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Abstract

This paper is concerned with the construction of atomic decompositions and Banach frames for subspace
certain Banach spaces consisting of elements which are invariant under some symmetry group. These Ban
spaces—called coorbit spaces—are related to an integrable group representation. The construction is establis
via a generalization of the well-established Feichtinger–Gröchenig theory. Examples include radial wavelet-l
atomic decompositions and frames forradial Besov–Triebel–Lizorkin spaces, as well as radial Gabor frames a
atomic decompositions for radial modulation spaces.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The study of time–frequency analysis and wavelet analysis of functions onR
d that are invariant unde

a symmetry group was started in [17]. There the author raised the question whether it is possible to
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Imagine that a functionf on R
d , which has some symmetries, is represented by a Gabor or wa

expansion. Then the functions (translates and dilates or modulations of a single function) in the ex
will not all (actually nearly none of them) obey the same symmetry properties asf . So one might ask
whether it is possible to find a Gabor-like frame or wavelet-like frame (for the subspace ofL2(Rd)

consisting of invariant functions) such that each frame element itself is invariant under the sym
group.

In case of radial symmetry inRd , Epperson and Frazier successfully constructed radial wavelet fr
which even serve as atomic decompositions for subspaces of Besov spaces and Triebel–Lizorki
consisting of radial functions [5]. Kühn et al. used this radial atomic decomposition to establi
sults concerning compact embeddings of radial Besov spaces in [15]. In dimension 3 radial ortho
wavelets were constructed in [19] using the concept of a multiresolution analysis. However, con
radial Gabor frames there seems nothing to be known up to now.

Both wavelet theory and time–frequency analysis can be treated simultaneously using repres
theory of locally compact groups. In this abstract setting the theory for the continuous transform
presence of invariance under a general symmetry group was developed in [17]. The symmetry
realized as compact automorphism group of the locally compact group whose representation coe
generate the continuous transform. As examples, the continuous wavelet transform and the sh
Fourier transform (STFT) of radial functions onRd were discussed in detail. A radial function can
described by some function on the positive halflineR+ and it turned out in [17] that the continuou
wavelet transform and the STFT of a radial function can be computed by an integral transformR+,
which involves a generalized translation in case of the wavelet transform and some kind of a gen
combined translation and modulation (formula (4.4)in [17]) in case ofthe STFT. Both of these “general
ized operations” are given as integrals and in particular the generalized combined translation/mo
turns out to be quite complicated.

The (stable) discretization of the “radial wavelet transform” and the “radial STFT” actually mea
construction of frames, where each frame element is given as some generalized translation or
generalized translation/modulation of a single function. In order to attack the discretization proble
first idea would probably be to proceed analogously to the classical wavelet and Gabor theory.
fact, in case of radial wavelets inR3 this approach was successful [19]. However, in arbitrary dimen
and for radial Gabor frames the direct approach seems hopeless because of the complicated fo
combined generalized translation/modulation. So one has to look for different approaches.

In the classical setting (i.e., without symmetry group) Feichtinger–Gröchenig theory has pro
provide a general and very flexible way to construct coherent atomic decompositions and Banach
for certain Banach spaces, called coorbit spaces, which are related to the continuous transform [8
This approach makes heavy use of group theory and, thus, is quite abstract. However, the final
is a very elegant solution to the discretization problem. In particular, regular and irregular Gab
wavelet frames are included as examples. Moreover, not only Hilbert space theory is covered
atomic decompositions and Banach frames of Besov–Triebel–Lizorkin spaces and of modulation
are provided. So it also provides a new aspect of the theory of function spaces.

Motivated by its success, it seemed very promising to attack the problem of constructing frames
each frame element is invariant under some symmetry group, by generalizing the Feichtinger–Gr
theory. And in fact, this paper presents the results of this approach. As in [8–10,12] we make
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coorbit spacesCoY . These are Banach spaces related to the corresponding wavelet transform,
is given by matrix coefficients of some integrable unitary group representation of a locally co
groupG. Typically the coorbit spaces are smoothness spaces of distributions, for example Sobolev
Since here we are only interested in elements (distributions), which are invariant under a sym
groupA, we consider the subspacesCoYA consisting only of those. We will then proceed analogou
to the classical papers of Feichtinger and Gröchenig [9,10,12] and shall finally establish coheren
decompositions and Banach frames forCoYA (Theorems 7.1–7.3). We emphasize that every elem
of this atomic decomposition or Banach frame by itself will be invariant underA. In particular, radial
wavelet frames and radial Gabor frames will be covered by the corresponding theorems as ex
Since in case of the Heisenberg group (with theSTFT as corresponding transform) the coorbit spaces
the modulation spaces, we obtain atomic decompositions for radial modulation spaces, which w
known before.

We remark that Dahlke et al. developed a generalization of Feichtinger–Gröchenig theory into a
direction [2,3]. In their approach the parameter space of the transform is not a group anymor
homogeneous space. A further generalization was recently provided by Fornasier and Rauhut [11
starting point is an abstract continuous frame.

The paper is organized as follows. In Section 2 we introduce notation and certain preliminaries
we try to keep as close as possible to the classical papers [9,10,12] and to [17] in order to make
ison easy. In Section 3 we define the coorbit spaces and their subspaces of invariant elements
some elementary properties. In order to establish the atomic decompositions we shall need a s
invariant bounded uniform partition of unity (IBUPU) as one of the main tools. We show in Sect
that such IBUPUs exist for every locally compact (σ -compact) group and every compact automorph
group. As another important tool we will need Wiener amalgam spaces onG and their subspaces of in
variant elements. These will be discussed in Section 5. The atomic decompositions and Banach
will be established using certain operators on functions onG that approximate the convolution. As in [1
we will use three different approximation operators which will lead to an atomic decomposition, to
nach frame and to the existence of a ‘dual’ frame. These operators will be discussed in detail in Se
Finally, in Section 7, after all preparation, we shall establish atomic decompositions and Banach
For reasons of length, the detailed discussion of examples will be postponed.

2. Notation and preliminaries

Let G be a locally compact group andA be a compact automorphism group ofG, such thatA acts
continuously onG, i.e., the mappingG × A → G, (x,A) �→ Ax is continuous. We denote the left Ha
measures onG andA by µ and ν, whereν is assumed to be normalized. However, we usually w
dx and dA in integrals. The modular function onG is denoted by∆ and the left and right translatio
operators onG by LyF(x) = F(y−1x) andRyF(x) = F(xy). Furthermore, we define two involution
by F∨(x) = F(x−1) andF∇(x) = F(x−1). The action ofA on functions onG is denoted byFA(x) =
F(A−1x), A ∈A, and the action on measuresτ ∈ M(G), the space of complex bounded Radon meas
onG (the dual space ofC0(G)), by τA(F ) = τ(FA−1), A ∈A, τ ∈ M(G), F ∈ C0(G).

The functions (measures) which satisfyFA = F for all A ∈ A are called invariant (underA). A stan-
dard argument shows that the Haar-measureµ and the modular function∆ are invariant under an
compact automorphism group. For a function (measure) spaceY on G we denote the subspace of i
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variant elements byYA := {F ∈ Y,FA = F for all A ∈A}. An invariant function onG can be interpreted
as a function onK := A(G) the space of all orbits of the formAx := {Ax,A ∈ A}, x ∈ G. The orbit
spaceK becomes a topological space by inheriting the topology ofG in a natural way [1,14,17].

For some positive measurable weight functionm on G we define the weighted spaceLp
m := {F mea-

surable,Fm ∈ Lp} with norm‖F | Lp
m‖ := ‖Fm | Lp‖ where theLp-spaces onG are defined as usual.

We recall some facts about the convolution of invariant functions from [17].

• The convolution of two invariant functions (measures) is again invariant, in particularMA(G) ∼=
M(K) is a closed subalgebra ofM(G) and L1

A(G) ∼= L1(K, µ̃) is a closed subalgebra ofL1(G),
whereµ̃ is the projection of the Haar measure ontoK, i.e.,

∫
K F(Ax)dµ̃(Ax) = ∫

G F(x)dµ(x).
• Define the generalized left translation by

LyF (x) :=
∫
A

F
(
A

(
y−1

)
x
)
dA = εAy ∗ F(x)

whenever this expression is well defined a.e., for instance forF ∈ C(G). Here, εAy(F ) :=∫
A F(Ay)dA denotes the ‘invariant Dirac’ measure. ThenLy maps invariant functions onto invaria

ones, and the convolution of two invariant functionsF,G may be expressed by the formula

F ∗ G(x) =
∫
G

F(y)LyG(x)dµ(y) =
∫
K

F(Ay)LAyG(x)dµ̃(Ay) (2.1)

whenever the convolution is defined.
• Define an involution onK by (Ax)˜ := A(x−1). Then(K,∗,˜) is a hypergroup, more precisely a

orbit hypergroup (see also [1,14]).

In this paper we will work with Banach spaces of functions onG which will usually be denoted byY .
Similarly as in [12] we will make the following assumptions onY .

(1) Y is continuously embedded intoL1
loc(G), the locally integrable functions onG.

(2) Y is solid, i.e., ifF ∈ L1
loc(G), G ∈ Y and|F(x)| � |G(x)| a.e., thenF ∈ Y and‖F | Y‖ � ‖G | Y‖.

(3) Y is invariant under left and right translations. Hence, we may define the two functionsu(x) := ‖Lx |
Y → Y‖ andv(x) := ‖Rx−1 | Y → Y‖∆(x−1). Clearly, u(xy) � u(x)u(y) andv(xy) � v(x)v(y),
i.e.,u andv are submultiplicative. Additionally, we require thatu andv are continuous. Under thes
assumptions, as pointed out in [9,18], we have

L1
u ∗ Y ⊂ Y, ‖F ∗ G | Y‖ �

∥∥F | L1
u

∥∥‖G | Y‖ for all F ∈ L1
u, G ∈ Y (2.2)

and

Y ∗ L1
v ⊂ Y, ‖F ∗ G | Y‖ � ‖F | Y‖∥∥G | L1

v

∥∥ for all F ∈ Y, G ∈ L1
v. (2.3)

(4) A acts continuously onY . Without loss of generality we may assume thatu(Ax) = u(x) and
v(Ax) = v(x) for all A ∈ A. (In case this is not true define an invariant norm onY by ‖F | Y‖′ :=∫
A ‖FA | Y‖dA. SinceA acts continuously onY , this is an equivalent norm onY .) ThenYA is a

closed nontrivial subspace ofY . (To see that there is a nontrivial element contained inY start with a
positive nonzero functionF in Y and letF ′(x) := ∫

F(Ax)dA, which clearly is invariant.)
A
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With the Banach spaceY , we will always associate the weight function

w(x) := max
{
u(x), u

(
x−1), v(x), v

(
x−1)∆(

x−1)}.
Then, as a consequence of our assumptions onY , w is continuous,w(xy) � w(x)w(y), w(x) � 1, and
w(Ax) = w(x) for all A ∈A andx ∈ G. Furthermore, by (2.3) we have

Y ∗ L1
w ⊂ Y, ‖F ∗ G | Y‖ � ‖F | Y‖∥∥G | L1

w

∥∥. (2.4)

We further assume that we are given a unitary, irreducible (strongly continuous) representationπ of G
on some Hilbert spaceH and some unitary (strongly continuous) representationσ of A (not necessarily
irreducible) on the same Hilbert spaceH, such that the following basic relation is satisfied (see also
18]),

π
(
A(x)

)
σ (A) = σ (A)π(x). (2.5)

In other words, we require that all the representationsπA := π ◦ A are unitarily equivalent toπ and that
the intertwining operatorsσ (A) form a representation ofA.

