in figure 2.1.

Application Architecture

The process variables to be controlled by the application, i.e. controllables or
outputs, were chosen to fit within the existing control scheme with maximum nitrogen
oxide influence and minimum operations impact. Inputs to the application included

approximately 120 of the most significant of the existing field sensor control system
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inputs, since more inputs typically results in a more complete classification for neural
networks. These were largely determinable by expert knowledge of the plant as well as
some preliminary analysis of variable relationships with nitrogen oxide production. The
controllables are biased by the application so that their influence is added to the current
operator setpoint similar to (4.3). These controllables are listed in table 4.1. The basic

architecture of the application is given in figure 4.6.

Black box

Sensory inputs

Device Status Pre- N | Post- Status Outputs
: . eural Network . — )
Control Positions j Processing processing ! Control Biases
Operator Commands ; i }
e L |
100+ inputs 100s of neurons 30 outputs
Figure 4.6. Neural network application architecture.
Process variable bias Description

Excess air setpoint

Secondary air — 1 bias

Wind box—furnace differential pressure

Secondary air — 1 bias

Burner shrouds

Secondary air — 18 shroud biases

Overfire air dampers

Secondary air — 4 damper biases

Coal mill outlet temperatures

Primary air — 3 temp biases for 3 mills

Coal feeder speeds

Fuel — 3 speed biases for 3 feeders

Table 4.1. Application controllables.

Shroud,, = Shroud,,,,, + Shroudy,,

(4.3)
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Where the Shroudsp is the setpoint used by the control system to determine a burner
shroud position, Shroudg,., is the operator-entered setpoint for the shroud, and Shroudg;,,

is the bias added by the neural network application.

The pre-processing and post-processing modules are coded directly in a
conditional function block format. The neural network is trained by a typical back-
propagation algorithm using a set of training data from the historical process data of the
control system. With such a large number of inputs and outputs, a large quantity of
training data 1s required. This data was manually validated to reduce noise and ensure
that the domain of the training set properly spanned the operating state space. While
some automation could be employed, e.g. Perl scripts to verify and filter large sets of

process data patterns, this was still a time consuming task.

Applving the Metrics to the Application

The metrics of portability, scalability, simplicity, and autonomy developed in
Chapter Il are applied to the neural network application here. Comparison with other
applications and qualitative discussion with respect to the architecture is presented in

Chapter V.

Portability

When assessing portability, it is considered that the intention was to port the
application to the remaining three generating units once developed for the first unit. Had
this not been the case, portability would have trivially been zero since this was a custom

application with specific inputs and outputs and a specifically trained neural network,
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resulting in a black-box approach. The three remaining were of identical design and even
of similar age, however, it was made obvious that these units had aged unequally
resulting in a plant with four similarly configured, yet individual, units. The pre-
processing and post-processing modules could be moved with very little modification and
these were assessed a portability metric of 1. The neural network required complete
retraining including new training data collection and therefore this module was assessed a
portability metric of 0. The neural network consumed approximately 80% of the effort.

This resulted in a low application portability of 20% as demonstrated in table 4.2.

Module / Task Effort w Portability p
Pre-processing logic 10% I
Post-processing logic 10% |
Neural network &0% 0

Building training set
Training and building neural network
Testing

Total Application from (3.1) 100% 20%

Table 4.2. Neural network application portability.

Scalability

When assessing scalability, it should be considered that the application was not
designed to be scalable. Being dominated by a monolithic neural network implied that
nearly any level of scope change would require retraining, which was demonstrated to be
80% of the effort. Specifically, the level of scope change desired from the application
after initial deployment was to add the goal of opacity reduction to combat this new

problem and provide an influence entry point for management. Evaluating scalability
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from the perspective of adding this new scope results in the following assessment in table

4.3.
Module Effort w Scalability s
Opacity goal
Pre-processing logic [0% 3
Post-processing logic 10% 3
Neural network 80% 0
Scalability for opacity reduction from (3.2) Opacity 20%
Management goal
Pre-processing logic 10% 2
Post-processing logic 10% 3
Neural network 80% 0
Scalability for new management user from (3.2) Management 16.7%
Scalability for both application enhancements Total 18.3%

Table 4.3. Neural network application scalability.

As would be expected of a monolithic neural network application, the scalability
is low similar to the portability. To achieve the enhancement of opacity, the same inputs
and controllables were used which resulted in unchanged pre-processing and post-
processing modules, thus the scalability factor of 3 for these modules. The neural
network was retrained with the new goals of both nitrogen oxide and opacity reduction,
thus the scalability factor of 0. Management’s ability to observe the operation of the
neural network application was already available through the existing control system.
Since any direct control over the generating unit would be reserved for operations staff,
the only significant influence accessible to management staft would be prioritization of

the optimization goals. In this case, these goals were nitrogen oxide and opacity

101



reductions. Prioritization of these goals was obtained by adding two additional inputs to
the application, the nitrogen oxide priority and the opacity priority. These changed the
balance in the neural network of achieving these goals. The resulting scalability factor for
pre-processing was assessed at 2 for the modifications needed to handle the additional
inputs. The post-processing scalability factor was assessed at 3 since the controllables
were unchanged. The neural network again had to be completely retrained with a new

data set to incorporate the new inputs, resulting in a scalability assessment of 0.

Simplicity

When assessing simplicity, difficulty is the measured metric and simplicity is
inferred by comparison with other applications in Chapter V. Both the difficulty in
maintaining the application and the software complexity of the application are
considered. The pre-processing module consisted of logic to verify the ranges of the
approximately 120 application inputs and the post-processing module included logic to
calculate the 30 biases from the neural network outputs. Specifically, this involved a
conditional statement for each input and output performed by an IF-THEN statement in
addition to a bias calculation equation for each output. The neural network module
consisted of a proprietary neural network engine with the configurable parameters:
number of inputs; number of outputs; neuron activation function; and other training

parameters. The analysis is summarized in table 4.4.



Module Readability | Complexity | fanin, fanout | Difficulty
Cr Cc 3.3) (34)
Pre-processing logic 1 121 1,1 121
Post-processing logic 2 31 1,1 62
Neural network 3 ] 120,30 38880000
Application Difficulty 38880183

Table 4.4. Neural network application difficulty.

As expected of a monolithic neural network application, the neural network
module dominated the difficulty. The readability factor for the pre-processing logic was
assessed at | since these were simple conditional statements checking the limits of the
inputs. The readability factor for the post-processing module was assessed at 2 since
these included both conditional statements and an equation to calculate the bias as in
(4.3). The readability factor for the neural network was assessed at 3 since it was virtually
unreadable as a black box module. The complexity factor was assessed at 121 for the pre-
processing module as 120 conditionals plus 1. The complexity factor for the post-
processing module was assessed at 31 being the 30 conditionals plus 1. The complexity
factor for the neural network module was assessed at | since the neural network
algorithm was an external pre-defined function. The fanin and fanout of both the pre-
processing and post-processing modules were assessed at 1,1 because each conditional
statement was a separate component of the module with one input and one output. It did
not make since to assess these based on the number of inputs and outputs since this would
have resulted in an inaccurate representation of complexity. The fanin and fanout of the
neural network was assessed at 120,30 since this was the number of inputs and outputs

associated with this single function.



Autonomy

When assessing autonomy, the measures of automation, self-preservation,
strategy, and coordination are calculated. With respect to automation, the scope of the
neural network application a method for nitrogen oxide reduction. Therefore, some parts
of the generating unit control system were intentionally not automated or directly
influenced by the application and are thus not applicable (N/A) to an automation metric.
Table 4.5 lists the subsystems in the control system and the nitrogen oxide reduction

scope of the application.

Autonomy - Automation

Subsystem Controllable element Automated
Boiler combustion control
Primary air Mill suction dampers x 3 Yes
Mill exhaust dampers x 3 No
Mill barometric dampers x 3 No
Mill tempering air dampers x 3 No
Fuel Coal feeder speeds x 3 Yes
Secondary air Burner shrouds x 18 Yes
Overfire air dampers x 4 Yes
Excess air (0-) x 1 Yes
Furnace-furnace diff pressure x 1 Yes
Forced draft fans x 2 No
Induced draft fans x 2 No
Water No optimization N/A
Turbine control No optimization N/A
Auxiliary systems control No optimization N/A
Applicable controllables 43 30

Table 4.5. Neural nerwork application scope.




The controllables list in table 4.5 are what the operator would be required to
manually tune 1f given the goal of reducing nitrogen oxide. Each system that is listed as
automated has its setpoint biased by the application and therefore the operator is relieved
from manually tuning that controllable. To determine an automation metric, we
determine the percentage of controllables automated by the total number of controllables,
in this case 30/43 or 70% resulting in A; = 2. The induced and forced draft fans were not
automated since these were already indirectly influenced by automation of furnace-
furnace differential pressure and excess air respectively. The remaining mill dampers
were not automated since these were either not expected to return enough benefit to

justify the effort or safety considerations in mill operation.

Autonomy - Self-preservation

The application was designed to only minimize nitrogen oxide emissions, and
later opacity. As such, the handling of trouble conditions was not built into the
application. In fact, this application, as typical of most emissions-centric monolithic
neural network applications, was designed to suspend its operation at the first sign of
trouble from the control system, reverting primary control back to the operator.

Therefore, self-preservation was assessed at Ap = 0.

Autonomy - Strategies
The strategies employed by the application were the minimization of nitrogen
oxide and opacity emissions. While this represents two goals, these goals are inter-related

in that minimizing nitrogen oxide emissions resulted increased opacity, thus requiring the
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minimization of opacity to be added as a complementary goal. When assessing strategy
from table 3.5, it was decided that a value of | for a single was insufficient since two
goals were achieved, however, a value of 2 was too high since these were complementary
goals and not mutually independent. Therefore, the strategy metric was assessed at Ag =

1.5, the midpoint between these levels.

Autonomy — Coordination

When assessing coordination, it is considered that the application was not
designed to be coordinated with other applications or multiple users. At the plant, there
would be four peer applications for the four generating units, however, these units were
still operated independently and were purposefully not linked together as part of the
existing corporate strategy. In the future, linking these systems as a generating fleet
would be a valuable consideration. This s demonstrated in the other implementations in
this chapter and discussed further in Chapter V. For this application, the coordination

metric was assessed at A= 0, since there was no coordination beyond that level.

