31 research outputs found

    Continuous Frames, Function Spaces, and the Discretization Problem

    Full text link
    A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the continuous frame. This is done by generalizing the coorbit space theory developed by Feichtinger and Groechenig. As an important tool the concept of localization of frames is extended to continuous frames. As a byproduct we give a partial answer to the question raised by Ali, Antoine and Gazeau whether any continuous frame admits a corresponding discrete realization generated by sampling.Comment: 44 page

    Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type

    Get PDF
    Coorbit space theory is an abstract approach to function spaces and their atomic decompositions. The original theory developed by Feichtinger and Gr{\"o}chenig in the late 1980ies heavily uses integrable representations of locally compact groups. Their theory covers, in particular, homogeneous Besov-Lizorkin-Triebel spaces, modulation spaces, Bergman spaces, and the recent shearlet spaces. However, inhomogeneous Besov-Lizorkin-Triebel spaces cannot be covered by their group theoretical approach. Later it was recognized by Fornasier and the first named author that one may replace coherent states related to the group representation by more general abstract continuous frames. In the first part of the present paper we significantly extend this abstract generalized coorbit space theory to treat a wider variety of coorbit spaces. A unified approach towards atomic decompositions and Banach frames with new results for general coorbit spaces is presented. In the second part we apply the abstract setting to a specific framework and study coorbits of what we call Peetre spaces. They allow to recover inhomogeneous Besov-Lizorkin-Triebel spaces of various types of interest as coorbits. We obtain several old and new wavelet characterizations based on precise smoothness, decay, and vanishing moment assumptions of the respective wavelet. As main examples we obtain results for weighted spaces (Muckenhoupt, doubling), general 2-microlocal spaces, Besov-Lizorkin-Triebel-Morrey spaces, spaces of dominating mixed smoothness, and even mixtures of the mentioned ones. Due to the generality of our approach, there are many more examples of interest where the abstract coorbit space theory is applicable.Comment: to appear in Journal of Functional Analysi

    Coorbits for projective representations with an application to Bergman spaces

    Full text link
    Recently representation theory has been used to provide atomic decompositions for a large collection of classical Banach spaces. In this paper we extend the techniques to also include projective representations. As our main application we obtain atomic decompositions of Bergman spaces on the unit ball through the holomorphic discrete series for the group of isometries of the ball

    Banach frames in coorbit spaces consisting of elements which are invariant under symmetry groups

    Get PDF
    AbstractThis paper is concerned with the construction of atomic decompositions and Banach frames for subspaces of certain Banach spaces consisting of elements which are invariant under some symmetry group. These Banach spaces—called coorbit spaces—are related to an integrable group representation. The construction is established via a generalization of the well-established Feichtinger–Gröchenig theory. Examples include radial wavelet-like atomic decompositions and frames for radial Besov–Triebel–Lizorkin spaces, as well as radial Gabor frames and atomic decompositions for radial modulation spaces

    Quantum tomography with wavelet transform in Banach space on Homogeneous space

    Full text link
    The intimate connection between the Banach space wavelet reconstruction method on homogeneous spaces with both singular and nonsingular vacuum vectors, and some of well known quantum tomographies, such as: Moyal-representation for a spin, discrete phase space tomography, tomography of a free particle, Homodyne tomography, phase space tomography and SU(1,1) tomography is explained. Also both the atomic decomposition and banach frame nature of these quantum tomographic examples is explained in details. Finally the connection between the wavelet formalism on Banach space and Q-function is discussed.Comment: 25 page
    corecore