For f ∈ H we letfA = σ (A)f andHA := {f ∈ H, fA = f for all A ∈ A}, the closed(!) subspace
invariant elements. We always assume thatHA is not trivial. The wavelet transform or voice transfor
is defined by

Vgf (x) := 〈
f,π(x)g

〉
.

It mapsH into Cb(G), the space of bounded continuous functions onG. With an elementg ∈ HA we
denote byṼg the restriction ofVg to HA. We recall some facts from [17].

• Forf,g ∈HA the functionṼgf is invariant underA, i.e.,Ṽg mapsHA into Cb
A(G).

• Forx ∈ G we define

π̃(x) :=
∫
A

π(Ax)dA

in a weak sense. This operator mapsHA ontoHA and depends only on the orbit ofx underA, i.e.,
π̃ (Bx) = π̃(x) for all B ∈A. Furthermore, we have

Ṽgf (x) = 〈
f, π̃(x)g

〉
HA

. (2.6)

• The operators̃π(x) form an irreducible representation of the orbit hypergroupK.
• We have the following covariance principle

Ṽg

(
π̃ (x)f

) =LxṼgf.

We further require thatπ is integrable which means that there exists a nonzero elementg ∈ H such
that

∫
G |Vgg(x)|dx < ∞. This implies thatπ is square-integrable, i.e., there existsg ∈ H such that∫

G |Vgf (x)|2 dx < ∞ for all f ∈ H. Such ag (corresponding to the square-integrability conditio
is called admissible. We list some further properties from [4] and [17] that hold under the s
integrability condition.
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• There exists a positive, densely defined operatorS such that the domainD(S) of S consists of all
admissible vectors and the orthogonality relation∫

G

Vg1f1(x)Vg2f2(x)dx = 〈Sg2, Sg1〉〈f1, f2〉

holds for allf1, f2 ∈H, g1, g2 ∈ D(S).
• As a consequence, if‖Sg‖ = 1, we have the reproducing formula

Vgf = Vgf ∗ Vgg (2.7)

and, of course, the same formula holds also forṼg.
• The space span{π(x)f, x ∈ G} is dense inH for any nonzerof ∈ H and span{π̃ (x)f, x ∈ K} is

dense inHA for any nonzerof ∈HA.
• The operatorS commutes with the action ofA, i.e., σ (A)S = Sσ (A) for all A ∈ A. Furthermore,
DA(S) := D(S) ∩HA is dense inHA andS mapsDA(S) into HA.

• Forg ∈DA(S) with ‖Sg‖ = 1 we have the following inversion formula onHA:

f =
∫
K

Ṽgf (y)π̃ (y)g dµ̃(y), f ∈HA, (2.8)

where the integral is understood in a weak sense.

Example 2.1. Consider the similitude groupG = R
d

� (R∗+ × SO(d)) with d � 2 whereR
∗+ denotes the

multiplicative group of positive real numbers. We introduce the following operators onL2(Rd):

Txf (t) = f (t − x), Daf (t) = a−d/2f (t/a), URf (t) = f
(
R−1t

)
for t, x ∈ R

d , a ∈ R
∗+, R ∈ SO(d), f ∈ L2(Rd). Then the operators

π(x, a,R) = TxDaUR, (x, a,R) ∈ R
d

�
(
R

∗
+ × SO(d)

) = G

form an irreducible unitary square-integrable representation of the similitude group onH = L2(Rd). The
corresponding voice transform is the continuous wavelet transform

Vgf (x, a,R) = 〈
f,π(x, a,R)g

〉 = a−d/2
∫
Rd

f (t)g
(
a−1R−1(t − x)

)
dt.

The compact subgroupA = SO(d) of G acts onG by inner automorphisms. It is trivial to check th
the restrictionσ = π |SO(d) is a representation ofSO(d) on L2(Rd) satisfying (2.5). The spaceHA of
invariant vectors is then given by the space of radialL2-functions,L2

rad(R
d) = {f ∈ L2(Rd), f (R−1t) =

f (t) for all R ∈ SO(d)}. The operators̃π(x, a,R) depend only on|x| anda and they are given by

π̃(x, a,R) = τ|x|Da,

whereτs , s ∈ [0,∞), denotes a generalized translation which is defined by

τsf (t) = 1

|Sd−1|
∫
d−1

f (t − sξ)dS(ξ), t ∈ R
d.
S
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Here,Sd−1 denotes the unit sphere inRd , |Sd−1| = (2πd/2)/(Γ (d/2)) its surface area and dS the surface
measure. This operator maps radial functions onto radial ones. As a consequence of (2.6), the co
wavelet transform of a radial function with respect to a radial wavelet can be computed by an i
over[0,∞) involving the operatorsτs . By writing the radial functionf ∈ L2

rad(R
d) asf (t) = f0(|t|), for

some functionf0 on [0,∞), we obtain

τsf (t) = |Sd−2|
|Sd−1|

1∫
−1

f0
(√

s2 − 2s|t|r − |t|2)(1− r2)(d−3)/2
dr.

For further details and for an example connected to time–frequency analysis of radial functions w
to [17,18].

For technical reasons we further assume without loss of generality thatG is σ -compact.

3. Coorbit spaces

Given a function spaceY on G with associated weight functionw the set of analyzing vectors
defined by

Aw := {
g ∈ H, Vgg ∈ L1

w(G)
}

and its subspace of invariant elements by

A
A
w := Aw ∩HA = {

g ∈HA, Ṽgg ∈ L1
w(G)

}
.

We shall always assume thatA
A
w is not trivial and consider only those weightsw (respectively, function

spacesY ) for which this is the case. Sinceπ is irreducible, the elementsπ(x)g, x ∈ G, span a dens
subspace ofH and

Vπ(x)g

(
π(x)g

)
(y) = 〈

π(x)g,π(y)π(x)g
〉 = Vgg

(
x−1yx

) = LxRxVgg(y).

SinceL1
w is left and right invariant, we conclude thatπ(x)g ∈ Aw wheneverg ∈ Aw. Hence,Aw is a

dense subspace ofH andA
A
w is a dense subspace ofHA.

Fixing an arbitrary nonzero vectorg ∈ A
A
w the spaceH1

w is defined by

H1
w := {

f ∈H, Vgf ∈ L1
w

}
with norm∥∥f | H1

w

∥∥ := ∥∥Vgf | L1
w

∥∥.

Its subspace of invariant elements is given by(
H1

w

)
A :=HA ∩H1

w = {
f ∈HA, Ṽgf ∈ L1

w

}
.

In [9] it is proven that the definition ofH1
w is independent of the choice ofg ∈ Aw with equivalent norms

for differentg. Clearly,Aw ⊂ H1
w andA

A
w ⊂ (H1

w)A and, hence,H1
w is dense inH and(H1

w)A is dense
in HA.

As an appropriate reservoir of elements for the coorbit spaces we take the space(H1
w)� of all

continuous conjugate linear functionals onH1
w (the anti-dual space). We extend the bracket〈· , ·〉 to
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w by means of〈f,g〉 = f (g). We remark that by taking the anti-dual instead of the us
dual we can formally use the bracket in the same way as in the Hilbert spaceH and all formulas
carry over without change. Note that the anti-dual can always be identified with the dual via the
ping J : (H1

w)′ → (H1
w)�, J (f )(h) = f (h), h ∈ H1

w. Further, we also extend the bracket onL2(G) by
〈F,G〉 = ∫

G F(x)G(x) dx for F ∈ L∞
1/w(G), G ∈ L1

w(G).
With the usual identification of elements inH1

w with elements in the anti-dual we have the continu
embeddings

H1
w ⊂ H ⊂ (

H1
w

)
�.

We also need the anti-dual((H1
w)A)�. Define a map̃ : ((H1

w)A)� → (H1
w)� by f̃ (g) := f (

∫
A gA dA),

g ∈H1
w, where

∫
A gA dA defines an element of(H1

w)A in a weak sense. The map˜ establishes an isometr
isomorphism between((H1

w)A)� and ((H1
w)�)A, the space of all functionalsf in (H1

w)� that satisfy
f (gA) = f (g) for all A ∈A andg ∈H1

w. We may therefore unambiguously write(H1
w)�

A.
SinceVg(π(x)g) = LxVgg and sinceL1

w is translation invariant, all elementsπ(x)g, x ∈ G, are con-
tained inH1

w wheneverg ∈H1
w. Hence, the action ofπ onH1

w can be extended to(H1
w)� by the usual rule

(π(x)f )(g) = f (π(x−1)g) for f ∈ (H1
w)�, g ∈H1

w and it is reasonable to extend the voice transform
(H1

w)� by

Vgf (x) := 〈
f,π(x)g

〉 = f
(
π(x)g

)
, f ∈ (

H1
w

)
�, g ∈H1

w.

Clearly, in the same waỹVg extends to(H1
w)�

A.
For more details onH1

w and(H1
w)� we refer to [9]. The results there carry over to the subspaces(H1

w)A
and(H1

w)�
A.

Definition 3.1. For a fixed nonzerog ∈ A
A
w we define the coorbit ofY under the representationπ by

CoY := {
f ∈ (

H1
w

)
�, Vgf ∈ Y

}
with natural norm

‖f | CoY‖ := ‖Vgf | Y‖.
Further, the closed subspace of invariant elements is defined by

CoYA := (
H1

w

)�
A ∩ CoY = {

f ∈ (
H1

w

)�
A, Ṽgf ∈ YA

}
,

with induced norm.