A vector magnitude of these metrics by (3.5) given A; =2, Ap =0, Ay = 1.5, and

Ac = 0 results in an overall autonomy metric of A = 2.5. This is plotted in figure 4.7.
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Figure 4.7. Neural network application autonomy.

Results and Closing Remarks for the Application

In the domain of power generating stations, the power management system must
also encompass more than just efficient power production. Environmental emissions and
impact are also key criteria for these applications. The application achieved good results
of approximately 20% reduction in nitrogen oxide emissions by a purely software
approach. Opacity was, however, increased and this needed to be remedied for local
political reasons. This required significant re-training to correct. Furthermore, now that
increased process data was available, management wanted an interface to the new system.
This interface through the existing control system provided operational status and
allowed management to prioritize the two goals of nitrogen oxide and opacity reduction.
This, again, required significant re-training. Since the generating units had aged
unequally, it was found that a new neural network was required for each unit. The fact
that any horizontal movement or increase in scope required most of the development

effort to be redone resulted in the low portability and scalability metrics quantified above.

107



As expected of a monolithic neural network, the application was difficult to
understand and resulted in a black-box approach. This is apparent from the high
difficulty, and thus low simplicity, metric. This made it difficult to gain acceptance since
the behavior of the application could not be predicted during testing or operation. Plant
personnel were apprehensive when the question of “What is the application going to do
next?” could not be answered definitively. Some level of autonomy was achieved with a
good measure of operator actions automated by the application and the complex strategy
of emissions reduction achieved as well. There was, however, no coordination or self-

preservation employed and this would have enhanced the application.

These limitations were mostly the result of the monolithic neural network. The
author’s experience in this implementation served as motivation for a better way. It was
determined that the criteria for the software metrics presented in Chapter Il would result
in an architecture that was: portable, to reduce effort; scalable, to provide room for
enhancement; simple, to gain acceptance and again reduce effort; and autonomous, for
better decision-making and coordination. A rule-based software agent approach was
selected based on various research efforts, discussed in Chapter 11, to implement a white-
box solution to these problems. This approach is studied in the following

implementations.

Example Application for a Hydro-generating Plant

The idea of a software agent suggested in the previous neural network application

is pursued here for a river-based hydro-generating station. Portions of this work have
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been accepted for publication in IEEE Transactions on Control Svstems Technology
[Foreman, 2008]. The software agent will utilize a rule-based system for ease of
integration. An enhancement to facilitate the constraints of river level and flow by an
external user as well as the goals of corporate dispatching is then developed through the
existing SCADA system. Finally, expansion to coordinate multiple hydro units at a single

location is presented.

Plant Description

The plant 1s the Markland Hydro Generation Facility owned by Duke Energy
operating on the Ohio River near Markland, Indiana USA. The plant consists of three
axial-flow Kaplan-turbine-generating units of approximately 25MW in size and similar
configuration. The turbines run at a constant 64.3rpm when synchronized with the power
grid. The turbines are controlled by a Woodward Governor 505H control system. The
plant utilizes the General Electric Fanuc iFix© supervisory control and data acquisition
(SCADA) system as the control system human machine interface (HMI) and data
archive. The plant coexists with the Markland Dam operated by the United States Army
Corps of Engineers to accommodate river tratffic and maintain a set river level. A single

hydro unit is illustrated in figure 4.8 adapted from [Paul, 1996].
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Figure 4.8. Typical hvdro unit with primary variables.

Existing Control Scheme

The variables for control actuation are wicket gate position and turbine runner
blade position. The wicket gate position refers to the aperture size for river water entry
into the turbine and is the main control variable for the unit’s flow rate. The turbine blade
position refers to the pitch of the blades from horizontal. The blade position is used to
extend the efficiency of the turbine at higher gate positions since power is developed by
the reaction of water pressure against the turbine runner blades [Paul, 1996]. Control of
the wicket gate position GP and the resulting unit flow rate is accomplished by a typical
PID loop. Control of the turbine blade position BP is by a software cam. A software cam
is modeled by a virtual 3-dimensional surface where independent variables X and Y are
mapped to a dependent variable Z. In this case, X and Y refer to gate position and net head
while Z refers to the blade position determined from these inputs. This control scheme is

illustrated in figure 4.9.
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Figure 4.9. Existing control scheme.

Integration of the Software Agent
A single software agent is then added to the control scheme of figure 4.9 within
the existing control software. This agent will influence the control action for the variables

GP and BP. This incorporation is illustrated in figure 4.10.
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Figure 4.10. Individual unit integration.

The agent includes a rule-based expert system module for the optimization
engine, to be discussed in the following section. A bias calculator module 1s defined to
calculate the biases to be added to the control scheme as illustrated in figure 4.10. This

module performs the same functions as described in the post-processing module of the
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previous neural network application. Biases are calculated as in (4.3) and conditionals are
utilized to ensure that user-defined boundary conditions are not exceeded. A message
handler receives directives from outside users or other unit agents and broadcasts the
status of this agent. This is accomplished by using the built-in process points of the
existing control system. The software agent writes to a process point for its status and
other agents and users read this point. Likewise, other agents and users have their
respective status process points they write to for this agent to read. This results in a trivial
definition of the message handler and makes use of the existing process point data
structure for secure and reliable communications. Figure 4.11 illustrates these modules of

a single agent.
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Figure 4.11. Modules in the software agent.

Use Cases of the Application

There are two outside users in addition to the local unit operator that need to
influence the unit through the agent, the Army Corps of Engineers and the corporate
dispatching office. The Corps is tasked with maintaining the upstream river elevation
within a one-foot tolerance of 455ft above sea level and locking river traffic through the

dam. Once the corps determines the river flow requirements and subtracts the locking
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requirements, the resulting value for available flow is manually reported to the hydro
plant via a SCADA interface. The corporate dispatching office is tasked with dispatching
generating units in the corporate fleet to meet customer demand and maintain stability of
the power delivery grid. The corporate dispatching office occasionally needs to adjust
power delivery for grid stability issues and would also benefit from the unit status
updates the agent could provide. Figure 4.12 illustrates a use case diagram for the local

operator, Corps, and dispatch users as they interact with the unit agent.
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Figure 4.12. Use case diagram for a single agent.

The single agent, and therefore single unit, architecture is expanded to include
multiple units to accommodate the three units at the plant. The expanded use case is

illustrated in figure 4.13.
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Figure 4.13. Multi-agent use case diagrant.

Each unit agent attempts the local optimal production of power for its unit while
coordinating the directives of other users. With the addition of the other unit agents as

users, the status of other generating units is now able to influence each unit agent.

Development of the Rule Sets

The rule-based expert system is built from user-defined rules governing the scope
of the application. Rules were developed for biasing for optimal generating efficiency,
handling of trouble conditions, and coordination with other users and agents. Specifically,
the other users are the Army Corps of Engineers at the Markland Dam and the corporate

dispatching office. The other agents are the other generating units at the plant.

Optimal point control
The hydro-generating unit is essentially a water pump operating in reverse such

that river water flow turns the turbine blades and attached generator, thus producing



clectricity. As such, the hydro-generating unit is characterized by a pump efficiency
curve that defines optimal operating points for efficiency. This is illustrated in figure

4.14.
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Figure 4.14. Optimal points of operation.

In figure 4.14, there are multiple curves because our hydro-generating unit has
variable-angle turbine blades as described previously. This curve is based on a constant
head. As the blade angle changes. the characteristic curve changes and extends the
efficient operating region of the turbine. The optimal point for each blade angle is
depicted on the curves. These points are typically determined by index testing and can be
stored in a database in the format (head, flow, efficiency) for use by the application. The
distance in flow from the current operating point to the nearest optimal points can be
determine as depicted in figure 4.14. Rules in the expert system can detect this and
increase or decrease flow as necessary to achieve optimal operation. The below pseudo

code demonstrates this.

given the current head find the optimal flow points below and above

:

the current point and the distances in flow to these

i
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Mode.single = TRUE ; for a single unit, no coordination
; PlantFlow.allocated is the flow allowed by the Corps
PlantFlow.available = PlantFlow.allocated - PlantFlow.setpoint
; 1f a single unit then just take the additional flow if you can
; more flow always equals more generation even if not optimal
IF Mcde.single THEN
IF PlantFlow.available THEN ;
Cbias = PlantFlow.available ; see figure 4.10
ENDIF
ENDIF
; 1f a multi unit situation then we need to distribute the flow properly
Mode.sirgle = FALSE
IF NOT Mode.single THEN
; determine dl and d2 from cptimal point database as in figure 4.14
dl = flow.setpoint - flow.optimal.below
d2 = flow.setpoint - flow.optimal.above
; others.efficiency list of other units efficiencies from message handler
efficiency.below = database(head, flow.optimal.below)
efficiency.above = database (head, flow.optimal.above)
; PlantFlow.minimum is user-defined minimal amount to change flow
; 1f this unit is most efficient then take flow
I® PlantFlow.svailable > PlantFlow.minimum THEN
IF efficiency.above > MAX(others.efficiency) THEN
IF PlantFlow.available > d2 THEN
QObias = d2 ; go up to next hichest optimal point
ELSE ; or at least as close as you can
Qbias = PlantFlow.available
ENDIF
ENDIF
ENDIF
; if this unit 1s least efficient then give up flow
; do this always to make flow available to more efficient units
IF efficiency.below < MIN(others.efficiency) THEN
Qbias = -d1 ; go down to next lowest optimal point

ENDIF

ENDIF
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In the pseudo code above, plant flow that is available from the Corps is allocated to the
most efficient unit to get that unit to its next optimal point. Flow is also taken from the
least efficient unit and reallocated to the most efficient unit to increase overall plant
efficiency. As this redistribution is continued, a steady state condition is reached (or a
user-defined terminating condition) resulting in a more efficient flow distribution and
therefore more plant generation. The Results section gives a simulated example of this. In
the single unit case, this is trivial since you always want to use all the flow available. The
database function looks up the missing parameter from the optimal point database on the

given parameters, ¢.g. if head and flow are given then efficiency is returned and so forth.

