136 research outputs found

    A Study on Techniques/Algorithms used for Detection and Prevention of Security Attacks in Cognitive Radio Networks

    Get PDF
    In this paper a detailed survey is carried out on the taxonomy of Security Issues, Advances on Security Threats and Countermeasures ,A Cross-Layer Attack, Security Status and Challenges for Cognitive Radio Networks, also a detailed survey on several Algorithms/Techniques used to detect and prevent SSDF(Spectrum Sensing Data Falsification) attack a type of DOS (Denial of Service) attack and several other  Network layer attacks in Cognitive Radio Network or Cognitive Radio Wireless Sensor Node Networks(WSNN’s) to analyze the advantages and disadvantages of those existing algorithms/techniques

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Spectrum Sensing and Mitigation of Primary User Emulation Attack in Cognitive Radio

    Get PDF
    The overwhelming growth of wireless communication has led to spectrum shortage issues. In recent days, cognitive radio (CR) has risen as a complete solution for the issue. It is an artificial intelligence-based radio which is capable of finding the free spectrum and utilises it by adapting itself to the environment. Hence, searching of the free spectrum becomes the key task of the cognitive radio termed as spectrum sensing. Some malicious users disrupt the decision-making ability of the cognitive radio. Proper selection of the spectrum scheme and decision-making capability of the cognitive reduces the chance of colliding with the primary user. This chapter discusses the suitable spectrum sensing scheme for low noise environment and a trilayered solution to mitigate the primary user emulation attack (PUEA) in the physical layer of the cognitive radio. The tag is generated in three ways. Sequences were generated using DNA and chaotic algorithm. These sequences are then used as the initial seed value for the generation of gold codes. The output of the generator is considered as the authentication tag. This tag is used to identify the malicious user, thereby PUEA is mitigated. Threat-free environment enables the cognitive radio to come up with a precise decision about the spectrum holes

    Compressive Sensing Over TV White Space in Wideband Cognitive Radio

    Get PDF
    PhDSpectrum scarcity is an important challenge faced by high-speed wireless communications. Meanwhile, caused by current spectrum assignment policy, a large portion of spectrum is underutilized. Motivated by this, cognitive radio (CR) has emerged as one of the most promising candidate solutions to improve spectrum utilization, by allowing secondary users (SUs) to opportunistically access the temporarily unused spectrum, without introducing harmful interference to primary users. Moreover, opening of TV white space (TVWS) gives us the con dence to enable CR for TVWS spectrum. A crucial requirement in CR networks (CRNs) is wideband spectrum sensing, in which SUs should detect spectral opportunities across a wide frequency range. However, wideband spectrum sensing could lead to una ordably high sampling rates at energy-constrained SUs. Compressive sensing (CS) was developed to overcome this issue, which enables sub-Nyquist sampling by exploiting sparse property. As the spectrum utilization is low, spectral signals exhibit a natural sparsity in frequency domain, which motivates the promising application of CS in wideband CRNs. This thesis proposes several e ective algorithms for invoking CS in wideband CRNs. Speci cally, a robust compressive spectrum sensing algorithm is proposed for reducing computational complexity of signal recovery. Additionally, a low-complexity algorithm is designed, in which original signals are recovered with fewer measurements, as geolocation database is invoked to provide prior information. Moreover, security enhancement issue of CRNs is addressed by proposing a malicious user detection algorithm, in which data corrupted by malicious users are removed during the process of matrix completion (MC). One key spotlight feature of this thesis is that both real-world signals and simulated signals over TVWS are invoked for evaluating network performance. Besides invoking CS and MC to reduce energy consumption, each SU is supposed to harvest energy from radio frequency. The proposed algorithm is capable of o ering higher throughput by performing signal recovery at a remote fusion center