It is proven in [9] thatCoY is a Banach space which is independent ofg ∈ Aw (with equivalent norms
for different gs) and in some sense there is also independence of the weight functionw. Namely, ifw2

is another weight function withw(x) � Cw2(x), then replacing(H1
w)� in the definition ofCoY with

(H1
w2

)� results in the same space. Clearly, the analogous statements hold forCoYA.
A central role is played by the following proposition, which is an easy adaption of Propositio

in [9], by using the fact that the convolution preserves theA-invariance.

Proposition 3.1 (Correspondence principle). (a) Giveng ∈ A
A
w with ‖Sg‖ = 1, a functionF ∈ YA is of

the formṼgf for somef ∈ CoYA if and only ifF satisfies the reproducing formulaF = F ∗ Ṽgg.
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(b) Ṽg : CoYA → YA establishes an isometric isomorphism betweenCoYA and the closed subspac
YA ∗ Ṽgg of YA, whereasF �→ F ∗ Ṽgg defines a bounded projection fromYA onto this subspace.

(c) Every invariant functionF = F ∗ Ṽgg is continuous, belongs toL∞
1/w(G) and the evaluation map

ping may also be written asF(x) = 〈F,LxṼgg〉 = 〈F,LxṼgg〉.

We remark that in all places where the convolution appears one should have formula (2.1) in m
Examples of coorbit spaces include the homogeneous Besov spacesḂ

p,q
s (Rd), the homogeneou

Triebel–Lizorkin spacesḞ p,q
s (Rd) and the modulation spacesMp,q

s (Rd). The first two examples ar
connected to the similitude groupG = R

d
� (R∗+ × SO(d)) and the third example is connected to t

Heisenberg group, for details see [8,12], and [20] for the corresponding characterizations of
Triebel–Lizorkin spaces. When the automorphism group isSO(d) the corresponding coorbit spac
CoYSO(d) include subspaces oḟB

p,q
s (Rd), Ḟ

p,q
s (Rd), or M

p,q
s (Rd) consisting of radially symmetric distr

butions onR
d . For details on howSO(d) acts on the Heisenberg group or the similitude group we r

to [17].

4. Invariant bounded uniform partitions of unity

Our main task is to find atomic decompositions of the invariant coorbit spacesCoYA, i.e., we look for
discretizations of the inversion formula (2.8) forṼg. In [9] the concept of a bounded uniform partition
unity has been proven useful. In order to adapt this tool to our case we require that all functions be
to the partition of unity are invariant underA. This leads to the following definition.

Definition 4.1. A collection of functionsΨ = (ψi)i∈I , ψi ∈ C0(G), is calledA-invariant bounded uniform
partition of unity of sizeU (for shortU -A-IBUPU), if the following conditions are satisfied:

(1) 0� ψi(x) � 1 for all i ∈ I andx ∈ G,
(2)

∑
i∈I ψi(x) = 1 for all x ∈ G,

(3) ψi(Ax) = ψi(x) for all x ∈ G, A ∈A, i ∈ I ,
(4) there is a relatively compact neighborhoodU = A(U) of the unite and there are elements(xi)i∈I ⊂ G

such that

suppψi ⊂ A(xiU) =
⋃
A∈A

A(xiU),

(5) supz∈G #{i ∈ I | z ∈A(xiQ)} � CQ < ∞ for all compact setsQ ⊂ G.

We remark that condition (5) is equivalent to condition (5′):

sup
j∈I

#{i ∈ I | suppψi ∩ suppψj �= ∅} � C < ∞.

If the automorphism group is trivial, i.e.,A= {e}, then the definition above reduces to the one of a BU
in the sense of [9].

In the sequel we will prove the existence of arbitrarily fine IBUPUs on every locally compact g
A first step is the following lemma whose proof is an adaption of the one in [16].
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Lemma 4.1. LetA be a compact automorphism group of a locally compact,σ -compact groupG and let
V = V −1 = A(V ) be a relatively compact neighborhood ofe ∈ G with nonvoid interior. Then there exis
a countable subsetX = (xi)i∈I ⊂ G with the following properties:

(1) G = ⋃
i∈I A(xiV ).

(2) For all compact setsK1,K2 ⊂ G there exists a constantC > 0 such that

sup
y∈G

#
{
i ∈ I, A(yK1) ∩A(xiK2) �= ∅}

� C < ∞.

Moreover,X can be chosen such that, for any setW = W−1 = A(W) with W 2 ⊂ V , we have

A(xiW) ∩A(xjW) = ∅ for all i, j ∈ I, i �= j. (4.1)

Proof. For property (1) we first consider the case thatG = ⋃∞
n=1 V n. We choosex1 := e. Now form

K(2) := V 2 \ V . If K(2) = ∅ (only possible ifG is compact), then we are done, because we haveG = V .
Otherwise choosex2 ∈ K(2) and formK(3) := V 2 \ (V ∪A(x2V )). If K(3) �= ∅ choosex3 ∈ K(3). Contin-
uing in this way one obtains

V 2 ⊂
N2⋃
i=1

A(xiV )

with xj /∈ ⋃j−1
i=1 A(xiV ). Let us estimate the size ofN2. If W = W−1 = A(W) is a relatively compac

neighborhood ofe, with W 2 ⊂ V , then at most|V 2W |/|W | of suchxiW fit into (V 2)W . Then
⋃N2

i=1 xiW
2

and
⋃N2

i=1A(xiW
2) are coverings ofV 2. Hence,N2 � |V 2W |/|W |.

Now considerK(N2+1) = V 3 \⋃N2
i=1A(xiV ) and choosexN2+1 ∈ K(N2+1) (if K(N2+1) �= ∅). Inductively

we obtain a covering

G =
∞⋃
i=1

A(xiV ).

If G is compact, then the covering is finite. It is easy to see that property (4.1) holds for the setX = (xi)i∈I .
In the general case we may writeG = ⋃

s∈S ′ sG0 (disjoint union) whereG0 = ⋃∞
n=1 V n is an open

and closed subgroup ofG (consisting of (possibly several) connected components ofG including the
connected component of the identity). SinceG is σ -compact, the setS ′ ⊂ G is countable. However, it i
not clear whetherA keeps invariant each connected componentsG0. To take care of this fact we form
Gs := A(s)G0. Now, we may writeG = ⋃

s∈S Gs (disjoint union) for some subsetS ⊂ S ′ and treat every
Gs similarly as above. Namely, start withxs

1 := s and putK(2)
s :=A(sV 2) \A(sV ) (this really is a subse

of Gs by our construction!) and takexs
2 ∈ K(2)

s and so on. The rest is analogous to the above construc
Let us now prove that property (2) holds for the setX constructed above. Suppose thatz ∈

A(yK1) ∩ A(xiK2) �= ∅ with y ∈ G for somei ∈ I . Then z = A1(y)k1 = A2(xi)k2 with A1,A2 ∈ A
and kj ∈ A(Kj), j = 1,2. DenotingAi,y = A−1

1 A2 we immediately deduceAi,y(xi) ∈ yA(K1K
−1
2 )

and, hence,Ai,y(xi)W ⊂ yA(K1K
−1
2 )W . The property (4.1) implies in particularxiW ∩ xjW = ∅. Fur-

thermore, the number of nonoverlapping sets of the formxW that fit into yA(K1K
−1
2 )W is obviously

bounded by|A(K1K
−1)W |/|W |. Altogether we obtain
2
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#
{
i ∈ I, A(yK1) ∩A(xiK2) �= ∅}

� #
{
i ∈ I, Ai,y(xi)W ⊂ yA

(
K1K

−1
2

)
W

}
� |A(K1K

−1
2 )W |

|W | .

This completes the proof.�
A setX with the property (1) in Lemma 4.1 is calledV -denseand a setX with property (2)relatively

separated. If both properties hold, thenX is calledwell-spread(with respect toA).
Now we are ready to settle the problem of existence of IBUPUs.

Theorem 4.2. LetG be a locally compact,σ -compact group,A be a compact automorphism group ofG
andU = A(U) be an open relatively compact neighborhood ofe ∈ G. Then there exists aU -A-IBUPU
in the sense of Definition4.1.

Proof. ChooseV = V −1 = A(V ) such thatV 2 ⊂ U andX = (xi)i∈I according to Lemma 4.1 with th
additional property (4.1) (where we constructX with respect toV and not with respect toU !). For every
i ∈ I let φi ∈ Cc(G) be such thatφi(x) = 1 for x ∈ A(xiV ), suppφi ⊂ A(xiU), 0 � φi(x) � 1, for all
x ∈ G and φi(Ax) = φi(x) for all A ∈ A, x ∈ G. (Such a function exists: Take any functionpi that
satisfies all properties except the invariance and putφi(x) = ∫

A pi(Ax)dA. Thenφi is invariant and still
satisfies all other properties.) By property (2) in Lemma 4.1 (applied forK1 = K2 = U ) and since the
sets suppφi coverG, we have

1� Φ(x) :=
∑
i∈I

φi(x) � C < ∞.

Now setψi(x) := φi(x)/Φ(x) ∈ Cc(G) yielding
∑

i∈I ψi(x) = 1 for all x ∈ G and suppψi = suppφi ⊂
A(xiU). The invariance underA of the functionsψi is clear and the finite overlap property (5) follow
from property (2) in Lemma 4.1. �

5. Wiener amalgam spaces

As another tool we shall need Wiener amalgam spaces. The idea of these spaces is to meas
and global properties of a function at the same time. For their definition, letB be a Banach space o
functions (measures) onG andY be a solid, left and right invariantBF-space. Using a nonzerowindow
functionk ∈ Cc(G) (most commonly a function that satisfies 0� k(x) � 1 andk(x) = 1 for x in some
compact neighborhood of the identity) we define thecontrol functionby

K(F, k,B)(x) := ∥∥(Lxk)F
∥∥

B
, x ∈ G, (5.1)

whereF is locally contained inB, in symbolsF ∈ Bloc. The Wiener amalgamW(B,Y ) is now defined
by

W(B,Y ) := {
F ∈ Bloc, K(F, k,B) ∈ Y

}
with norm∥∥F | W(B,Y )

∥∥ := ∥∥K(F, k,B) | Y∥∥.

It has been shown in [7] that these spaces are two-sided invariant Banach spaces which do not d
the particular choice of the window functionk. Moreover, different window functions define equivale
norms. For the various properties of Wiener amalgam spaces see [6,7,9,10,13].
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Replacing the left translationLx with the right translationRx in the definition (5.1) of the contro
function leads to right Wiener amalgam spacesWR(B,Y ).

We state two convolution properties that will be essential for our purpose.