Startup and shutdown

Another important application at plants with multiple units is the determination of
how many units to run and the order of start up and shutdown of individual units. In
general, we want to give priority to units that are more efficient and also those with less
cumulative run time to result in uniform machine wear. The number of units to run is
typically based on flow or on the product of flow and head since generator temperatures
or cavitation usually bound the upper limit of a hydro-generating unit. The Hill curve in
figure 4.15 illustrates this. The rule sets below would reside in each unit’s software agent
and demonstrate how many units to run, when to cycle on, when to cycle off, and the start

up order.

; determine number of units to run based on flow
NumberUnits.online = < number of units online >

IF PlantFlow.available < 2000cfs THEN
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NumberUnits.desired = 0

ELSE IF PLantFlow.available < 7000cfs THEN
NumberUnits.desired = 1

ELSE IF PLantFlow.available < 14000cfs THEN
NumberUnits.desired = 2

ELSE

i
W

NumberUnits.desired
ENDIF
; 1f we want another unit online then pick the one with the lowest run time
IF NumberUnits.desired > NumberUnits.online THEN
IF NOT Permitted to run THEN
IF runtime < MIN(others.runtime} OR NumberUnits.desired = 3 THEN
Permitted to run = TRUE
ENDIF
ENDIF
ENDIF
; when to cycle on, once permitted to run
; this makes sure the new unit can make it to the first optimal point
IF Permitted_to_run and NOT Online THEN
IF PlantFlow.available > OptimalPoints.flows.minimum THEN
Go_online()
ENDIF
ENDIF
; when to cycle off
; this takes the least efficient unit offline first
IF Online and NumberUnits.desired < NumberUnits.online THEN
IF efficiency < MIN(others.efficiency) THEN
Go_offline()
Permittad to run = FALSE
ENDIF

ENDIF

Trouble conditions



The handling of trouble conditions is another area of optimization where
significant gains can be achieved. While there are many ancillary alarm points in a hydro-
generating unit, the trouble conditions that can result in the biggest gains are stator
temperature excursions, vibration conditions, and cavitation conditions. In figure 4.15 is
depicted the Hill curves for a typical hydro-generating unit. These curves are defined by
(head,flow) data points that are determined from index testing and operating history. The
central region illustrates the normal operating region of the unit, shown by point X;. In
the top right corner is the generator limit line. This line is not typically expressed
explicitly because increasing generation beyond the generator’s capability results in
excessive heating of the stator. Therefore, the generator limit is implied when stator
temperatures go above their preset limit. The lines of maximum and minimum head and
gate position are self-explanatory preset limits of the unit. Cavitation is the event of
bubbles forming by transition to the vapor phase when water enters an area of low
pressure and then subsequently collapsing when these bubbles reenter an area of higher
pressure. Cavitation is thus a sonic and vibrational issue that damages the turbine blades.
The areas of operation where cavitation has been determined to occur are depicted on
figure 4.15. Vibration conditions can occur throughout the operating region. A Bently
Nevada proximity probe system is used to measure the turbine vibration in the 1X, 1Y,
4X, and 4Y modes. Two proximity probes placed 90 degrees apart in the turbine shaft
bearings represent the X and Y modes. The 1 and 4 notation refers to vibration measured
at 1 times and 4 times the rotational speed of the turbine respectively. Cavitation will also
result in vibration. Therefore, vibrations detected when the unit is operating near the

cavitation areas, shown by X> and X, are judged to be cavitation.
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Figure 4.15. Hill curve of operating space and limits.

Adapted from [Paul, 1996].

The Hill curve helps classify the type of trouble condition currently being
experienced and the probable corrective action to take. Head is always fixed for a given
scenario since this is a disturbance variable and not controllable. Vibration at low head
and high flow is likely to be cavitation and would be corrected by reducing flow to the
unit. Vibration and high head and low flow would also be due to cavitation but in this
case, flow to the unit should be increased. High stator temperatures would result from
both high head and high flow and therefore flow should again be reduced. If flow needs

to be increased or decreased for this unit, the rule sets above for distributing flow should

move the other units to compensate. This is depicted in the rule sets below.

; 1s there cavitatior

; distance is the distance between points

i

IF vibration THEN
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; min is a minimum distance to classify constant



IF distance (OperatingPoint.current,OperatingPoint.cavitation) < min THEN
cavitation = TRUE ; vibration near cavitation curve

ELSE

cavitation = FALSE ; vibration not near cavitation curve
ENDIF
; now handle which type of cavitation
IF cavitation THEN
IF head < max_head/2 AND flow > max_flow/2 THEN
; we are on the top curve and need less flow
; reduce our efficiency to get flow taken away and
; bias gate position down
Qbias = Qbias - 500cfs ; do in 500cfs steps
efficiency = -1 ; negative which should be below plant minimum
ELSE
; we are on the bottom curve and need more flow
; we would bias gate position up and
; increase our efficiency to have a flow priority
Qbias = Qbias + 500cfs ; do in 500cfs steps
efficiency = 2; 200% which should be above the plant maximum
ENDIF
ENDIF
; for vibration away from a cavitation point,
; it 1s probably best to just reduce flow and thus reduce machine load
IF vibration and NOT cavitation = HI THEN
Qbias = Qbias - 500cfs ; do in 500cfs steps
efficiency = -1 ; negative which should be below plant minimum
ENDIF
; for stator temps, we always need to reduce flow which reduces generator load
IF stator.temp = HI THEN
Qkbias = Qbias - 500cfs ; do in 500cfs steps

efficiency = -1 ; negative which should be below plant minimum



Trouble conditions and flow allocations should be addressed by biasing the gate position
or the unit flow setpoint directly. Biasing the blade position should be reserved for

optimizing the generating efficiency at a specific steady-state operating point.

Rule scheduling

Given that the hydro-generating unit is a physical process, it is necessary to
control the timing of rule execution. This is accomplished by enclosing the respective
rule set within code that schedules when the rule set gets evaluated. Typically this
TimeDelay might be 3-5 minutes for each evaluation step, or quicker for cavitation and
vibration issues since their response time is quicker, e.g. 5-10sec. The below pseudo code

demonstrates this.

; TimeDelay is a constant wait time between evaluating this rule set
; timer is the last time rule set was evaluated
IF (Clock - timer) > TimeDelay THEN

timer = Clock ; reset timer to current system clock

< insert rule set here >

River trash

A final point of optimizing would be load ejection to clear river trash. The unit
has a trash rack that serves as a filter for river trash entering the turbine runner, see figure
4.8. When trash accumulates on this rack, it effectively reduces the net head available to
that unit due to the restriction of water flow. This can only be cleared by performing a
load eject which is a rapid load reduction or total shutdown of the unit. This rapid

shutdown causes a backwash wave that clears trash from the trash rack. The unit is then



immediately restarted and benefits from the reduced restriction in the form of a higher net
head and thus higher generation capability and efficiency. A rule set that would

determine when to perform a load eject is given below.

; cost of a load eject is the load lost during the ejection time
; loadeject.time is a preset constant
; load is proportional to head times flow, so just use head * flow
; drawdown 1s the level difference across the trash rack, field measured
loadeject.cost = head.current * flow.setpoint * loadeject.time
load.new = (head.current + drawdown) * flow.setpoint
loadeject.benefit = load.new - load.current
IF loadeject.benefit > loadeject.cost THEN
Ejectload()
ENDIF

you may want to delay load ejections during critical demand times

’

Results

The opportunity for local optimization of an individual unit by its agent is now
demonstrated. In figure 4.16, a set of steady-state operating points from historical process
data for one of the units is plotted for a particular set of operating conditions. Showing
multiple dependent values Load for each independent value Flow illustrates that there are
operating states of varving efficiency. This occurs due to the sub-optimal control of the

existing system.
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Figure 4.16. Load vs. flow.

Assuming the highest point for a given flow value represents an estimate of
potential power generation while the median value represents a typical blade choice, a
conservative estimate of at least 0.5MW of increased instantaneous power generation is
achieved. Assuming this increase of 0.5MW for 50% of the time for one year, results in
2190MWhr of additional power generation. This offsets 912.5tons of less coal on an
annual basis by (4.4). This also reduces annual carbon dioxide release approximately
1670tons by (4.5). This is compared with a typical coal fired generating unit operating
with a heat rate (HR) of 1OMBTU/MWhr. Fuel is assumed as bituminous coal with a

higher heating value (HHV) of 24MBTU/ton and 75% carbon composition.
Coal Tons/vr = Power * HR/ HHV (4.4)

CO; Tons/vr = Coal Tons/vr * 1.83C/CO> * 75% (4.5)
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Flow redistribution is a second opportunity for efficiency improvement now
possible with coordination among multiple units. The three generating units start at an
equal flow. Based on their individual efficiencies from (4.6), flow is incrementally
redistributed with priority given to the most efficient unit, shown by the solid line and the
left-hand scale. Flow is inevitably taken from the least efficient unit until its efficiency
drops, resulting in a net loss for the plant. Notice that the maximum load line peaks at a
higher value before trailing off as expected from diminishing returns. Therefore, the
agent needs to detect this and cease flow redistribution prior to this point. The gain
depicted in figure 4.17 represents nearly IMW of additional power generation for the

whole plant, shown by the dotted line and the right-hand scale.
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Figure 4.17. Load vs. flow redistribution.

Pmml =k* n * Qm‘r g va[ (46)
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Where P, refers to potential power generation available from the water flow, 7] is the

unit efficiency, Q. is the water flow, H,,,, is the unit’s net head, and k is a proportioning

constant.

Another opportunity for improvement is available from handling trouble
conditions in an automated manner, which relieves the operator from manually handling
these conditions. This results in earlier implementation and a better-measured response.
Figure 4.18 illustrates a simulated handling of a condition as compared to typical operator

response for a single unit.
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Figure 4.18. Response to trouble condition.

In the 200 days of data. there were 71
and >10min) for unit 1. 24 such events for
Assuming 0.55MWhr gain per event as s

161. 7MWhrs of additional generation.

high stator temperature events (>180degF
unit 2. and 199 such events for unit 3.

imulated in figure 4.18, this results in



The similar result of figure 4.18 exists for the trouble conditions of vibration and
cavitation utilizing BPy,, or Q.. During vibration and cavitation events. the blade
position can be adjusted or the flow biased to alleviate the event. A measured response
can be applied rather than a step change load reduction and any tlow reductions can be

added to the other units.

