1,320 research outputs found

    A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy

    Full text link
    Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    Self-Organization of Topographic Mixture Networks Using Attentional Feedback

    Full text link
    This paper proposes a biologically-motivated neural network model of supervised learning. The model possesses two novel learning mechanisms. The first is a network for learning topographic mixtures. The network's internal category nodes are the mixture components, which learn to encode smooth distributions in the input space by taking advantage of topography in the input feature maps. The second mechanism is an attentional biasing feedback circuit. When the network makes an incorrect output prediction, this feedback circuit modulates the learning rates of the category nodes, by amounts based on the sharpness of their tuning, in order to improve the network's prediction accuracy. The network is evaluated on several standard classification benchmarks and shown to perform well in comparison to other classifiers. Possible relationships are discussed between the network's learning properties and those of biological neural networks. Possible future extensions of the network are also discussed.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    The brain: What is critical about it?

    Get PDF
    We review the recent proposal that the most fascinating brain properties are related to the fact that it always stays close to a second order phase transition. In such conditions, the collective of neuronal groups can reliably generate robust and flexible behavior, because it is known that at the critical point there is the largest abundance of metastable states to choose from. Here we review the motivation, arguments and recent results, as well as further implications of this view of the functioning brain.Comment: Proceedings of BIOCOMP2007 - Collective Dynamics: Topics on Competition and Cooperation in the Biosciences. Vietri sul Mare, Italy (2007

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    A self-organizing map clustering approach to support territorial zoning

    Get PDF
    This work aims to evaluate three strategies for analyzing clusters of ordinal categorical data (thematic maps) to support the territorial zoning of the Alto Taquari basin, MS/MT. We evaluated a model-based method, another based on the segmentation of the multi-way contingency table, and the last one based on the transformation of ordinal data into intervals and subsequent analysis of clusters from a proposed method of segmentation of the Self-Organizing Map after the neural network training process. The results showed the adequacy of the methods based on the Self-Organizen Map and the segmentation of the contingency table, as these techniques generated unimodal clusters with distinguishable groups.Supported by National Council for Scientific and Technological Development –CNPq, Brazil, and by National Funds through the Portuguese funding agency, FCT -Fundação para a Ciência e a Tecnologia within project 2022.06822.PTDC. The work of Pedro Oliveira was also supported by the doctoral Grant PRT/BD/154311/2022 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from European Union, under MIT Portugal Progra
    • …
    corecore