Proposition 5.1. (a) (Proposition3.10in [9].) Under our general assumptions relatingY andw we have

W(M,Y ) ∗ WR
(
C0,L

1
w

) ⊂ Y, ‖µ ∗ G | Y‖ � C
∥∥µ | W(M,Y )

∥∥∥∥G | WR
(
C0,L

1
w

)∥∥.

(b) (Theorem7.1(b)in [10].) There exists a constantD > 0 such that

Y ∗ W
(
C0,L

1
w

) ⊂ W(C0, Y ),
∥∥F ∗ G | W(C0, Y )

∥∥ � D‖F | Y‖∥∥G | W(
C0,L

1
w

)∥∥.

Note that a functionF is contained inW(C0,L
1
w), if and only if F∨ is contained inWR(C0,L

1
w) and

‖F | WR(C0,L
1
w)‖ = ‖F | W(C0,L

1
w)‖.

As always throughout this paper we further assume thatA acts isometrically onY andB. ThenA
clearly acts also isometrically onW(B,Y ) and we may define the closed subspace

WA(B,Y ) := {
F ∈ W(B,Y ), FA = F for all A ∈ A

}
,

and analogously for the right Wiener amalgams. Since the convolution of twoA-invariant functions
(measures) is againA-invariant, we may replace each function (measure) space in Proposition 5.1
subspace of invariant functions.

We will need two sequence spaces related to Wiener amalgams. Later on these will serve for t
acterization of coorbit spaces via atomic decompositions and Banach frames. For a well-spread
X = (xi)i∈I with respect toA, a relatively compact setU = A(U) with nonvoid interior and a solid BF
spaceY we define

Y b
A := Y b

A(X) :=
{
(λi)i∈I ,

∑
i∈I

|λi|χA(xiU) ∈ Y

}

with natural norm
∥∥(λi)i∈I | Y b

A
∥∥ :=

∥∥∥∥
∑
i∈I

|λi | χA(xiU)|Y
∥∥∥∥,

whereχA(xiU) denotes the characteristic function of the setA(xiU). Further let

ai := ∣∣A(xiU)
∣∣

and define the space

Y d
A := Y d

A(X) := {
(λi)i∈I ,

(
a−1

i λi

)
i∈I

∈ Y b
A
}

with norm∥∥(λi)i∈I | Y d
A
∥∥ := ∥∥(

a−1
i λi

)
i∈I

| Y b
A
∥∥.

(According to the later use of these spaces, ‘d ’ stands for (atomic) decomposition and ‘b’ stands for Ba-
nach frame.) Note that the numbersai are always finite, sinceU is relatively compact andA is compact,
hence,A(xiU) is relatively compact. By solidity ofY it is immediate that alsoY d

A andY b
A are solid.

Note thatai, i ∈ I , is constant in case of the trivial automorphism group, and then both spacesY b and
A
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Y d
A coincide, of course. Similarly to the classical case one shows thatY b

A andY d
A do not depend on th

particular choice of the setU and different sets define equivalent norms. The following lemma is u
for this task.

Lemma 5.2. Let U = A(U) andV = A(V ) be invariant relatively compact neighborhoods of the id
tity. Then there exist constantsC1,C2 > 0 such thatC1|A(xV )| � |A(xU)| � C2|A(xV )| for all x ∈ G.

Proof. By compactness there exists a finite number of pointsyj ∈ G, j = 1, . . . , n, such thatV ⊂⋃n
j=1 Uyj . SinceV = A(V ) andU = A(U), we have

A(xV ) = (Ax)V ⊂
n⋃

j=1

(Ax)Uyj =
n⋃

j=1

A(xU)yj

yielding

∣∣A(xV )
∣∣ �

n∑
j=1

∣∣A(xU)yj

∣∣ �
n∑

j=1

∆(yj )
∣∣A(xU)

∣∣ = C−1
1

∣∣A(xU)
∣∣.

Exchanging the roles ofU andV yields a reversed inequality.�
If Y = L

p
m(G), 1 � p � ∞, with invariant moderate weight functionm, thenY b

A(X) = lpνp
(I ) and

Y d
A(X) = l

p
mp(I ) where

νp(i) := m(xi)a
1/p

i , mp(i) := m(xi)a
1/p−1
i

and‖(λi)i∈I | lpm(I )‖ = (
∑

i∈I |λi|pm(i)p)1/p with the usual modification forp = ∞. We have in partic-
ular ν∞(i) = m1(i) = m(xi).

Let us now derive a different characterization ofY d
A. To this end, for a positive window functionk

which is invariant underA, we define the function

mk(x, z) := K(εAx , k,M)(z) = ∥∥(Lzk)εAx

∥∥
M

=
∫
A

k
(
z−1A(x)

)
dA = Lzk(x) =Lxk

∨(z).

Sincek is assumed to be invariant,mk is invariant in both variables. Further, if we have suppk ⊂ U , then
suppmk(·, z) ⊂ A(zU) and suppmk(x, ·) ⊂ A(xU−1). Moreover, ifk = k∨, thenmk(x, z) = mk(z, x).

If k = χU is the characteristic function of some setU = A(U), thenmχU
=: mU has a geometric

interpretation, i.e.,mU(x, z) is the size of the set

KU(x, z) := {
A ∈A | z−1Ax ∈ U

}
(measured with the Haar-measure ofA), which can be interpreted as the normalized ‘surface mea
of Ax ∩ zU in the orbit (‘surface’)Ax. We provide a technical lemma concerning the functionmU .

Lemma 5.3. LetU = U−1 =AU andQ = Q−1 = AQ be open relatively compact subsets ofG. Then

mU(x, z) � mU3Q(y, z) for all y ∈A(zUQ), x ∈ G. (5.2)
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Proof. If x /∈ suppmU(·, z) ⊂ A(zU), there is nothing to prove. Because of theA-invariance ofmU

andmU3Q it suffices to prove thatmU(x, z) � mU3Q(y, z) holds, if x ∈ zU , y ∈ zUQ. The latter mean
x = zux andy = zuyq for some elementsux, uy ∈ U , q ∈ Q. Hence,x = yq−1u−1

y ux =: yq−1v ∈ yQU2.
Now supposeA ∈ KU(x, z), i.e., z−1Ax ∈ U implying z−1A(yq−1v) ∈ U . This gives z−1A(y) ∈
UA(v−1)A(q) ⊂ U3Q, becauseAU = U andAQ = Q by assumption. Hence,KU(x, z) ⊂ KU3Q(y, z)

andmU(x, z) � mU3Q(y, z). �
Now we are ready to prove the announced characterization.

Lemma 5.4. There are constantsC1,C2 > 0 such that

C1

∥∥(λi)i∈I | Y d
A
∥∥ �

∥∥∥∥
∑
i∈I

∣∣λi | mk(xi, ·)
∣∣YA

∥∥∥∥ � C2

∥∥(λi)i∈I | Y d
A
∥∥, (5.3)

i.e., the expression in the middle defines an equivalent norm onY d
A.

Proof. We claim that it suffices to prove (5.3) for characteristic functionsk = χU for a relatively com-
pact neighborhoodU of e ∈ G satisfyingU = A(U) = U−1. Indeed, ifk is an arbitrary nonzero an
positive function in(Cc)A(G), then there exists a neighborhoodU = U−1 = A(U) ⊂ G of e and con-
stantsC1,C2 > 0 such that

C1χU(x) � (Lyk)(x) � C2χsuppLyk for all x ∈ G

for some suitabley ∈ G. The setV := A(supp(Lyk) ∪ (supp(Lyk))−1) is a relatively compact neigh
borhood ofe satisfyingV = V −1 = A(V ) andχsuppLyk � χV . This impliesC1mU(x, z) � mLyk(x, z) �
C2mV (x, z) for all x, z ∈ G. SincemLyk(x, z) = mk(x, zy) andY is right translation invariant, this show
the claim.

So we assumeU = U−1 = A(U) to be a relatively compact neighborhood ofe. By invariance of the
Haar measure under left translation and under the action ofA we obtain

|U | =
∫
G

χxiU (x)dx =
∫
A

∫
G

χA(xi)U(x)χA(xiU)(x)dx dA

=
∫
G

∫
A

χU−1

(
x−1A(xi)

)
dAχA(xiU)(x)dx =

∫
A(xiU)

mU(xi, x)dx

=
∫

A(xiU)

mU(x, xi)dx �
∫

A(xiU)

mU4(y, xi )dx = ∣∣A(xiU)
∣∣mU4(xi, y)

for all y ∈ A(xiU
2) by choosingQ = U in inequality (5.2). Thus we have

|U |χA(xiU)(y) � |U |χA(xiU
2)(y) �

∣∣A(xiU)
∣∣mU4(xi, y) for all y ∈ G.

To obtain a reversed inequality we choose againQ = U . For allx ∈ G, Lemma 5.3 yields

∣∣A(
xiU

2)∣∣mU(xi, x) =
∫

2

mU(x, xi)dy �
∫

2

mU4(y, xi )dy
A(xiU ) A(xiU )
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=
∫

A(xiU
2)

∫
A

χxiU
4

(
A(y)

)
dAdy �

∫
A

∫
A(xiU

4)

χxiU
4(y)dy dA = ∣∣U4

∣∣. (5.4)

Here, we used again the invariance of the Haar measure underA. By the relation suppmU(xi, ·) ⊂
A(xiU), we obtain∣∣A(

xiU
2
)∣∣mU(xi, y) �

∣∣U4
∣∣χA(xiU)(y) for all y ∈ G.

By solidity of Y and since the definition ofY d
A does not depend on the choice of the setU , with equivalent

norms for different choices (see also Lemma 5.2), we finally get inequality (5.3).�
As an easy consequence we obtain the following.

Lemma 5.5. For some well-spread familyX = (xi)i∈I , the measure

µΛ :=
∑
i∈I

λiεAxi

is contained inWA(M,Y ) if and only if Λ = (λi)i∈I is contained inY d
A(X) and there are constant

C1,C2 � 0 such that

C1

∥∥Λ | Y d
A
∥∥ �

∥∥µΛ | WA(M,Y )
∥∥ � C2

∥∥Λ | Y d
A

∥∥.

Proof. Clearly, the supports of theLzkεAxi
, i ∈ I , are not overlapping for anyz ∈ G. Hence, for the

control function applied toµΛ, we obtain

K(µΛ, k,M)(z) =
∥∥∥∥
∑
i∈I

λiLzkεAxi

∥∥∥∥
M

=
∑
i∈I

|λi|mk(xi, z).

From this the assertion follows easily with Lemma 5.4.�
We summarize some further statements concerning Wiener amalgam spaces and our newly

sequence spaces in the following lemma.