Applying the Metrics o the Application
The metrics of portability, scalability, simplicity, and autonomy are now applied
to the application as in the previous neural network implementation. These are discussed

comparatively with the other implementations in Chapter V.

Portability

The application is designed to be portable among hydro-generating units. Even
units with different configurations should be able to utilize the application with only
parameter level changes. The use of a rule-based expert system as the optimization
engine affords the ability to look into the application, i.e. it is a white-box approach. As
such. the rules are modular and can be modified individually. Table 4.6 evaluates the

portability of each module of the application.
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Module / Task Effort w Portability p

Message handler 10% 1
Bias calculator 10% I
Expert system rule sets 80% |

Optimal flow distribution
Optimal unit cycling
Optimal point operation
Trouble conditions
Load ejection

Total Application from (3.1) 100% 100%

Tuble 4.6. Software agent application portability.

Table 4.6 assesses the portability metric at 100% for the application. While the
expert system module can be further broken down. the rule sets are similarly detined and
can therefore be evaluated as a group. In contrast with the previous neural network
application, 100% portability is expected when porting the application to identical hydro-
generating units since the parameters and rule sets would be the same. Porting the
application to other hyvdro-gencrating units would require some modification but this
would be limited due to the laws of similitude. The laws of similitude are a set of
equations that define geometric. kinematic. and dynamic similarity between different
hvdre-generating units [Paul. 1996]. Using these equations the variables of flow, head,
power. etc can be related between two different cases — different cases being different
units or different conditions for the same unit. Therefore. portability to differently
configured units would still be expected to be high. These equations are listed here for

reterence from [Paul. 1996].

o 9 (4.7)
NDN.D.
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Where Q 1s the unit flow. H 15 the net head. P is the power available. D is the intake
runner diameter. p is the densiiy of water, and ¢ is the local gravitational constant. The

subscripts of T and 2 denote case 1 and case 2 respectively. Units can be metric or SAE.

Scalability

When assessing scalability of the application. the ability to add new features and
scope to the application is measured. The Corps user already influences the application
by dictating the allowable flow allocated to the plant. Adding the influence of the
corporate dispatch user allows this user to circumvent normal optimal point operation in
favor of specific generation output in order to stabilize the power grid when necessary.
Also, we consider the addition of a safe fish passage goal. discussed in the closing
remarks below. Research has been performed by [Fisher. 1997] and [Railsback. 2003]
demonstrating that when fish ni:gration 1s signiticant. the blade and gate positions can be
biased away from the optimal point t¢ a configuration that improves fish mortality when

passing through the wurbine blades. Table 4.7 assesses this scalability.
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Module Effortw | Scalability s
Message handler 10% 2
Bias calculator 10% 3
Expert system rule sets 80%
Optimal flow distribution 10% 3
Optimal unit cveling 10% 3
Optimal pornt operation 15% 2
Trouble conditions 20% 3
Load ejection S% 3
Safe fish passage (new) 10% I
Corporate dispatch (new) 10% |
Total Application from (3.2) 100% 78%

Tuable 4.7. Software agent application scalabiliry.

Table 4.7 ussesses the scalability metric with respect to the corporate dispatch and
safe fish passage enhancements at 78%. In cvaluating the modules and rule sets in the
table. the benefit of a rule-based system over a monolithic neural network becomes
obvious. The message handler needs moderate changes to tacilitate the additional process
points for corporate dispatch users to interact with the application. Since the same
controllables are hemng used. the bras cualeulator does not change. Also the rule sets
unaffected by the new scope will not change. The opumal point rule set would be
modified because both safe fish passage and corporate dispatch would tune the unit away
from the optimal pomt to achieve their goals. Also. new rule sets would need to be
defined 10 handle the both safe fish passage and corporate dispatch. though these would

simply add to the existing rule sets.
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Simplicity

When assessing simplicity. we are measuring the difficulty and then comparing
with other applications to determine relative simplicity. as in the previous neural network
application. Table 4.8 determines the difficulty metric for the application for each hydro-

generating unit.

Module W Readability | Complexity " fanin, fanout Difficulty
e f Cro G - (3.3) (3.4)
Message handler ! | 5 s 2.1 20
Bias calculator ﬂm > 2 2.2 64
Expert system PS2910.2 17400
Ap;;,rrlilrcali(m Difticuliy T N o 17484

Tuble 4.8. Software agent application difficulty.

Before implementation of the application. the existing control system included
global process points of various parameters and alarm conditions for the units. Therefore,
the message handler is implemented by adding a new point for cach new agent and user
of the system. Given 3 hydro-generating units. @ Corps user. and a corporate dispatch
user results in 5 new process points, These are simple existing structures and assessed a
readability of 1. A complexity of 5 is assessed. one for cach process point. The bias
calculator is similar to the post-processing modiale of the previous neural network
application and thus. a readability of 2 is assessed. The complexity is assessed at 2 sinee
there are 2 biases. gate positicn and blade position. In assessing the expert system, it s
considered that the pseudo code above is a partial representation of the actual code that

would be deployed. The readability is assessed at 1.5 as a compromise between | and 2



since the rules ure nearly directly readable with some equations. The complexity for each
section of pseudo code above was assessed a local complexity at the end of the code
section and these were summed to 29, The final result for the expert system is 17400 and

cach unit of the application is 17484,

Autonomy - Automation

When assessing autonomy. the metrics of automation. selt-preservation. strategy,
and coordination arc measured as in the previous neural network application. The hydro-
generating unit was close to tuliv antomated betore implementation. However. changing
the automated control state 1o & more optimal state. determining the start up order and
unit eveling. and redistributing fow would have been the responsibility of the operator.
Biasing the flow setpoint. (s, and the blade position would have been how the operator
would accomplish these. Since the rule sets in the expert system are designed to
completely handle these. autonmation is assessed at a level 3 indicating that at least 90%

of the operator tasks are automated.

Autonomy - Self-preservation

Self-preservation is ancther fzature intentionally designed into the application.
With the exception of ancillary support systems and unforeseen problems. the standard
troubic conditions  of stator temperature  excursions. cavitation, and vibration are
addressed by the application. Again. since the rule sets in the expert system are designed
to completely handle these. self-preservation is assessed at a Jevel 3 indicating that at

feast 90% of the trouble conditions are handled



Autonomy - Strategy

When assessing strategy. the application implements the main goal of optimizing
effictency n power generation through optimal point control. flow distribution. and trash
load ¢jection for trash. The application also implements the goals of determining the start
up and shut down order of the units and handling trouble conditions. Provisions for safe
fish passage and corporate dispatch coordination were discussed but not included in the
initial apphication. thus there are 2 goals but some room for additional goals to be
achieved. A strategy metric of 2 s assessed demonstrating both the capability and room

for growth,

Autonomy - Coordination

Coordmation was another capability designed into the application. Most hydro
plants incorporate multple hyvdro-generating units that miust work together if the most
optimal strategies are to be achieved. It s also typical that outside users. such as the
Corps. would determine some operating parameters such as viver tflow allocated to the
plant. The ability to enable multiple users to affect operation ot the hydro-generating unit
and the level of coordmation with the other units. through their agent’s message handler,
results 10 a coordination metric of 2. A coordination metric of 3 would be reserved if

truly mtuitive cooperation was achicved.



The autonomy metric for the software ag
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ent application is therefore V(3

+ 27) or v26. This is depicted in the four-dimensional radar chart of figure 4.19 and are

discussed further in the closing remarks.
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Figure 4.19. Sofnwvare agent application autonomy metric.

Closing Remarks for the Application

The high metrics for portability and scalabthity illustrate the potential for software
agents and the rule-based approach in adapting to change. The previous neural network
application with many inputs and outputs learned the process too well. The particular
nuances of cach coal-fired boiler prevented that application from porting even to
idenucally designed units. The ahility 1o add new scope was also severely limited since
the neural network required complete retraining for any change. The rule-based approach
modularizes the optimization engine ~o that only what needed to scule was changed. The
white-hbox characteristic desigred into the applicanon alsoy improves readability, which
reduces the difficulty resulting i w simpler design. When testing the application. 1t 1s

possibie o predict how the application behaves. thus reducing apprehension in use.

)
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Autonomy was greatly enhanced though the units were well automated beforehand.
Figure 4.19 demonstrates the height at the maximum level of automation and seli-
preservation. Width is good as moderate coordination and strategy are implemented; yet
therc 1s room for growth. These metries demonstrate that the modular. rule-based

approach has several qualitative benefits over the previous neural network design,

When dealing with multiple agents and multiple users. conflict resolution and
seeurity become issues to address. With respect to the external users such as the operator.
the Corps. and corporate dispatch, 1ty seen i figure 4012 how these users have different
types of influence over the plant. Therefore. restrictions in the SCADA system control
how these users access the control svstent. Alfowing users to only access their process
points. e.g. the Corps can only write o the Plantl-low.avaiiable process point. provides
security and resolves contlicts at the user level, At the software agent levell the rule sets
determine how conflict is resolbved and user iputs prioritized. For example. in the pseudo
code above. 1t was desertbed how new plant river tlow would be distributed among the
unit agents, Each agent caleulates its generating efficiency and reports this to the others.
The agents. theretore. know it they are the most efficient and the rules dictate that they
take the tlow. Since the same rule setis in the other umt agents. they likewise know they

are not the most etticient and thus do not take the tiow.

The results clearfy show that there 1s free power gencration lett on the table due to

suboptimal eate and blade positions. Furthermore. there are stgniticant qualitative gains
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in operating strategy by coordinating the enterprise users and multiple units with software

agents. Some of the qualitative benefits and further considerations include:

e Through better management and response to trouble conditions. maintenance and
downtime are both expected to be reduced. This translates into reduced operating
costs and mcreased production and avatlability. There are also operating states that
dramaticaily reduce cumulative machime wear under variable conditions, similar to
those in this paper. studied by March [March. 2003].

e A major vestment both i morey and effort s in the Federal Energy Regulatory
Commuission (FREC) relicensing process, Demonstrating better use of the natural
resource of river flow. us well as better plant management to increase generation thus
reducing reliance on fossil tuels, provides solid evidence to both FERC and the
general public for the case of continued operation.

e [t would be mutually beneficial to the Corps and the Markiand Hyvdro plant to
automate control of the river level. This would allow the Corps direct control over
river level rather than determining a plant tlow target and thus indirect control. This
simplifies the Corps™ duties and provides more accurate calceulation of Q.. which is a
critical variable for plant operation. For multiple hydro plants along the same river,
level controf can be linked between plants.

e As wildlife and environmental concerns become increasingly important. the issue of
fish mortality through the turbine blades must be addressed. Research has been done
on models for safe fish passage by varving operating conditions that would integrate
well mto this model. Simple revisions to the rule sets could accomplish this [Fisher.