    Framework for Security and Privacy in RFID based Telematics

    Get PDF
    Telematics by its nature requires the capture of sensor data, storage and exchange of data to obtain remote servicesMost of the commercial antivirus software fail to detect unknown and new malicious code. Proliferation of malicious code (viruses, worms, Trojans, root kits, spyware, crime ware, phishing attacks, and other malware designed to infiltrate or damage a system without user's consent) in recent years has presented a serious threat to Internet, individual users, and enterprises alike. In addition malware once confined to wired networks has now found a new breeding ground in mobile devices, automatic identification and collection (AIDC) technologies, and radio frequency identification devices (RFID) that use wireless networks to communicate and connect to the Internet. RFID systems encountered a number of threats and privacy issues. In order to stay ahead and be proactive in an asymmetric race against malicious code writers, developers of anti-malware technologies have to rely on automatic malware analysis tools. In this paper, we introduce a method of functionally classifying malware and malicious code by using well-known computational intelligent techniques. MEDiC (Malware Examiner using Disassembled Code) is our answer to a more accurate malware detection method. This work is an also attempt to address the information security issues chiefly the attacks through the databases that these RFID tags called iCLASS, which are of the active type. After a particular malicious code has been first identified, it can be analyzed to extract the signature, which provides a basis for detecting variants and mutants of the same malware in the future

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq

    Contributions to the security of cognitive radio networks

    Get PDF
    The increasing emergence of wireless applications along with the static spectrum allocation followed by regulatory bodies has led to a high inefficiency in spectrum usage, and the lack of spectrum for new services. In this context, Cognitive Radio (CR) technology has been proposed as a possible solution to reuse the spectrum being underutilized by licensed services. CRs are intelligent devices capable of sensing the medium and identifying those portions of the spectrum being unused. Based on their current perception of the environment and on that learned from past experiences, they can optimally tune themselves with regard to parameters such as frequency, coding and modulation, among others. Due to such properties, Cognitive Radio Networks (CRNs) can act as secondary users of the spectrum left unused by their legal owners or primary users, under the requirement of not interfering primary communications. The successful deployment of these networks relies on the proper design of mechanisms in order to efficiently detect spectrum holes, adapt to changing environment conditions and manage the available spectrum. Furthermore, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, the air is used as communications medium and can easily be accessed by attackers. On the other hand, the particular attributes of CRNs offer new opportunities to malicious users, ranging from providing wrong information on the radio environment to disrupting the cognitive mechanisms, which could severely undermine the operation of these networks. In this Ph.D thesis we have approached the challenge of securing Cognitive Radio Networks. Because CR technology is still evolving, to achieve this goal involves not only providing countermeasures for existing attacks but also to identify new potential threats and evaluate their impact on CRNs performance. The main contributions of this thesis can be summarized as follows. First, a critical study on the State of the Art in this area is presented. A qualitative analysis of those threats to CRNs already identified in the literature is provided, and the efficacy of existing countermeasures is discussed. Based on this work, a set of guidelines are designed in order to design a detection system for the main threats to CRNs. Besides, a high level description of the components of this system is provided, being it the second contribution of this thesis. The third contribution is the proposal of a new cross-layer attack to the Transmission Control Protocol (TCP) in CRNs. An analytical model of the impact of this attack on the throughput of TCP connections is derived, and a set of countermeasures in order to detect and mitigate the effect of such attack are proposed. One of the main threats to CRNs is the Primary User Emulation (PUE) attack. This attack prevents CRNs from using available portions of the spectrum and can even lead to a Denial of Service (DoS). In the fourth contribution of this the method is proposed in order to deal with such attack. The method relies on a set of time measures provided by the members of the network and allows estimating the position of an emitter. This estimation is then used to determine the legitimacy of a given transmission and detect PUE attacks. Cooperative methods are prone to be disrupted by malicious nodes reporting false data. This problem is addressed, in the context of cooperative location, in the fifth and last contribution of this thesis. A method based on Least Median Squares (LMS) fitting is proposed in order to detect forged measures and make the location process robust to them. The efficiency and accuracy of the proposed methodologies are demonstrated by means of simulation
    • …
    corecore