Lemma 5.6. (a) If the bounded functions with compact support are dense inY , then the finite sequence
are dense inY d

A and inY b
A.

(b) LetU be some relatively compact neighborhood ofe ∈ G and letr(i) := |A(xiU)|w(xi). ThenY d
A

is continuously embedded intol∞1/r .
(c) If G ∈ WR

A(C0,L
1
w) and (xi)i∈I is well-spread(with respect toA), then(Lxi

G(x))i∈I ∈ l1
r for all

x ∈ G with r as in(b).

Proof. The assertion (a) is immediate. For (b) observe that by solidity and left translation invaria
Y we obtain

‖χU | Y‖ = ‖Lx−1
i

χxiU | Y‖ � w(xi)‖χxiU | Y‖ � w(xi)‖χA(xiU) | Y‖.
This gives
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|λi|
∣∣A(xiU)

∣∣−1‖χU | Y‖ � w(xi)
∥∥|λi|

∣∣A(xiU)
∣∣−1

χA(xiU) | Y∥∥
� w(xi)

∥∥∥∥
∑
j∈I

|λj |
∣∣A(xjU)

∣∣−1
χA(xj U) | Y

∥∥∥∥ = w(xi)
∥∥(λj )j∈I | Y d

A
∥∥

and the claim is shown.
For (c) recall (e.g., from the proof of Proposition 3.10 in [9], see also Proposition 3.7 in [9]

G ∈ WR(C0,L
1
w) has a decompositionG = ∑

n∈N Rzn
Gn with suppGn ⊂ Q = Q−1 = A(Q) (compact)

and ∑
n∈N

‖Gn‖∞w(zn) � C
∥∥G | WR

(
C0,L

1
w

)∥∥.

By the definition ofmQ we have|Lxi
Gn(x)| = |εA(xi) ∗ (χQGn)(x)| � ‖Gn‖∞mQ(xi, x). Hence, we

obtain the estimation∑
i∈I

∣∣Lxi
G(x)

∣∣w(xi)
∣∣A(xiU)

∣∣ �
∑
i∈I

∑
n∈N

∣∣εA(xi) ∗ Rzn
Gn(x)

∣∣w(xi)
∣∣A(xiU)

∣∣

�
∑
n∈N

∑
i∈Ix,n

‖Gn‖∞mQ(xi, xzn)w(xi)
∣∣A(xiU)

∣∣.
The inner sum runs over the finite index set

Ix,n = {
i ∈ I, xi ∈A(xznQ)

}
.

Since(xi)i∈I is well spread, we have|Ix,n| � CQ < ∞ uniformly for all x,n. For eachi ∈ Ix,n, we may
write xi = xznqi for someqi ∈ Q, which impliesw(xi) � w(x)w(zn)w(qi). Further, it follows from (5.4)
thatmQ(xi, xzn) � C ′|A(xiU)|−1 for some suitable constantC ′ > 0. Thus, we finally obtain∑

i∈I

∣∣Lxi
G(x)

∣∣w(xi)
∣∣A(xiU)

∣∣ � w(x)C ′CQ sup
q∈Q

w(q)
∑
n∈N

‖Gn‖∞w(zn) < ∞ (5.5)

which completes the proof.�
Note that (5.5) implies that the functionx �→ ∑

i∈I Lxi
G(x)w(xi)|A(xiU)| is contained inL∞

1/w(G).
Essential in later estimations will be the following inequalities.

Lemma 5.7. SupposeF ∈ WA(C0, Y ) and Ψ = (ψi)i∈I to be someU -A-IBUPU with corresponding
well-spread setX = (xi)i∈I . Then∥∥∥∥

∑
i∈I

F (xi)ψi | WA(C0, Y )

∥∥∥∥ � γ (U)
∥∥F | WA(C0, Y )

∥∥

and ∥∥(
F(xi)

)
i∈I

| Y b
A
∥∥ � γ (U)C

∥∥F | WA(C0, Y )
∥∥ (5.6)

for constantsγ (U), C < ∞. If U varies through a family of subsets of some compactU0 ⊂ G, thenγ (U)

is uniformly bounded by some constantγ0.
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Proof. We proceed similarly as in [12, Lemma 4.4]. Without loss of generality we assume that a c
teristic functionχQ for some relatively compact neighborhoodQ = Q−1 = A(Q) of e ∈ G is taken for
the definition of the norm ofW(C0, Y ). For the control function, we obtain

K

(∑
i∈I

∣∣F(xi)
∣∣ψi,χQ,C0

)
(x) =

∥∥∥∥(LxχQ)
∑
i∈I

∣∣F(xi)
∣∣ψi

∥∥∥∥∞
=: H(x).

The sum in the last expression runs only over the finite index set

Ix := {
i ∈ I, xQ ∩A(xiU) �= ∅} = {

i ∈ I, A(xi) ∩ xQU−1 �= ∅}
.

SinceF is A invariant and since(ψi)i∈I is a partition of unity, we therefore have

H(x) �
∥∥(LxχQU−1)F

∥∥∞ = K(F,χQU−1,C0)(x).

Since different window functions define equivalent norms onW(C0, Y ) (see also [7]), there exists
constantγ (U) such that∥∥K(F,χQU−1,C0) | Y∥∥ � γ (U)

∥∥K(F,χQ,C0) | Y∥∥. (5.7)

We finally obtain∥∥∥∥
∑
i∈I

∣∣F(xi)
∣∣ψi | WA(C0, Y )

∥∥∥∥ =
∥∥∥∥K

(∑
i∈I

∣∣F(xi)
∣∣ψi,χQ,C0

) ∣∣∣ YA

∥∥∥∥
�

∥∥K(F,χQU−1,C0) | YA
∥∥ � γ (U)

∥∥K(F,χQ,C0) | YA
∥∥ = γ (U)

∥∥F | WA(C0, Y )
∥∥.

To prove inequality (5.6) one proceeds analogously using

∥∥(
F(xi)

)
i∈I

| Y b
A
∥∥ �

∥∥∥∥
∑
i∈I

F (xi)χA(xiU) | WA(C0, Y )

∥∥∥∥,

which is easily seen with the finite overlap property of the well-spread family(xi)x∈I .
In order to show the assertion onγ (U) we need to give a proof of (5.7) that provides an estima

of the constantγ (U) (which is actually hard to extract from the proof in [7]). SinceQU−1 is relatively
compact, there exists a coveringQU−1 ⊂ ⋃n

k=1 zkQ for some pointszk ∈ G. If V = V −1 is such that
V 2 ⊂ Q, then the pointszk, k = 1, . . . , n, can be chosen such that

n � |QU−1V |
|V | . (5.8)

Indeed, choose a maximal set of pointszk ∈ QU−1, k = 1, . . . , n, such that the setszkV ⊂ QU−1V are
mutually disjoint. Then the maximal numbern is given by (5.8) and the setszkV

2 (and also the setszkQ)
coverQU−1. Therefore, we can derive the estimates

K(F,χQU−1,C0)(x) = ∥∥(LxχQU−1)F
∥∥∞ �

∥∥∥∥∥
n∑

k=1

(LxχzkQ)F

∥∥∥∥∥∞

�
n∑∥∥(Lxzk

χQ)F
∥∥∞ =

n∑
Rzk

K(F,χQ,C0)(x),
k=1 k=1
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∥∥K(F,χQU−1,C0) | Y∥∥ �
n∑

k=1

∥∥Rzk
K(F,χQ,C0) | Y∥∥ �

n∑
k=1

w(zk)
∥∥K(F,χQ,C0) | Y∥∥.

Thus, we obtain

γ (U) �
n∑

k=1

w(zk) � n sup
z∈QU−1

w(z) � |QU−1V |
|V | sup

z∈QU−1

w(z).

If U runs through a family of subsets of someU0, thenγ (U) is clearly bounded. �
To conclude this section we apply the previous lemma in order to make a statement on sampl

of Vgf whenf is contained in some coorbit space. For this purpose, we introduce the ‘better’ sp
analyzing vectors

B
A
w := {

g ∈ A
A
w , Ṽgg ∈ WR

A
(
C0,L

1
w

)}
. (5.9)

Theorem 5.8. Supposeg ∈ B
A
w . ThenṼgf ∈ WA(C0, Y ) for all f ∈ CoYA. If X = (xi)i∈I is a U -dense

well-spread family, then∥∥(
Ṽgf (xi)

)
i∈I

| Y b
A
∥∥ � γ (U)C‖f | CoYA‖,

where the constantC depends only ong.

Proof. Without loss of generality we may assume‖Sg‖ = 1. By Proposition 3.1, we havẽVgf = Ṽgf ∗
Ṽgg. Combined with the result of Proposition 5.1(b), we obtain∥∥Ṽgf | WA(C0, Y )

∥∥ = ∥∥Ṽgf ∗ Ṽgg | WA(C0, Y )
∥∥ � D‖Ṽgf | YA‖∥∥Ṽgg | WR

A
(
C0,L

1
w

)∥∥.

Lemma 5.7 finally leads to∥∥(
Ṽgf (xi)

)
i∈I

| Y b
A
∥∥ � γ (U)

∥∥Ṽgf | WA(C0, Y )
∥∥ � γ (U)D

∥∥Ṽgg | WR
A

(
C0,L

1
w

)∥∥‖f | CoYA‖. �

6. Discretization of convolutions

In this section we study several approximations of the convolution operator onYA, which acts as the
identity onYA ∗ G, i.e., the image ofCoYA underṼg. ForG ∈ WR

A(C0,L
1
w) (later we useG = Ṽgg), we

define

T :YA → YA, T F := F ∗ G =
∫
G

F(y)LyGdy.

For some arbitraryA-IBUPU Ψ = (ψi)i∈I we approximateT by one of the following operators:

TΨ F :=
∑
i∈I

〈F,ψi〉Lxi
G, SΨ F :=

∑
i∈I

F (xi)ψi ∗ G, UΨ F :=
∑
i∈I

ciF (xi)Lxi
G,

whereci = ∫
ψi(x)dx.
G
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Let us first consider the operatorTΨ . We show thatTΨ is a bounded operator fromYA to YA by
splitting it into the analysis operatorF �→ (〈F,ψi〉)i∈I and synthesis operator(λi)i∈I �→ ∑

i∈I λiLxi
G

and treating each part separately.

Proposition 6.1. Let U = U−1 = A(U) be a relatively compact neighborhood ofe ∈ G. For anyU -A-
IBUPU (ψi)i∈I and corresponding well-spread familyX = (xi)i∈I the linear coefficient mappingF �→
Λ = (λi)i∈I , whereλi := 〈F,ψi〉 is a bounded operator fromYA into Y d

A(X), i.e.,∥∥Λ | Y d
A

∥∥ � C‖F | YA‖.
The constant can be chosen to beC = C−1

1 ‖χV 3U |L1
w(G)‖ < ∞ wherek = χV is chosen as window

function for the definition of the norm ofY d
A andC1 is the constant from Lemma5.4.