19971 [Railsback. 2003},
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The Architecture Applied to a Power Plant with Hybrid Vehicle Coupling

The architecture ot Chaprer 111 1s now applied to the previous hydro-generating
application. This demonstrates how the architecture advances the state of the art by
implementing a layered approuach that incorporates the benefits of both decentralization
and centralization in the same application. Once the hyvdro-generating application is
developed. u stmilar application to a tyvpical hyvhrid vehicle will then be developed.
Finally. these two applications are linked to achieve a power plant 1o hybnd vehicle
coupling. commonly known as vehicle to grid (V2G) technology. This will demonstrate
the enterprise-level and advanced coordination capabilities of the portable. scalable,

simple. and autonomous architecture.

Overview

Hybrid vehicles are beginning to replace the previous model of fossil-fuel-only
vehicles i personal automotive applications. This new  vehicle model  includes
components for both power generation and storage and a large enough scale to serve most
of the needs of a single-family home. [t is now becoming possible for these vehicles to be
integrated into the power grid at the individual user’s residence. Currently. this is for
manually charging of the vehicle's power storage svstem. However. this affords a new
opportunity as power utilities could now use the hybrid vehicle remotely to store and
generate power on demand for supp emental needs. In many areas. the power grid s
taxed near its maximun capability at peak demand times. vet at other times during the

same day. the demand is only a fraction of the grid’s capability. The repository of hybrid
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vehicles could smooth out this demand and bring stability o power delivery. The benefits
of this would dramatically reduce spot power prices since demand would be managed by
controlling supplv in this new way. This also creates a strategy to handle the anticipated

demand on the power grid by the adoption of such vehicles.

Figure 4.20 provides an overview of how the architecture s applied to the hydro-
generating plant. the hybrid vehicle. und their coupling. Each hvdro-generating unit will
have a software device agent that provides local. decentralized management functions
that is Tinked 1o the plant's svstem faver for centralized management functions. Similarly
for the hybnd vehicles cach power systent device wili have its respective software device
object that 1s coordinated by the hybod vehicle svstem layer. The system layers of these
two applications are then finked for pegotiation through the consumer’s power meter and

via the IP over power fines protocol,
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Figure 4.20. Overview ot hvdro plant to hvbrid vehicle coupling,

Hydro-Generating Plant Application

Apphication 1o the hydro-generating units and plant requires rules for the
individual units 1 their respective software device agents. methods for imterfacing the
device Tayer o the wystem faver, trainmg sets for the peural network pre-classifier. and
rules for the expert system. The ruie sets develeped in the previous hydro-generating
apphication wou.d be used similarly with the disunction of location in this architecture.
Rules for local unit optimization would reside in the software device agent and rules for
plant management would reside 1 the system faver. Table. 4.9 illustrates how these rules

would be relocated to achieve the decentralized benpefits of individual unit optimization

and the centralized benetits of courdmated plant-wide management.



, Layer ' ~ Rule set
} Unit’s SDO agent (f)pt;marlﬂ i%(ﬂuim control T
o Trouble condition handling o
- HTR!\EI' trash load ejection
U Safefishpasage rules
CSystem faver rules Number of units to run B
I i Stum{lbﬂ;tm{ shutdown ps“im'itizuri(m |
L — S - —
Flow redistribution ‘
- Corporate dispatching rules o J

Fable 4.9 Rude sers inthe lnvdro-generatinie application.

The ruie sets for optimal pomt control. trovble conditions. foad ejection. and safe
fish passage are applicable to a specitic unit as detined in the previous hydro-gencrating
application. These rules run in the device fayer and are distributed ameng the mdividual
generating units, The rules sets tfor how many units to run. the order of startup and
shutdown. flow distribution assignments as a respanse o the unit’s optimal point control,

and rules tor dealing with corporate dispaich are aoplicable to the whele plant and reside

in the centralized control of the system Taver,

In addition 1o the above rule sets for optimization and management. methods 1n
the software device agents need to be defined o interface with the system laver. In
Chaprer 11, these methods detine the demand. reserve. status. and command mputs and
outputs of the software device objects. The demand for a generating device refers to the
current power generation. Flow is used o simphfy power-hased caleulztions since flow s

proportional to power by (4,65, The reserve will indicate the power available detined by
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the flow 1o get to the next optimal point of operation. unless a trouble condition exists

which would reduce pewer availability. These are defined in the pseudo code below.

; demand lrrens £ A
Demand = filc ERehiN
esevve L3 [low ST nexT O a2l poLnt uaniess trooble
FONGT Trouple
Reserve = f.ow TITAL L ADTVE foaverorbing DXt teoash o mers TLow
;I otne ble reguices oz 1L LT LT YA “he ion off
ELSE 1 nuntonroubie = Elsiiier -
£ N TN LE L VE
- < cwosen r 12

The status method would signal the software device agent's status conditions o
the svstem laver. The svatem laver would consider the demand and reserve values above

along with these status messages to decide how 1o redistribute flow, it necessary. Typreal

statuses are listed in table 410 along with the relation between demand. D. and reserve,

R.



| Status code

Meaning

}

Vibration HI

Vibration LO

- Vibration needing a flow increase to correct. D < R

Vibration needing a flow decrease to correct. D >R

Cavitation Hl
Cavitation L.O

- Cavitation needing a flow increase to correct, D < R

| Cavitation needing a flow decrease to correct, D>R |

» Stator Temp HI

Reduce flow 1o cool stator. D < R

- Load Eject

Uit needs to perform a trash ejection. D >> R R=0

- Sub Optimal CK

Unit OK but not at optimal flow point. D < R

; Optimal OK

AT S SR &
[ba] T [
be} &

Table 470, Status

The commuand

Unit OK and ut?‘vptimal flow point. D=R

S

miethod for the hivdeo-generaring application.

input to the software device dagent from the svstem laver also needs

to be handled. For a hydro-generating vinit. this convmand would clude the flow setpoint

and directives

software device agent (€

P

following examples

goon or oftline ¢

&onn na&ra <
E nmand = L
ENoIE
;LY o new D W
Pt comeeane o -
o S ™~ *
STy T T
IhiNie
Ll "_ k=)
z H oA Lcaa enE

&

roperform a foad eject. The pseudo code for the

» handle the svstem laver command would be defined as m the




The system laver would formy commands based on the results of its rule sets as in the

following pseudo code example.

re flow o oun by SLCCES and
L 5T Wl &
Jeny A Yeguested loaa 7= Nt
- T EEa o g demand
. nit S [y p IRE et
TRl 0 =

Prior to management decisions being applied by the system fayer. 1t s beneficial
10 have the operating state classitication performed by the artificial neural network for
feature extraction. Neural networks apply well w control environments where a standard
model s not clearly defined. This allows the neural network to find absiract relationships
in the operating state pattern that would otherwise be undetectable by conventional rule
conditions. This 1s known as @ soft or virtual sensor approach where an immeasurable
mput condition is detected by puttern matching with availeble mputs. Neural networks
also provide a continuous analog classification as opposed to the discrete classifications
of expert svstems, This allows a classitication w be quantified in terms of confidence

relative 1o other classifications.

Table 411 illustrates the mputs and outpuis selected tor the neural network. The
demand and reserve for each unitis sclected along with the actual Toad generated by each
unit. the plant head. and the river temperature. The ovtpuis are selected to provide an
analog measure of: distance from optimal operation to improve optimal control; sensor

validation to detect failures in measurement or changes i machine conditions: and
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seasonal classification to enable the expert system to execute seasonal strategies. This

results in a refatively small and manageable neural network of 11 inputs and 7 outputs.

‘ lnpu'fs (1 lf

Outputs (7)

demand, unit |

distance to optimal operation. unit 1

demand. unit 2

distance to optimal operation, unit 2

demand. unit 3

distance to optimal operation, unit 3

reserve, unit |

sensor vahidation, unit |

reserve, unit 2

sensor vahidation, unit 2

reserve. unit 3

toad, untt |

sensor validation, unit 3

rSeason

“

foad, unit 2

Idad, unit 3

o

’ plant head

river temperatu re

Table 4.17. Neural network configuration of hydro-generating application.

Developing the neural network to classify the inputs in the above manner involves

training with a user-defined data set. Coupling the desired outputs to the given mputs

assembles the training set. For the first three outputs of distance from optimal operation,

the previously discussed database of optimal points is used. as in figure 4.14. A sample

operating point is chosen and compared to the optimal operating point. The desired

output is the distance to this point. Additonal sample operating points would be chosen

1o define the boundaries of the operating space. This operating space is defined by the

Hill curve in figure 4.15. Neural networks provide good interpolation in their trained

space and would subsequently classify any sample point relative 1o the closest optimal

point. This determination of distance from optimal operation can be used together with
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the statuses reported by the device layer to provide validation for reports of sub-optimal

unit operation and determine how far from optimal the plant is operating.

For the second set of three outputs. unit generation (load) 1s compared to the
current operating states. The relation between the inputs of head and flow. and the output
of load would be a training pattern. When the actual value for unit load differs from the
trained value, the system layer can conclude that either there is some error in the field
inputs or that the machine condition has changed in some way. as shown in the following

pseudo code.

crain the neural network with user-detined patterns
‘neural network inputsg) -» (neural network outpurs!

thead, flow! -» load.expe

il actual and expe

IF icad.expected <<>» load.actual

Unit . trouble = TRUE

The last output of river season would consider the head. flows. and river
temperature to determine the season, either summer or winter, trained similar to the

above. This allows the system layer to have different strategies for different times of the
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vear. For example. fish migration may not be an issue in the winter season so this module

could be deactivated during this time.

