884 research outputs found

    Hierarchical Cooperation for Operator-Controlled Device-to-Device Communications: A Layered Coalitional Game Approach

    Full text link
    Device-to-Device (D2D) communications, which allow direct communication among mobile devices, have been proposed as an enabler of local services in 3GPP LTE-Advanced (LTE-A) cellular networks. This work investigates a hierarchical LTE-A network framework consisting of multiple D2D operators at the upper layer and a group of devices at the lower layer. We propose a cooperative model that allows the operators to improve their utility in terms of revenue by sharing their devices, and the devices to improve their payoff in terms of end-to-end throughput by collaboratively performing multi-path routing. To help understanding the interaction among operators and devices, we present a game-theoretic framework to model the cooperation behavior, and further, we propose a layered coalitional game (LCG) to address the decision making problems among them. Specifically, the cooperation of operators is modeled as an overlapping coalition formation game (CFG) in a partition form, in which operators should form a stable coalitional structure. Moreover, the cooperation of devices is modeled as a coalitional graphical game (CGG), in which devices establish links among each other to form a stable network structure for multi-path routing.We adopt the extended recursive core, and Nash network, as the stability concept for the proposed CFG and CGG, respectively. Numerical results demonstrate that the proposed LCG yields notable gains compared to both the non-cooperative case and a LCG variant and achieves good convergence speed.Comment: IEEE Wireless Communications and Networking Conference 201

    Sequentially Distributed Coalition Formation Game for Throughput Maximization in C-RANs

    Get PDF
    Cloud radio access network (C-RAN) has been proposed as a solution to reducing the huge cost of network upgrade while providing the spectral and energy efficiency needed for the new generation cellular networks. In order to reduce the interference that occur in C-RAN and maximize throughput, this paper proposes a sequentially distributed coalition formation (SDCF) game in which players, in this case the remote radio heads (RRHs), can sequentially join multiple coalitions to maximize their throughput. Contrary to overlapping coalition formation (OCF) game where players contribute fractions of their limited resources to different coalitions, the SDCF game offers better stability by allowing sequential coalition formation depending on the availability of resources and therefore providing a balance between efficient spectrum use and interference management. An algorithm for the proposed model is developed based on the merge-only method. The performance of the proposed algorithm in terms of stability, complexity and convergence to final coalition structure is also investigated. Simulation results show that the proposed SDCF game did not only maximize the throughput in the C-RAN, but it also shows better performances and larger capabilities to manage interference with increasing number of RRHs compared to existing methods

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    The Spectrum Shortage Problem: Channel Assignment and Cognitive Networks

    Get PDF
    Recent studies have shown that the proliferation of wireless applications and services, experienced in the last decade, is leading to the challenging spectrum shortage problem. We provide a general overview regarding the spectrum shortage problem from the point of view of different technologies. First, we propose solutions based on multi-radio multi-channel wireless mesh networks in order to improve the usage of unlicensed wireless resources. Then, we move our focus on cognitive networks in order to analyze issues and solutions to opportunistically use licensed wireless resources. In wireless mesh networks, the spectrum shortage problem is addressed equipping each device with multiple radios which are turned on different orthogonal channels. We propose G-PaMeLA, which splits in local sub-problems the joint channel assignment and routing problem in multi-radio multi-channel wireless mesh networks. Results demonstrate that G-PaMeLA significantly improves network performance, in terms of packet loss and throughput fairness compared to algorithms in the literature. Unfortunately, even if orthogonal channels are used, wireless mesh networks result in what is called spectrum overcrowding. In order to address the spectrum overcrowding problem, careful analysis on spectrum frequencies has been conducted. These studies identified the possibility of transmitting on licensed channels, which are surprisingly underutilized. With the aim of addressing the resources problem using licensed channels, cognitive access and mesh networks have been developed. In cognitive access networks, we identify as the major problem the self-coexistence, which is the ability to access channels on a non-interfering basis with respect to licensed and unlicensed wireless devices. We propose two game theoretic frameworks which differentiate in having non-cooperative (NoRa) and cooperative (HeCtor) cognitive devices, respectively. Results show that HeCtor achieves higher throughput than NoRa but at the cost of higher computational complexity, which leads to a smaller throughput in cases where rapid changes occur in channels' occupancy. In contrast, NoRa attains the same throughput independent of the variability in channels' occupancy, hence cognitive devices adapt faster to such changes. In cognitive mesh networks, we analyze the coordination problem among cognitive devices because it is the major concern in implementing mesh networks in environments which change in time and space. We propose Connor, a clustering algorithm to address the coordination problem, which establishes common local control channels. Connor, in contrast with existing algorithms in the literature, does not require synchronization among cognitive mesh devices and allows a fast re-clustering when changes occur in channel's occupancy by licensed users. Results show that Connor performs better than existing algorithms in term of number of channels used for control purposes and time to reach and stay on stable configurations

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Enhancing cooperation in wireless networks using different concepts of game theory

    Get PDF
    PhDOptimizing radio resource within a network and across cooperating heterogeneous networks is the focus of this thesis. Cooperation in a multi-network environment is tackled by investigating network selection mechanisms. These play an important role in ensuring quality of service for users in a multi-network environment. Churning of mobile users from one service provider to another is already common when people change contracts and in a heterogeneous communication environment, where mobile users have freedom to choose the best wireless service-real time selection is expected to become common feature. This real time selection impacts both the technical and the economic aspects of wireless network operations. Next generation wireless networks will enable a dynamic environment whereby the nodes of the same or even different network operator can interact and cooperate to improve their performance. Cooperation has emerged as a novel communication paradigm that can yield tremendous performance gains from the physical layer all the way up to the application layer. Game theory and in particular coalitional game theory is a highly suited mathematical tool for modelling cooperation between wireless networks and is investigated in this thesis. In this thesis, the churning behaviour of wireless service users is modelled by using evolutionary game theory in the context of WLAN access points and WiMAX networks. This approach illustrates how to improve the user perceived QoS in heterogeneous networks using a two-layered optimization. The top layer views the problem of prediction of the network that would be chosen by a user where the criteria are offered bit rate, price, mobility support and reputation. At the second level, conditional on the strategies chosen by the users, the network provider hypothetically, reconfigures the network, subject to the network constraints of bandwidth and acceptable SNR and optimizes the network coverage to support users who would otherwise not be serviced adequately. This forms an iterative cycle until a solution that optimizes the user satisfaction subject to the adjustments that the network provider can make to mitigate the binding constraints, is found and applied to the real network. The evolutionary equilibrium, which is used to 3 compute the average number of users choosing each wireless service, is taken as the solution. This thesis also proposes a fair and practical cooperation framework in which the base stations belonging to the same network provider cooperate, to serve each other‘s customers. How this cooperation can potentially increase their aggregate payoffs through efficient utilization of resources is shown for the case of dynamic frequency allocation. This cooperation framework needs to intelligently determine the cooperating partner and provide a rational basis for sharing aggregate payoff between the cooperative partners for the stability of the coalition. The optimum cooperation strategy, which involves the allocations of the channels to mobile customers, can be obtained as solutions of linear programming optimizations
    • …
    corecore