Proof. Let F ∈ YA andχV be the window function for the definition ofY d
A for some open relatively

compact setV = V −1 = AV . As a consequence of suppmV (·, y) ⊂ A(yV ), the function

H(F,y) :=
∑
i∈I

〈|F |,ψi

〉
mV (xi, y)

is a finite sum over the index setIy := {i, xi ∈ A(yV )} for everyy ∈ G. Hence, by using Lemma 5.3
the first inequality, we obtain

H(F,y) =
∑
i∈Iy

∫
G

∣∣F(x)
∣∣ψi(x)dx mV (xi, y) =

∫
A(yV U)

∣∣F(x)
∣∣∑

i∈Iy

ψi(x)mV (xi, y)dx

�
∫

A(yVU)

∣∣F(x)
∣∣mV 3U(x, y)dx �

∫
G

∣∣F(x)
∣∣ ∫
A

χV 3U

(
y−1A(x)

)
dAdx

=
∫
A

∫
G

LyχV 3U(Ax)
∣∣F(Ax)

∣∣ dx dA =
∫
G

LyχV 3U(x)
∣∣F(x)

∣∣dx = |F | ∗ χ∨
V 3U

(y).

By solidity of Y , Lemma 5.4 and (2.4) we finally conclude∥∥Λ | Y d
A

∥∥ � C−1
1

∥∥H(F, ·) | YA
∥∥ � C−1

1

∥∥|F | ∗ χ∨
V 3U

| YA
∥∥ � C−1

1 ‖F | YA‖∥∥χV 3U | L1
w(G)

∥∥. �
Proposition 6.2. LetX = (xi)i∈I be a well-spread set inG (with respect toA) and letG ∈ WR

A(C0,L
1
w).

Then the mapping

Λ = (λi)i∈I �→
∑
i∈I

λiLxi
G

is a bounded, linear operator fromY d
A(X) into YA satisfying∥∥∥∥

∑
i∈I

λiLxi
G | YA

∥∥∥∥ � C
∥∥G | WR

A
(
C0,L

1
w

)∥∥∥∥Λ | Y d
A
∥∥

with some constantC independent ofΛ. The sum always converges pointwise, and in the norm ofY , if
the finite sequences are dense inY d .
A
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Proof. PutµΛ = ∑
i∈I λiεAxi

. By Lemma 5.5 this measure is contained inWA(M,Y ). Furthermore, we
have

∑
λiLxi

G = µΛ ∗ G. Hence, by Proposition 5.1(a) and again Lemma 5.5, we have∥∥∥∥
∑
i∈I

λiLxi
G | YA

∥∥∥∥ � C
∥∥µΛ | WA(M,Y )

∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥ � CC2

∥∥Λ | Y d
A
∥∥∥∥G | WR

A
(
C0,L

1
w

)∥∥.

If the finite sequences are dense inY d
A, the norm convergence inY is clear. SinceY d

A ⊂ l∞1/r

(Lemma 5.6(b)) and(Lxi
G(x))i∈I ∈ l1

r (Lemma 5.6(c)) for allx ∈ G, where r(i) = w(xi)|A(xiU)|,
the pointwise convergence follows byl1

r –l∞1/r -duality. �
Corollary 6.3. Suppose thatΨ is a U -A-IBUPU andχV is taken as window function for the definitio
of the norm ofY d

A. Further assumeG ∈ WR
A(C0,L

1
w). ThenTΨ is bounded fromY into Y with operator

norm

‖TΨ | Y → Y‖ � C
∥∥χV U3 | L1

w(G)
∥∥∥∥G | WR

(
C0,L

1
w

)∥∥
whereC is some constant independent ofG,U andV .

Proof. The assertion follows from Propositions 6.1 and 6.2.�
If U ⊂ U0, then aU -IBUPU is also anU0-IBUPU. Hence, we immediately obtain the followin

corollary.

Corollary 6.4. The family of operators(TΨ )Ψ whereΨ runs through a system ofU0-IBUPUs is uniformly
bounded.

We shall make use of the following maximal function (see also Definition 4.5 in [12]).

Definition 6.1. If U ⊂ G is a relatively compact neighborhood ofe, then

G#
U(x) := sup

u∈U

∣∣G(ux) − G(x)
∣∣

is theU -oscillationof G.

We remark thatG#
U is invariant underA wheneverG is invariant andU = A(U). In [12] one finds the

following lemma.

Lemma 6.5 [12, Lemma 4.6]. (a) A functionG is in WR(L∞,L1
w) if and only ifG ∈ L1

w andG#
U ∈ L1

w

for some(and hence for all) open relatively compact neighborhoodU of e.
(b) If, in addition,G is continuous(i.e.,G ∈ WR(C0,L

1
w)), then

lim
U→{e}

∥∥G#
U | L1

w

∥∥ = 0. (6.1)

(c) If y ∈ xU , then|LyG − LxG| � LyG
#
U holds pointwise.

Corollary 6.6. If G is A-invariant andy ∈A(xU), then|LyG −LxG| �LyG
# holds pointwise.
U
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Proof. Sincey �→ LyG is invariant underA, it is enough to considery ∈ xU . In this case, Lemma 6.5(c
implies

|LyG −LxG|(z) =
∣∣∣∣
∫
A

G
(
y−1Az

) − G
(
x−1Az

)
dA

∣∣∣∣ �
∫
A

∣∣LyG(Az) − LxG(Az)
∣∣dA

�
∫
A

LyG
#
U(Az)dA = LyG

#
U (z). �

For the following we consider families of operatorsTΨ whereΨ runs through a system of IBUPU
We writeΨ → 0, if, for the corresponding neighborhoodsU of e, we haveU → {e}.
Theorem 6.7. Assume thatΨ = (ψi)i∈I is aU -A-IBUPU for some setU = A(U) andG ∈ WR

A(C0,L
1
w).

Then we have

‖T − TΨ | YA → YA‖ �
∥∥G#

U | L1
w

∥∥
and, as s consequence of(6.1),

lim
Ψ →0

‖T − TΨ | YA → YA‖ = 0.

Proof. We have

|T F − TΨ F | =
∣∣∣∣
∑
i∈I

∫
G

F(y)ψi(y)(LyG −Lxi
G)dy

∣∣∣∣ �
∑
i∈I

∫
G

∣∣F(y)
∣∣ψi(y)|LyG −Lxi

G|dy.

Since suppψi ∈A(xiU), we obtain from Corollary that 6.6

|T F − TΨ F | �
∑
i∈I

∫
G

∣∣F(y)
∣∣ψi(y)LyG

#
U dy =

∫
G

∣∣F(y)
∣∣LyG

#
U dy = |F | ∗ G#

U

and, finally, by (2.4)

‖T F − TΨ F | YA‖ � ‖F | YA‖∥∥G#
U | L1

w

∥∥.

This gives the estimate for the operator norm.�
Let us now consider the operatorsSΨ andUΨ . Let us first prove their boundedness.

Proposition 6.8. Suppose thatΨ is aU -A-IBUPU.

(a) If G ∈ (L1
w)A, thenSΨ is a bounded operator fromWA(C0, Y ) into YA and∥∥SΨ | WA(C0, Y ) → YA

∥∥ � γ (U)
∥∥G | L1

w

∥∥,

whereγ (U) is the constant from Lemma5.7.
(b) If G ∈ WR

A(C0,L
1
w), thenUΨ is a bounded operator fromWA(C0, Y ) into YA and∥∥UΨ | WA(C0, Y ) → YA

∥∥ � γ (U)
(∥∥G | L1

w

∥∥ + ∥∥G#
U | L1

w

∥∥)
, (6.2)

whereγ (U) is again the constant from Lemma5.7.
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Proof. (Analogously to the proof of Proposition 4.8 in [12].) (a) We use the convolution relation (
the norm estimate‖F | Y‖ � ‖F | W(C0, Y )‖ (Lemma 3.9(a) in [9]) and Lemma 5.7 to obtain forF ∈
WA(C0, Y )

‖SΨ F | YA‖ =
∥∥∥∥
(∑

i∈I

F (xi)ψi

)
∗ G | YA

∥∥∥∥ �
∥∥∥∥
∑
i∈I

F (xi)ψi | YA

∥∥∥∥∥∥G | L1
w

∥∥

�
∥∥∥∥
∑
i∈I

F (xi)ψi | WA(C0, Y )

∥∥∥∥∥∥G | L1
w

∥∥ � γ (U)
∥∥F | WA(C0, Y )

∥∥∥∥G | L1
w

∥∥. (6.3)

(b) Since suppψi ⊂ A(xiU), we may estimate by Corollary 6.6

|ciLxi
G − ψi ∗ G| =

∣∣∣∣
∫
G

ψi(y)(Lxi
G −LyG)dy

∣∣∣∣ �
∫
G

ψi(y)LyG
#
U dy = ψi ∗ G#

U .

Hence,

‖UΨ F − SΨ F | YA‖ =
∥∥∥∥
∑
i∈I

F (xi)(ciLxi
G − ψi ∗ G) | YA

∥∥∥∥ �
∥∥∥∥
(∑

i∈I

∣∣F(xi)
∣∣ψi

)
∗ G#

U | YA

∥∥∥∥.

As in (6.3) we obtain

‖UΨ F − SΨ F | YA‖ � γ (U)
∥∥F | WA(C0, Y )

∥∥∥∥G#
U | L1

w

∥∥ (6.4)

giving (6.2) by the triangle inequality and (6.3).�
For the analysis of the operatorSΨ we need to restrict to the subspaceYA ∗ G, where in the origina

settingG = Ṽgg with ‖Sg‖ = 1 implying G = G∇ = G ∗ G.

Theorem 6.9. Suppose thatG ∈ WR
A(C0,L

1
w) with G = G∇ = G∗G and thatΨ is aU -A-IBUPU. Then

‖T − SΨ | YA ∗ G → YA ∗ G‖ �
∥∥G#

U | L1
w

∥∥∥∥G | L1
w

∥∥.

In particular, we havelimΨ →0 ‖T − SΨ | YA ∗ G → YA ∗ G‖ = 0.

Proof. (Similar to the proof of Theorem 4.11 in [12].) SupposeF ∈ YA ∗ G. Using the reproducing
propertyF ∗ G = F and the convolution relation (2.4) we obtain

‖T F − SΨ F | YA‖ �
∥∥∥∥F −

∑
i∈I

F (xi)ψi | YA

∥∥∥∥∥∥G | L1
w

∥∥.