By using the neural network. more classification information can be generated to
allow better rules to be constructed in the expert system. The neural network enhances
the ability of the system layer to deal with continuous data and interpolate between

known operating points, which can be a weak point for purely rule-based systems.

Hybrid Vehicle Application

So far, the architecture has been applied and discussed in terms of power
generating plants. However, the flexibility of the architecture allows it to be applied to
any system needing power management. Hvbrid vehicles are an excellent example since
they include power generation. power storage, and power utilization devices. Thus, they
represent a microcosm of a complete power cycle. The hybrid vehicle exists to reduce
fuel consumption and subsequently reduce environmental emissions. Power management
is a critical technology for these goals that enables them to succeed while being easily

accessibie to consumers.

Figure 4.20 above mcludes the illustration of a hybrid vehicle power system. The
main components are a gasoline engine and generator for power generation. a battery for
power storage. and an electric motor as a load device that drives the vehicle. Each of
these devices recetves a software device object accordmng to the architecture in Chapter

11, The respective software device objects incorporate the methods for demand. reserve.
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status, and commands for interfacing with the system layer: and local optimization
methods for the specific device. Pseudo code for these devices is as follows.

power peing suppilied (+) or

or state of charge

nd * rimestep

1S troubl

T T
i

moTor.

Tow, fuel

ine.demand =

regerve Lg

. A armaty A
r.aemand =




18 what the ICE

IF generator. trouble = FALSRE THEN
generator.regerve = engir
ELSE
generaror.reserve = engine.

The system layer provides power management of the above devices for the hybrid

vehicle. Figure 4.21 illustrates the power flow paths between devices. Table 4.12

demonstrates the different modes of operation of the vehicle and the general magnitude

and sign ol the power flow quantitics noted in figure 4.21.

Consumer
Meter
A
E
A4

Electric

i Batte ;
Drive Motor « > ery «
A S
D - Transmission

—L

Figure 4.21. Hvbrid vehicle power flow.
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Operating mode A B C D K F
idle 0 0 0 0 0 0
Cruising, low acceleration 0 0 0 | +MED | +MED 0
Med acceleration 0 0 0 . +Hl +HI 0
' High acceleration sMED | +MED | +MED | +Hi +HI Jf 0
Medium regenerative braking 0 0 0 -HI -HI 0
' High combination braking 0 0 0 -Hl -HI 0
Mobile charging / battery low | +MED +MED | +MED i 0 0 0
Home chargiﬁg / power storage } G 0 G ! 0 0 -HI
Home power discharge ¢ 0 0 G 0 +MED
" Home backup power . +MED | +MED | 0 0 0 +MED |

Table 4.12. Power flow relative quantities.

In table 4.12, HI refers to nearly maximum capability and MED refers to a
medium or mediated level determined by the power management system with the sign
referring to the direction of net power flow. The idle mode 1s self-explanatory in which
no power is moved within the system. During cruising at steady speeds or with light
acceleration and deceleration. the electric motor s used exclusively. When high
acceleration is needed, the ICE is added for extra drive power although this 1s not an
efficient type of driving behavior. During moderate braking effort, regenerative braking
is used through the drive motor and absorbed by the battery for recovery. When high
braking effort is needed, the vehicles hydraulic brakes are used in combination. Mobile
charging occurs when the battery’s state of charge s low during transit and the ICE is
then used for supplemental charging. The modes for when the vehicle is docked at home
are discussed in greater detail i the Coupling the Applications” System Layers section

below. In summary. the battery can be charged fron the power utility grid. discharged to

)
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the grid for grid stabilization, or discharged to the home for backup power during
blackouts. The user preferences for these are discussed here as well. Whenever the ICE is
utilized. 1t is operated at its most efficient operating point with the mechanical drive from
the electric motor making up the difference. The strategy is 10 use electrical motor for
primary propulsion and the 1CE only when supplemental power or battery charging is

needed, thus minimizing fuel consumption and environmental pollution.

The neural network is now developed for pre-classification and summary data. In
addition to the demand and reserve inputs from the device faver. the user inputs relevant

to mobile operation of the vehicle of throttle and braking inputs. which are typically on a

scale of 0-100% of vehicle capability. are included. These are listed in table 4,13,

Inputs (10) T Outputs (5)
Demand. electric motor clectrical demand summary
Demand. battery - mechanical demand summary
Demand. generator ; predicted vehicle range
Demand, en g’ingm pxu?m(d vehicle fuel economy

Reserve, electric motor predicted vehicle emissions

Reserve, battery

Reserve, generator

Reserve, engine

User throttle position

User braking effort

Table 4.13. Neural nevwork configuration of hybrid vehicle application.



The outputs of the neural network would be analog values on a range of -1 to +1
with the expert system rules providing proper scaling to engineering units. These would
provide an indication of the current requirements for the vehicle to aid in expert system
rule construction. The relative quantities in table 4.12 would provide a guideline for
generating training data. Although the expert system can perform classification, the
neural network can also classify the operating state and with a continuous, analog
quantification. This can aid the rule sets in determining quantitative command responses
to the device layer. Considering the clectrical and mechanical demand summary outputs
for example, when the battery 1s too low to drive the vehicle effectively but the user
needs propulsion. the ICE is used to both drive the vehicle and provide battery charging.
Not only can the neural network classify this discrete state as mobile charging, it can also
provide a continuous classification guiding the expert system in the appropriate balance
of ICE mechanical power between the drivetrain and generator. This is illustrated in

figure 4.22.

-

Mobile charging ciass

Relative mechanical demand
i

-
Throitie position %
Figure 4.22. Neural network interpolative classification example.



In figure 4.22. both x; and x> are in the operating state of mobile battery while the
vehicle is in operation. However, the balance of power mechanical power sent to the
drivetrain versus the generator is different in each case. The output of the neural network
aids the expert system in determining the power appropriate balance as in the following
pseudo code. This pseudo code theretfore handles any pornts within the mobile charging

classification due to the neural network’s natural interpolative capabilities.

. ) 3 .
LF vehacle mode = MopiisCharging
N . 013 Ao S
23 ra il * NI Loa L demand
er shor = engine. power.total angine . power . drivetrain

Raw data from vehicle simulations can be used to predict the real-time vehicle
range and fuel economy under a given set of conditions [Bauman. 2007] [Gao, 2001].
This data is used directly to train the neural network in the prediction of these quantities
for the expert system and user feedback, thus simplifying the generation of training data.
The final output of environmental emissions 1s determined directly by the quantity of fuel

burned.

Some sample rules for the system layer are given below that outline strategies for
regenerative and combination braking, starting and stopping the motor and ICE, mobile
charging mode, and optimal operation of the ICE. Additional rules would follow
similarly and software device object commands would be formed and communicated as

in the previous hydro-generating application.
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ENDIF

ENDIF

;T o= 3
; Samplig rules to cperate ITE at optiwma. cperating point ith exception
IF engine.started THEN

;o contrel engine throttis for coptimum rpw by default

; use2 Internal PID algorithm with

engine . PID.satpoint = optimum rpm
engine.?Il . anailogvalue = oty
engine.throttlie = engine.?Pil.outpuc
1f we need more power then go ahead puc only when true
F userinput . .torotoi= THEN

More rules to handle coupling with the power utility and home charging and back up are

gtven in the following section.

Coupling the Applications™ Svsten Lavers

In the hvdro-generating and hybrid vehicle applications above. the flexibility of
the architecture has been demonstrated as a means of achieving power management.
These two applications will now be coupled to form a coordinated solution for power
management between the generating facility and the vehicle end user. The new
capabilities achieved by coordination demonstrate how this whole is greater than the sum
of its parts. Specifically. that simply joining these two applications preserves their

individual capabilities while enhancing them both to a new level,

N
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Because the power systems” devices do not change in this coupling. the software
device objects and agents do not change. Also, the neural network configuration does not
change since this performs local classification. Therefore, all of the coordinating effort is
done through the system layer's rule-based expert system. The existing rules for power
management of the respective application remain intact and an additional rule set is
added to achieve coordination. The additional capabilities achieved through this coupling

are listed in table 4. 14

. Mode " - Coordination |
Battcr} rechln‘ging | Consumer demanded reclfugingi’uf vehicle battery
Power storage T §tomge of power in vehicle battery by pvovvm' plant -
Power depletion Recovery of power in vehicle battery by power plant
Power backup . Backtxp};(w—i;'gl‘ for consumer’s home durin g power outag_fcs |

Tuble 4.14. Modes of coordination.

The mode of battery recharging is the obvious plug-in recharging method from
the power grid to the vehicle's battery. Power storage functions the same way with the
exception of being initiated by the power plant. This is for the storage of grid power at
low demand times. which is later recovered by the power plant at high demand times
during the power depletion mode. Thus. these two modes achieve load balancing and
power grid stabilization. The final mode of power backup is a feature that allows the
vehicle's battery to supply power for the consumer’s home during power outages or

power cycling. The consumer chooses to participate in lead balancing and receives a
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financial benefit for participation. A sample user interface is illustrated in figure 4.23 of

the status and user preferences relevant to these modes.,

Home Charging - User Preferences Screen

Current financial incentive offered: 10.5¢/kW-hr Time: 6:30 PM

Time for vehicle to be ready: 08:00 AM

Target reserve for battery at above time: 90%

SET

I Permit utility load balancing when the -20 kWrhr

incentive is above 8.0¢/kW-hr Ut
tility Power

' Permit home backup power

M Use ICE for home backup power when 60 %
battery reserve is below 10%

Battery Reserve

Figure 4.23. User preferences interface for coupling application.

The user preferences sereen in figure 4.23 allows the consumer to set the desired
tume for utilizing the vehicle and the minimum reserve of the battery. The vehicle’s
system laver will attempt to meet these parameters by controlling the amount of power
transfer between the vehicle and the power grid. The consumer may also participate in
load balancing for a financial incentive or enable a power backup for their home with
parameters defining how these modes are executed. The current battery reserve is given
in percent and the current power tlow between the vehicle and the power grid is shown
with positive values indicating discharging to the grid and negative values indicating
charging of the battery. The financial incentive offered to the consumer by (4.14) and to

the power plant by (4.13) is based on the market pricing at diffcrent times by (4.12).



B=MP, - MP,

(4.12)
B,=(-k, B

(4.14)
Where B is the benefit. MP is the market price. and k.. is the benefit-sharing fraction to

the consumer. The subscripts of € and P denote consumer and plant respectively while
the subscripts of R and S denote the times of recovery and storage respectively. During
peak summer demand for example. the difference between the market price at midnight
during storage and the market price at noon during recovery can be as high as an order of

magnitude. This translates to boih a good financial incentive tor both parties as well as

effective load balancing. The rules for realizing this negotiation in the hybrid vehicle’s

system layer are developed below using the values in figure 4.23

wome cnarging without 1oad balancing
IF battery.ressrve 90% AND NOT permit.lcadkalancinag T
Chargebatteryv (ON:

IF patterv.re
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The rules for realizing this negotiation in the hvdro-generating plant’s system layer are

developed below.

; Comm

s F 3 a8 a f var_ableg
; alsce by equaticng 4. ;4. 13, and 4Ll

sumey = Fiprice foy NI,

i ¢ 3 Tove

Lomnara.

mode . powerrve

Oemrnar g s
LCOomnana.

ENDIF

;T o= 2
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Software Metrics of the Applications
The software metrics developed in Chapter III are now applied to the
applications. In this case, the metrics are defined with respect to the coupling of the

hydro-generating and hybrid vehicle applications.

Portability

Comparing the hydro-generating application to the hybrid vehicle application
assesses portability. This demonstrates how the architecture can be moved between very
different application domains. Table 4.15 compares the modules between the two

applications and quantifies the portability of the architecture.

Hydro Plant Hybrid Vehicle Effort w | Portability p

SDO agent unitl SDO battery 25% 25%
SDO agent unit2 SDO motor
SDO agent unit3 SDO generator

SDO engine
Neural network Neural network 25% 25%
Expert system rule sets Expert system rule sets 50% 25%
Total from (3.1) 100% 25%

Table 4.15. Coupled applications portability.

While the portability of 25% appears low, it is considered that these are very
different applications. As in the previous hydro-generating agent-based application, the
portability was high moving from one hydro-generating unit to another, even when
design parameters were different. Assessing the portability as above points out an

important characteristic of the architecture. That characteristic is the preserving of the

161



structure, if not the actual code and rule sets. Between these two applications, the same
methods are designed for the software device objects, they are connected to the system
layer in the same manner, the neural network is trained in the same way, and the rule sets
in the expert system are formed similarly. A score of 25% is assessed signifying that
when moving to a very different application domain, the architecture is preserved, thus

eliminating the effort of designing a new control environment structure.

Scalability

The scalability of the applications is measured with respect to adding the scope of
coordination. Thus, the hydro-generating and hybrid vehicle applications that are
complete on their own are now enhanced with additional rules in the system layer to

allow coordination to achieve additional goals. This is illustrated in table 4.16.

Hydro Plant Hybrid Vehicle Effort w | Scalability s
SDO agent unit] SDO battery 25% 100%
SDO agent unit2 SDO motor
SDO agent unit3 SDO generator
_ SDO engine

Neural network Neural network 25% 100%
Expert system rule sets Expert system rule sets 50% 90%

+extra rules for +extra rules for

coordination coordination
Total from (3.2) 100% 95%

Table 4.16. Coupled applications scalability.

In table 4.16, the capability of the architecture to scale is clearly demonstrated

with a high factor of 95%. Adding the additional scope of coordination between the two
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applications significantly enhances their capability although only minor effort is required.
The layered approach preserves the work in the device layer and neural network pre-
classifier allowing these to scale unmodified. The expert system rule sets existing for
each individual application are also largely unchanged. The only modifications to this
module are the addition of rules to handle the coordination as demonstrated in the

coupling discussion in the previous section.

Simplicity
Measuring difficulty assesses simplicity, as with previous applications. This is

summarized in table 4.17.

Module Readability | Complexity | fanin, fanout | Difficulty
Cr Cc 3.3) 3.4)
Hydro plant
SDO agent unitl 1.5 13 1,3 176
SDO agent unit2 1.3 13 1,3 176
SDO agent unit3 1.5 13 1,3 176
Neural network ’ 3 1 11,7 17787
Expert system 12 25 16, 3 86400
Hydro application total 104715
Hybrid vehicle
SDO battery Lol 3 1,3 41
SDO motor Ea 2 L3 27
SDO generator i 2 1,3 &7
SDO engine 1.5 2 1,3 27
Neural network 3 1 10, 5 7500
Expert system 1.5 31 17,4 215016
Vehicle application total 222638

Table 4.17. Coupled applications difficulty.
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The readability metric is determined with rules being assessed a 1.5 and neural
networks assessed at 3. The complexity is summarized at the end of each section of code.
Fanin and fanout are determined to be relatively large due to the nature of the centralized
approach of the system layer. However, due to the high readability of the rules
throughout the applications and the relatively small and simply defined neural networks,
this is respectable. Especially when compared to the difficulty of the monolithic neural

network approach to centralization in the previous coal-fired application.
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Autonomy - Automation

When assessing autonomy, the metrics of automation, self-preservation, strategy,
and coordination are measured with respect to the coupling of the hydro-generating and
hybrid vehicle applications. As before, the hydro-generating plant was already close to
fully automated and the scope of the architecture in the new hydro-generating application
resulted in at least 90% automation for an assessed value of 3, determined by table 3.3.
Full automation of the user’s operation of the hybrid vehicle is not desired due to driving
preferences of the user base. However, the power management system should relieve the
user from any power management functions created by the new scope and allow the user
to easily set preferences for power management. In this case, the automation is assessed
at 3 for the hybrid vehicle application since it is nearly transparent to the user while
serving the user’s needs. These result in the coupled applications being assessed an

autonomy metric of 3.

Autonomy - Self-preservation

Self-preservation is another feature intentionally designed into the applications
and their coupling. Previously, the hydro-generating application was assessed a self-
preservation metric of 3 since 90% of the trouble conditions were handled, defined by
table 3.4. The handling of trouble conditions in the hybrid vehicle related to power
management is included by design within the rule sets. Therefore, the self-preservation
metric for the hybrid vehicle and subsequently for the coupled applications is assessed at

<X
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Autonomy - Strategy

The previous hydro-generating application was assessed a strategy metric of 2
indicating that there was some room for additional scope, defined by table 3.5. The
hybrid vehicle application incorporates the typical operating strategies of efficient use of
multiple power system components and adapts to user inputs during operation for
additional tasks, e.g. providing high demand acceleration through the electric motor and
ICE. The hybrid vehicle is assessed a strategy metric of 2 indicating a few power
management goals are achieved. The additional strategies for load balancing and home
backup power however increase the strategic scope to a new level and the strategy metric

for the coupling is assessed at 3.

Autonomy - Coordination

Coordination was designed into the coupled applications by definition. The
previous hydro-generating application was assessed a coordination metric of 2, defined
by table 3.6, since it was able to cooperate with other hydro units and handle multiple
users. The hybrid vehicle typically handles one instance of a single user type at a time
and does not cooperate with other vehicles. However, the coupled applications do
cooperate with each other using the unique capabilities of the architecture. This
represents a relatively high level of cooperation from the standpoint of typical hybrid
vehicle applications. Therefore, the coordination metric for the hybrid vehicle is assessed
at 2 and for the coupled applications, is assessed at 3 reflecting the unique capabilities
achieved by cooperation between the hybrid vehicle and power utility for both grid

stabilization and financial benefit,

166



The autonomy metric for the coupled applications is therefore V(3% + 3% + 3% + 3%

or V36 = 6. This is depicted in the four-dimensional radar chart of figure 4.24.

gy /;%/
_

AP

Figure 4.24. Autonomy metric of the coupled applications.

Figure 4.24 represents the largest square for autonomy possible. While this does
not indicate there is no room for additional autonomous capability, this is intended to
indicate that the two applications and their coupling achieve a complete solution that
provides for their individual power management while working together for a power

management solution that is greater than either of their individual scopes.

Closing Remarks for the Applications
The above coupling of the plant and vehicle applications demonstrates how the
architecture achieves this cooperation. In the macrocosm of the power generating grid,

the system layers of a power utility’s generating fleet would be coordinated themselves

167



and appear to the consumer as a single power-providing entity. Each consumer would

then link their hybrid vehicle resulting in multiple instances of this coupling application.

In [Kempton-1, 2005] and [Kempton-2, 2005], the benefits to the power industry
and consumer of the vehicle to grid application are derived in detail. In these papers, the
generating capacity of the U.S. power utilities is estimated at 602GW, discounting
unregulated generation. There are over 176 million vehicles in operation in the U.S. with
an average power generation and consumption of 111kW each. Assuming these vehicles
are used only 4% of the time still results in a vehicular power base of 19,500GW,
eclipsing the generating capacity of the power industry. The other 96% of the time the
vehicle is not in use, it can be made available for power storage. Thus, even a small level
of participation would produce significant results. The financial benefits to each
participating consumer would be approximately $2000-$4000 annually. This is on the
same order as the average consumer’s electric power costs, resulting in a direct offset of
the consumer’s power costs. Additionally, as wind and solar power become more
prevalent, the storage capability of vehicle to grid technology becomes more important as

an enabling technology to improve the availability of these power-generating options.