SinceF ∈ YA∗G ⊂ WA(C0, Y ) (Proposition 5.1(b)), the expression on the right-hand side is well de
by Lemma 5.7. Moreover, ify ∈ A(xiU), one obtains as in [12] (additionally using theA-invariance
of F ) |F(y) − F(xi)| � |F | ∗ (G#

U)∨(y) and, hence,∣∣∣∣F(y) −
∑
i∈I

F (xi)ψi(y)

∣∣∣∣ �
∑
i∈I

∣∣F(y) − F(xi)
∣∣ψi(y) �

∑
i∈I

|F | ∗ (
G#

U

)∨
(y)ψi(y)

= |F | ∗ (
G#

U

)∨
(y).
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Finally, this gives

‖T F − SΨ F | YA‖ �
∥∥|F | ∗ (

G#
U

)∨ | YA
∥∥∥∥G | L1

w

∥∥ � ‖F | YA‖∥∥G#
U | L1

w

∥∥∥∥G | L1
w

∥∥.

The last assertion of the theorem follows with Lemma 6.5(b).�
Theorem 6.10. Suppose thatG ∈ WR

A(C0,L
1
w) with G = G∇ = G∗G and letΨ be aU -A-IBUPU. Then

‖T − UΨ | YA ∗ G → YA ∗ G‖ �
∥∥G#

U | L1
w

∥∥(∥∥G | L1
w

∥∥ + γ (U)D
∥∥G | WR

A
(
C0,L

1
w

)∥∥)
,

whereγ (U) is the constant from Lemma5.7 andD is the constant in Proposition5.1(b). In particular,
we havelimΨ →0 ‖T − UΨ | YA ∗ G → YA ∗ G‖ = 0.

Proof. (Analogous to the proof of Theorem 4.13 in [12].) SupposeF ∈ YA ∗ G. Using the reproducing
formulaF ∗ G = F , (6.4) and Proposition 5.1(b) we obtain

‖UΨ F − SΨ F | YA‖ � γ (U)
∥∥F | WA(C0, Y )

∥∥∥∥G#
U | L1

w

∥∥
= γ (U)

∥∥F ∗ G | WA(C0, Y )
∥∥∥∥G#

U | L1
w

∥∥
� γ (U)D‖F | YA‖∥∥G | WR

A
(
C0,L

1
w

)∥∥∥∥G#
U | L1

w

∥∥.

Together with Theorem 6.9 and the triangle inequality we obtain the desired estimation. Sinceγ (U) � γ0

when U runs through a family of subsets of someU0 (Lemma 5.7), the last assertion follows fro
Lemma 6.5(b). �

7. Atomic decompositions and Banach frames

After all preparation we establish atomic decompositions and Banach frames for the coorbit
CoYA in this section. As usualY has an associated weight functionw. Also recall definition (5.9) of
B
A
w . We remark that one can easily adapt the proof of Lemma 6.1 in [8] to show thatB

A
w is dense in

HA. In particular, there exist nontrivial vectors inBA
w . Analogously to Theorem T in [12] we obtain th

following.

Theorem 7.1. Suppose thatg ∈ B
A
w with ‖Sg‖ = 1 and letG := Ṽgg. Choose further a relatively compa

neighborhoodU = U−1 = A(U) of e ∈ G such that∥∥G#
U | L1

w

∥∥ < 1. (7.1)

Then for anyU -dense well-spread familyX = (xi)i∈I (with respect toA), the coorbit spaceCoYA has
the following atomic decomposition: if f ∈ CoYA, then

f =
∑
i∈I

λi(f )π̃(xi)g,

where the sequence of coefficientsΛ(f ) = (λi(f ))i∈I depends linearly onf and satisfies∥∥Λ(f ) | Y d
A

∥∥ � C1‖f | CoYA‖,
with a constant depending only ong.
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Conversely, ifΛ = (λi)i∈I ∈ Y d
A, thenf = ∑

i∈I λiπ̃ (xi)g is contained inCoYA and

‖f | CoYA‖ � C2

∥∥Λ | Y d
A
∥∥.

The sum converges in the norm ofCoYA, if the finite sequences are dense inY d
A and in the weak-∗-

topology of(H1
w)�

A otherwise.

Proof. The restriction of the operatorT F := F ∗ G to the closed subspaceYA ∗ G is the identity, since
G = G ∗ G by the reproducing formula (2.7). By the assumption onG#

U and Theorem 6.7 we hav
‖T −TΨ | YA ∗G → YA ∗G‖ < 1 and, hence,TΨ is invertible onYA ∗G (by means of the von Neuman
series). Further, iff ∈ CoYA, thenṼgf ∈ YA ∗ G and

Ṽgf = TΨ T −1
Ψ Ṽgf =

∑
i∈I

〈
T −1

Ψ Ṽgf,ψi

〉
Lxi

Vgg.

SinceLxi
Ṽgg = Ṽg(π̃(xi)g) and sinceṼg is an isometric isomorphism betweenCoYA andYA∗G (Propo-

sition 3.1), we obtain

f =
∑
i∈I

〈
T −1

Ψ Ṽgf,ψi

〉
π̃(xi)g.

Setλi := 〈T −1
Ψ Ṽgf,ψi〉. From the relationT −1

Ψ Ṽgf ∈ YA ∗ G ⊂ YA and Proposition 6.1, we conclude∥∥(λi)i∈I | Y d
A
∥∥ � C

∥∥T −1
Ψ Ṽgf | YA

∥∥ � C
∥∥T −1

Ψ | YA → YA
∥∥‖f | CoYA‖.

For a converse inequality we applỹVg to the series to obtain

F(x) := Ṽg

(∑
i∈I

λiπ̃(xi)g

)
(x) =

∑
i∈I

λiLxi
G(x). (7.2)

SinceY d
A ⊂ l∞1/r , with r(i) = w(xi)|A(xiU)| and G ∈ WR

A(C0,L
1
w), the right-hand side of (7.2) con

verges pointwise and defines a function inL∞
1/w(G) by (5.5). By Theorem 4.1(v) in [9] the pointwis

convergence of the partial sums ofF implies the weak-∗-convergence off := ∑
i∈I λiπ̃ (xi)g. Oncef

is identified with an element of(H1
w)�

A it belongs toCoYA by Proposition 6.2 (which also implies th
stated type of convergence). The constantC2 equalsC‖G | WR

A(C0,L
1
w)‖, whereC is the constant from

Proposition 5.1. �
The next theorem establishes the existence of Banach frames forCoYA analogously to Theorem

in [12]. In contrast to the preceding theorem the corresponding sequence space will beY b
A instead ofY d

A,
which is a difference to the classical theory [12], where the corresponding spaces for atomic deco
tions and Banach frames coincide.

Theorem 7.2. Suppose thatg ∈ B
A
w with‖Sg‖ = 1 and setG := Ṽgg. Choose further a relatively compa

neighborhoodU = U−1 = A(U) of e ∈ G such that
∥∥G#

U | L1
w

∥∥ <
1

‖G | L1
w‖ . (7.3)

Then for anyU -dense well-spread familyX = (xi)i∈I in G the set{π̃ (xi)g, i ∈ I } is a Banach frame fo
CoYA. This means that
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e

(a) f ∈ CoYA if and only if(〈f, π̃(xi)g〉)i∈I ∈ Y b
A;

(b) there exist constantsC1,C2 > 0 depending ong ∈ B
A
w such that

C1‖f | CoYA‖ �
∥∥(〈

f, π̃(xi)g
〉)

i∈I
| Y b

A
∥∥ � C2‖f | CoYA‖;

(c) there exists a bounded linear operatorΩ :Y b
A → CoYA, such thatΩ((〈f, π̃(xi)〉)i∈I ) = f for all

f ∈ CoY . If the finite sequences are dense inY b
A, then this reconstruction is performed by the ser

f =
∑
i∈I

〈
f, π̃(xi)g

〉
ei (7.4)

with elementsei ∈ (H1
w)A, i ∈ I , and with convergence inCoYA.

Proof. By Theorem 6.9 condition (7.3) implies thatSΨ is invertible onYA ∗G. ForF = Ṽgf it therefore
holds

F = S−1
Ψ SΨ F = S−1

Ψ

(∑
i∈I

F (xi)ψi ∗ G

)
. (7.5)

By the correspondence principle (Proposition 3.1(b)) we obtain

f = Ṽ −1
g S−1

Ψ

(∑
i∈I

〈
f, π̃(xi)g

〉
ψi ∗ G

)
. (7.6)

This is a reconstruction off from the coefficients(〈f, π̃(xi)g〉)i∈I . The reconstruction operator ma
be written asΩ = Ṽ −1

g S−1
Ψ T H , whereH :Y b

A → Y is defined byH((λi)i∈I ) := ∑
i∈I λiψi . Sinceψi �

χA(xiU), the operatorH is bounded by definition ofY b
A. Hence, alsoΩ is bounded as the composition

bounded operators.
Letting Y = L∞

1/w, we see that anyf ∈ Co(L∞
1/w)A = (H1

w)�
A (Corollary 4.4(a) in [9]) can be recon

structed as in (7.6). Now, if(Ṽgf (xi))i∈I ∈ Y b
A holds forf ∈ (H1

w)�
A, the series in (7.5) converges to

function inWA(C0, Y ) ∗ G ⊂ YA ∗ G by Lemma 5.7. By the invertibility ofSΨ on YA ∗ G the function
Ṽgf is therefore contained inYA ∗ G, hencef ∈ CoYA. Together with Theorem 5.8 this shows (a).