While these papers demonstrate the benefits of vehicle to grid technology, this
architecture provides a software solution for achieving this technology. As consumers
embrace the hybrid vehicle technology, they will look for new ways to harness its
capabilities. The portable, scalable, simple, and autonomous architecture presented is a

path to achieving these new benefits.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

The Architecture as a Solution

In Chapter I, the problems in using current power management systems were
outlined. These systems typically had a simple model, e.g. a large neural network
optimizer, yet these simple models became difficult to implement or understand once
implemented. The author was the lead engineer on such a large neural network
optimization at a coal-fired power generating plant. When a preliminary nitrogen oxide
reduction was performed, it was observed that opacity had been increased significantly.
Therefore, the optimization needed to account for this as well. This shift in scope
required much rework of the neural network model and even when this model was
completed, similar shifts in scope would have the same drawback. Additionally, local
operations and management staff did not readily accept the neural network. The black-
box approach could not answer questions such as, “What would be the response to X
stimulus?” without first submitting the response. These unknowns caused the application
to proceed with apprehension, and perhaps rightly so. A white-box approach was needed,
but one that could be assembled modularly. This was achieved with the rule-based

approach outlined in Chapter I11.
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As such advanced control techniques have matured; management has come to
embrace their aspects of increased functionality and data analysis. This has revealed
another limitation in existing models: the lack of scalability. The neural network model,
for example, could not adapt to multiple corporate users now applying varying degrees of
influence and rapidly shifting goals. Architecture with an enterprise-level solution was
needed while still being able to manage the lowest level of details in the process. The
layered approach outlined in Chapter III demonstrated how this problem would be
addressed. By engaging multiple business entities in the decision-making process, more
advanced multi-goal solutions are now possible. This keeps business entities informed for
their own strategic benefit while letting them contribute their strategic influence over the
process being optimized, through the architecture’s layered approach, to realize an
enterprise-level power management system. As competition increases, enterprise-level
power management systems are becoming mission-critical solutions for the next

generation of power systems.

As this architecture was being developed, the author noticed other areas, such as
hybrid vehicles, which would benefit from power management. It seemed redundant that
such areas would require a whole new architecture, thus this architecture was enhanced to
include support for these. It was found that this enhancement brought returns to all
application areas and the developed architecture could be ported and scaled as needed for
almost any power management problem. This also results in a collaborative benefit
whereby researchers in one application field of power management could utilize lessons

learned from an unrelated field as a fresh perspective.
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One of the primary concerns in applying for research grants is that solutions
should be meaningful and provide real benefit. This architecture was developed to be
accessible to those in industry who might apply them. While there have been other
architecture with many of the same capabilities, none have been as flexible as the layered
and modularized approach developed here. This is discussed in detail in the following
sections of Scalability, Portability, Simplicity, and Autonomy. When it is considered that
power generation and utilization consume our natural resources, impact our environment,
and limit or exclude some missions on a large scale involving all individuals and
companies alike, the benefits of architecture that is not only effective but also

implementable by those in the field becomes obvious.

Scalability in the Applications

Scalability is the ability of the architecture to grow to meet new goals or an
expanding mission. The scalability demonstrated in the applications of Chapter IV
illustrates how different types of application modules are modified when they scale.
Neural networks scale very poorly while well-written rules scale very well. Even rules
that need to be changed are changed individually, minimizing rework. The architecture
demonstrates good orthogonality since changes in software device objects are relatively
independent of the system layer and vice versus. The device layer methods for demand,
reserve, and status as well as the handling of commands are encapsulated in the software

device objects. The system layer is reserved for whole process power management so that
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individual device or sub-system rule sets are not present to jeopardize the quality of loose

coupling.

Security in Scalable Applications

In a scalable application where multiple users with different missions to
accomplish are present, security must be a consideration. Between the device layer and
the system layer, security is not significant as these layers reside internally to the local
power management system. Security for local users is accomplished using the existing
authentication protocols present in the HMI or SCADA user interfaces. As users outside
the normal operation of the process are introduced, security needs to be customized for
each user. This is accomplished through the database server or global SCADA system
and again would utilize existing authentication protocols. This allows the architecture to
incorporate access-level security by taking advantage of existing protocols. The rule sets
developed by these business entities for their influence over the local system layer can be
partitioned into special sections of the expert system to enforce limitations on their

influence, or the rule sets can be reviewed manually by local engineering staff.

Portability in the Applications

Portability is the ability of the architecture to be applied to varying missions and
power system configurations. By using the layered approach, modifications that would be
necessary when moving from one implementation to another become modularized.
Therefore, if a new implementation is to utilize the same hardware components, the

device layer will port to the new implementation virtually unchanged. In the system
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layer, there are some rule changes but these rules are individually modifiable simplifying

portability.

The applications in Chapter IV demonstrate the extremes of portability in power
management systems. In the large monolithic neural network application, portability was
virtually nonexistent; as even identically configured generating units could not utilize the
same neural network due to variances in device conditions such as age and machine wear.
The hydro-generating software agents with 100% portability among identical units and
the architecture applied to the vehicle to grid technology however achieved much greater
portability due to their rule-based approach and cohesive software object / agent

definitions. This was clearly demonstrated in the portability metrics of these applications.

Simplicity in the Applications

Simplicity refers to the ease of implementing and maintaining the architecture in
the power system environment, including ease of understanding by maintenance
personnel and users of the architecture. The architecture achieves simplicity by using a
layered approach to modularize the optimization and management problem, breaking the
problem into simpler pieces, which can then be quickly coded or ported to/from other
implementations, Once in place, the system becomes a white-box solution that is quick to
learn, easy to maintain, and well accepted among its users. For enterprise-level solutions,

each user interfaces only with their respective rule sets of the system layer.

173



While the resulting difficulty of the vehicle to grid application is demonstrated as
greater than the previous hydro-generating application, it should be considered that the
vehicle to grid application incorporates a much greater scope. Also, it can be seen that
this architecture can move to other applications with a relatively small change in
difficulty since the architecture is so cohesively defined. Each module is well defined and
its interconnections pre-defined regardless of application type. This is in contrast to the
first neural network application which is unreadable once in place and must be
completely reconfigured for each application, as determined by its high difficulty

measure and thus inferior simplicity to the architecture of Chapter I11.

Autonomy in the Applications

Autonomy refers to the ability of the architecture to provide an intelligent
decision-making capability to the application with minimal user interaction. This
autonomy frees the operator from constant supervision allowing them to perform other
actions and otherwise simplifying operation. Autonomy also becomes a mission-enabling
feature for applications where user interaction is limited or unavailable, e.g. space and
certain military environments. Figure 5.1 illustrates how autonomous and intelligent

decisions are produced in the architecture.
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Figure 5.1. Autonomy in decision-making.

The monolithic neural network application did achieve autonomy, though hidden
from the operator, but with limited ability to handle multiple goals and users. The
software agents in the hydro-generating application added multiple goals and users with
the agents having some interaction among them. A high level of automation and self-
preservation through alarm handling were also achieved. The vehicle to grid application
demonstrated the highest level with autonomy by taking the hydro-generating application
further through cooperation with a hybrid vehicle’s power management system. This
allowed new the goals of power storage and load stabilization to be realized on the hydro-
generating end while benefiting the vehicle user with financial incentives and scheduled
charging. It is clear in this application that additional strategies and cooperative efforts
are built in to the architecture and can be accessed by additional rules sets added

modularly.



Future Directions

The following future directions are ideas for expanding the application of the
architecture. These demonstrate the flexibility and growth potential inherent in the
architecture and give some direction for research ideas that would be interesting,

practical, and beneficial.

Closing the Loop in Consumer Power Generation

New capabilities are allowing bidirectional communications between power
utilities and their customers over the existing power lines, e.g. Internet protocol over
power lines (IPoP). This was discussed in the vehicle to grid application in Chapter IV.
This architecture can take advantage of these new capabilities by modeling the customers
as unique instances of a generic load device and interfacing them with software device
objects or agents on the utility side. This would allow customers and utilities to directly
negotiate their power needs for a more robust and responsive power delivery solution.
Instead of trying to predict the chaotic behavior of thousands of customers, software
agents would know this behavior in advance allowing power utilities to make more
accurate decisions about power generation and delivery needs. A proposed design would

follow similar to figure 5.2.
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Figure 5.2. Closing the loop in consumer power generation.

Application of the Architecture to a Picosatellite

The picosatellite is also an excellent example of how the architecture can move
from the industrial scale to the pico scale to handle new mission constraints such as mass,
physical size, limited user direction, and power availability. A typical picosatellite
conforms to the standards similar to the CubeSat [Heidt, 2000], being 10cm cubed with a
mass of less than lkg. The power management system needs to be robust and
autonomous since the space environment does not afford the opportunities for repair and
communications is limited by its consumption of power and the bandwidth and delay in
transmission over great distances. Software power management is utilized since it is a
zero-footprint enhancement that improves power availability through optimal
management and power capability through strategic management. The architecture,

therefore, becomes a mission-enabling technology for such vehicles.

In figure 5.3 the implementation of the whole power management system for the
picosatellite is illustrated. The battery device is used as an example with other devices
being incorporated similarly. Sample methods for the software device objects (SDO) and

sample rules for the expert system are also shown in their proper location. The pseudo

177



code block for the battery determines the demand and reserve outputs to the system layer
and performs actions based on the command input from the system layer. Internal
methods determine the battery’s voltage, current, and temperature and scale these from 0-
100%. The neural network performs classification and feature extraction of these SDO
outputs (input vector I) to serve as additional information for building predicates in the
expert system rule set, The expert system then takes the output classification, @, along
with the outputs and statuses of the SDOs to determine commands for the SDOs using the

rule set. This is shown in the pseudo code block for the expert system.
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Pseudocode block (battery)
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Figure 5.3. Picosatellite power management system.

The picosatellite application is intended to make space vehicle research affordable
to educational institutions and small businesses. The picosatellite vehicle is also
composed of multiple systems and therefore provides the opportunity for multiple diverse

teams o learn to cooperate while developing their individual devices. In educational



institutions, this involves more students and teaches them how to participate in larger

teams and with outside teams having different needs and goals.

Herrell [Herrell, 2007] provides great detail and sources for the planning of space
missions including picosatellites in conjunction with NASA's New Millennium Program
at http://nmp.jpl.nasa.gov. Table 3 of Herrell [Herrell, 2007] lists 29 parameters that
define a mission and are used to test against other planned flights for rideshare (additional
spacecraft on an existing launch vehicle) or piggyback (additional experiment on an
existing spacecraft) compatibility. As discussed in Chapter I1, picosatellites are launched
in a bundled group. Details of previous missions are well summarized at Michael's list of

CubeSat missions [Thomsen, 2008].

Costs for individual CubeSat components and the CubeSat kit are listed at the
Pumpkin Inc. web site [Pumpkin-1. 2008]. Budgets for the base picosatellite vehicle and
space on a multi-picosatellite launch vehicle can be less than $100k making this approach
to space research affordable to educational institutions that share costs and resources

across multiple teams as well as small businesses.
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