From (7.5) we obtain the equivalence of norms,

‖f | CoYA‖ = ‖F | YA‖ �
∥∥S−1

Ψ | YA ∗ G → YA ∗ G
∥∥∥∥∥∥

∑
i∈I

F (xi)ψi ∗ G | YA

∥∥∥∥
�

∥∥S−1
Ψ

∥∥∥∥∥∥
∑
i∈I

F (xi)ψi | YA

∥∥∥∥∥∥G | L1
w

∥∥ �
∥∥S−1

Ψ

∥∥∥∥∥∥
∑
i∈I

∣∣F(xi)
∣∣χA(xiU) | YA

∥∥∥∥∥∥G | L1
w

∥∥
= ∥∥S−1

Ψ

∥∥∥∥G | L1
w

∥∥∥∥(
F(xi)

)
i∈I

| Y b
A
∥∥ � γ (U)C

∥∥S−1
Ψ

∥∥∥∥G | L1
w

∥∥‖f | CoYA‖.
Here, we used (2.4), the definition ofY b

A(X), and Theorem 5.8.
The proof of (7.4) in case that the finite sequences are dense inY b

A is completely analogous to th
proof of Theorem S in [12] and, therefore, omitted.�

Finally the next theorem establishes the existence of ‘dual’ frames.
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Theorem 7.3. Suppose thatg ∈ B
A
w with‖Sg‖ = 1 and setG := Ṽgg. Choose further a relatively compa

neighborhoodU = U−1 = A(U) of e ∈ G such that∥∥G#
U | L1

w

∥∥(∥∥G | L1
w

∥∥ + γ (U)D
∥∥G | WR

A
(
C0,L

1
w

)∥∥)
< 1. (7.7)

Then for anyU -dense and relatively separated familyX = (xi)i∈I the set{π̃(xi)g, i ∈ I } is both a set
of atoms and a Banach frame forCoYA. Moreover, there exists a ‘dual frame’{ei, i ∈ I } ⊂ (H1

w)A such
that

(a) the following norms are equivalent:

‖f | CoYA‖ ∼= ∥∥(〈f, ei〉
)
i∈I

| Y d
A

∥∥ ∼= ∥∥(〈
f, π̃(xi)g

〉)
i∈I

| Y b
A

∥∥; (7.8)

(b) for f ∈ CoYA we have

f =
∑
i∈I

〈f, ei〉π̃ (xi)g,

with norm convergence inCoYA if the finite sequences are dense inY d
A, and with weak-∗-convergence

otherwise;
(c) if the finite sequences are dense inY b

A, then the decomposition

f =
∑
i∈I

〈
f, π̃(xi)g

〉
ei

is valid forf ∈ CoYA.

Proof. Similarly as in the two previous proofs condition (7.7) implies, by Theorem 6.10, that the op
UΨ is invertible onYA ∗ G. Forf ∈ CoYA andF = Ṽgf we have

F = UΨ U−1
Ψ F =

∑
i∈I

(
U−1

Ψ F
)
(xi)ciLxi

G (7.9)

and

F = U−1
Ψ UΨ F = U−1

Ψ

(∑
i∈I

F (xi)ciLxi
G

)
. (7.10)

Now one proceeds similarly to the proofs of Theorems 7.1 and 7.2, i.e., (7.9) leads to an atomic
position ofCoYA and (7.10) leads to Banach frames. However, the norm estimates are slightly dif
since the numbersci are not bounded from above in general as it is the case in the classical theory

So starting from (7.9) we defineλi(f ) := ci(U
−1
Ψ Ṽgf )(xi) yieldingf = ∑

i∈I λi(f )π̃(xi)g. Moreover,
since suppψi ⊂ A(xiU), we haveci � ai = |A(xiV )| if U ⊂ V , and we assume, without loss of gen
ality, that such a setV is chosen for the definition ofY b

A. Further, we haveU−1
Ψ F ∈ WA(C0, Y )∩ YA ∗ G

by Proposition 6.8. Altogether we obtain, by using Lemma 5.7 and Proposition 5.1(b), that∥∥(
λi(f )

)
i∈I

| Y d
A
∥∥ �

∥∥((
U−1

Ψ Ṽgf
)
(xi)

)
i∈I

| Y b
A
∥∥ �

∥∥U−1
Ψ Ṽgf | WA(C0, Y )

∥∥
= ∥∥(

U−1
Ψ Ṽgf

) ∗ G | WA(C0, Y )
∥∥ � D

∥∥U−1
Ψ Ṽgf | YA

∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥
�

∥∥U−1
Ψ | YA ∗ G → YA ∗ G

∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥‖f | CoYA‖. (7.11)

The converse norm estimate is the same as in the proof of Theorem 7.1.



120 H. Rauhut / Appl. Comput. Harmon. Anal. 18 (2005) 94–122

by

of

-

Beginning with (7.10), the norm estimate in the proof of the Banach frame property is obtained

‖f | CoYA‖ = ‖Ṽgf | YA‖ =
∥∥∥∥U−1

Ψ

(∑
i∈I

ciṼgf (xi)Lxi
G

) ∣∣∣ YA

∥∥∥∥
�

∥∥U−1
Ψ | YA ∗ G → YA ∗ G

∥∥∥∥∥∥
∑
i∈I

ci Ṽgf (xi)εA(xi) ∗ G | WA(C0, Y )

∥∥∥∥
�

∥∥U−1
Ψ

∥∥∥∥∥∥
∑
i∈I

ci Ṽgf (xi)εAxi
| WA(M,Y )

∥∥∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥
� C

∥∥U−1
Ψ

∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥∥∥(〈
f, π̃(xi)g

〉)
i∈I

| Y b
A
∥∥

� C ′γ (U)
∥∥U−1

Ψ

∥∥∥∥G | WR
A

(
C0,L

1
w

)∥∥2‖f | CoYA‖.
Here, we used Proposition 5.1(a), Lemma 5.4,ci � ai and again Theorem 5.8.

Now setEi := ciU
−1
Ψ (Lxi

G), thenEi ∈ (L1
w)A ∗G andEi = Ṽg(ei) for some uniqueei ∈ (H1

w)A. The
identity f = ∑

i∈I 〈f, π̃(xi)g〉ei follows from (7.10), provided that the finite sequences are dense inY b
A.

As in [12, Theorem U] we claim that

λi(f ) = ci

(
U−1

Ψ Vgf
)
(xi) = 〈f, ei〉,

Combined with the correspondence principle, this yieldsf = ∑
i∈I 〈f, ei〉π̃ (xi)g (with weak-∗-

convergence, and, if the finite sequences are dense inY d
A, with norm convergence). For the sake

completeness we repeat Gröchenig’s arguments [12].
SinceU−1

Ψ F ∈ YA ∗ G, Proposition 3.1(c) givesU−1
Ψ F(xi) = 〈U−1

Ψ F,Lxi
G〉. It follows thatUΨ satis-

fies〈UΨ F,H 〉 = 〈F,UΨ H 〉 for all F ∈ Y ∗ G, H ∈ L1
w ∗ G:

〈UΨ F,H 〉 =
∑
i∈I

ciF (xi)〈Lxi
G,H 〉 =

∑
i∈I

ci〈F,Lxi
G〉〈Lxi

G,H 〉

=
∑
i∈I

ciH (xi)〈Lxi
G,F 〉 = 〈F,UΨ H 〉.

Hence, the same relation applies toU−1
Ψ = ∑∞

n=0(Id − UΨ )n and we conclude〈U−1
Ψ F,Lxi

G〉 =
〈F,U−1

Ψ Lxi
G〉. Finally,

ci

(
U−1

Ψ F
)
(xi) = 〈

F, ciU
−1
Ψ Lxi

G
〉 = 〈Vgf,Vgei〉 = 〈f, ei〉.

By Proposition 6.2 we have the norm estimate

‖f | CoYA‖ =
∥∥∥∥
∑
i∈I

〈f, ei〉Lxi
G | YA

∥∥∥∥ � C
∥∥G | WR

A
(
C0,L

1
w

)∥∥∥∥(〈f, ei〉
)
i∈I

| Y d
A

∥∥
� C

∥∥G | WR
A

(
C0,L

1
w

)∥∥∥∥((
U−1

Ψ F
)
(xi)

)
i∈I

| Y b
A
∥∥

� C
∥∥U−1

Ψ | YA ∗ G → YA ∗ G
∥∥∥∥G | WR

A
(
C0,L

1
w

)∥∥2‖f | CoYA‖
giving the first equivalence in (7.8). Here, we used‖(ciλi) | Y d

A‖ � ‖(λi)i∈I | Y b
A‖. The second equiva

lence of (7.8) follows as in (7.11).�
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So with these three theorems we settled the existence of atomic decompositions and Banac
for coorbit spaces consisting of invariant elements. Moreover, given an elementg ∈ B

A
w , with (7.1), (7.3),

and (7.7), we have explicit conditions on the density of the point set(xi)i∈I such that(π̃(xi)g)i∈I forms
a set of atoms and/or a Banach frame. Here, we have quite some freedom for the choice of(xi)i∈I . We
only have to make sure that it is aU -dense and relatively separated set (with respect toA).

As in Example 2.1, we considerG = R
d

� (R∗+ × SO(d)), its representation onL2(Rd) (the corre-
sponding transform being the continuous wavelet transform) and the automorphism groupSO(d) (see
also [17]). Then Theorems 7.1–7.3 yield atomic decompositions and Banach frames for subsp
the homogeneous Besov spacesḂ

p,q
s (Rd) and of the homogeneous Triebel–Lizorkin spacesḞ

p,q
s (Rd)

consisting of radial functions. In particular, ifg is contained inB
A
w (for instance a radial Schwar

function with infinitely many vanishing moments), then Theorem 7.3 implies the existence of con
a > 0, b > 1 such that the system{τab−j kDb−j g, k ∈ N0, j ∈ Z} forms a Banach frame and an atom
decomposition forḂp,q

s (Rd) andḞ
p,q
s (Rd). Here,τ denotes the generalized translation defined in Ex

ple 2.1. We emphasize again that each element of this Banach frame is a radial function. Also the
decomposition developed in [5] is of the same type as in Theorem 7.1. However, Theorems 7.1–7
that we have much more freedom on the choice ofg and on the point set than in [5], whereg is supposed
to be compactly supported in the Fourier domain and the point set is(2jxne1,2j )j∈Z, n∈N , wherexn is the
nth zero of some Bessel function of the first kind ande1 the first unit vector.

TakingG to be thed-dimensional Heisenberg group,A = SO(d) and the Schrödinger-representati
on L2(Rd) (see [17] for details) we obtain atomic decompositions and Banach frames for subsp
the modulation spacesMp,q

s (Rd) consisting of radial functions. Of course, also here each element o
atomic decomposition and the Banach frame is a radial function [17]. Such atomic decomposition
not known before and will be studied in detail elsewhere, see also [18].

Of course, Hilbert space theory is also contained in our abstract theorems yielding (Hilbert)
for HA. However, in order to fit into the classical frame theory, we have to renormalize. IfY = L2(G),
thenY b

A = l2
ν , whereν(i) = a

1/2
i = |A(xiU)|1/2. Theorem 7.2 yields (under the stated conditions)

C1‖f | HA‖ �
∑
i∈I

∣∣〈f,
√

aiπ̃(xi)g
〉∣∣2 � C2‖f | HA‖.

Hence,{√aiπ̃(xi)g, i ∈ I } is a frame (in the usual sense) forHA with frame constantsC1,C2.
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