203 research outputs found

    Cooperative Label-Free Moving Target Fencing for Second-Order Multi-Agent Systems with Rigid Formation

    Full text link
    This paper proposes a label-free controller for a second-order multi-agent system to cooperatively fence a moving target of variational velocity into a convex hull formed by the agents whereas maintaining a rigid formation. Therein, no label is predetermined for a specified agent. To attain a rigid formation with guaranteed collision avoidance, each controller consists of two terms: a dynamic regulator with an internal model to drive agents towards the moving target merely by position information feedback, and a repulsive force between each pair of adjacent agents. Significantly, sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop systems governed by the proposed fencing controller. Rigorous analysis is provided to eliminate the strong nonlinear couplings induced by the label-free property. Finally, the effectiveness of the controller is substantiated by numerical simulations

    A Cyclic Pursuit Framework for Networked Mobile Agents Based on Vector Field Approach

    Get PDF
    This paper proposes a pursuit formation control scheme for a network of double-integrator mobile agents based on a vector field approach. In a leaderless architecture, each agent pursues another one via a cyclic topology to achieve a regular polygon formation. On the other hand, the agents are exposed to a rotational vector field such that they rotate around the vector field centroid, while they keep the regular polygon formation. The main problem of existing approaches in the literature for cyclic pursuit of double-integrator multiagent systems is that under those approaches, the swarm angular velocity and centroid are not controllable based on missions and agents capabilities. However, by employing the proposed vector field approach in this paper, while keeping a regular polygon formation, the swarm angular velocity and centroid can be determined arbitrary. The obtained results can be extended to achieve elliptical formations with cyclic pursuit as well. Simulation results for a team of eight mobile agents verify the accuracy of the proposed control scheme

    Taming mismatches in inter-agent distances for the formation-motion control of second-order agents

    Get PDF
    This paper presents the analysis on the influence of distance mismatches on the standard gradient-based rigid formation control for second-order agents. It is shown that, similar to the first-order case as recently discussed in the literature, these mismatches introduce two undesired group behaviors: a distorted final shape and a steady-state motion of the group formation. We show that such undesired behaviors can be eliminated by combining the standard formation control law with distributed estimators. Finally, we show how the mismatches can be effectively employed as design parameters in order to control a combined translational and rotational motion of the formation.Comment: 14 pages, conditionally accepted in Automatic Control, IEEE Transactions o

    Distributed formation control for autonomous robots

    Get PDF

    Distributed formation control for autonomous robots

    Get PDF

    Distributed formation control for autonomous robots

    Get PDF
    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot performance is a cornerstone in the emerging field of swarm robotics, in particular with applications in precision agriculture, coverage of sport/art events, communication networks, area surveillance or vehicle platooning for energy efficiency and many others. One of the most important outcomes of this thesis is that the provided algorithms are completely distributed. This means that there is no central unit commanding the robots, but they have their own intelligence which allows them to make their own decisions based only on the local information. A distributed scheme entails a striking feature about the scalability and maintenance of a team of robots. Moreover, we also address the scenario of having wrongly calibrated sensors, which has a profound impact in the performance of the robots. The provided algorithms make the robots robust against such a practical and very common problem in real applications

    Cooperative Hybrid Control of Robotic Sensors for Perimeter Detection and Tracking

    Get PDF
    The purpose of this work is to provide experimental results of a real-world multi-vehicle coordination application, perimeter detection and tracking, not to prove optimality, convergence, stability, etc. The tools were provided to experimentally verify the hybrid system (a dynamical system composed of discrete and continuous states). The algorithm has been extensively tested in simulation and experiments. A decentralized, cooperative hybrid system was designed and implemented that allows a group of nonholonomic robots to successfully search for, detect, and track a dynamic perimeter with limited communication, while avoiding collisions and reconfiguring on-the-fly. Furthermore, an assessment of advantages and disadvantages was drawn concerning the simulators (Matlab and Gazebo) used from this testing. Finally, experimental results were promising, but further testing is needed. Future areas of research might include more realistic outdoor tests, methods to estimate the dynamic perimeter as it evolves, and a formal analysis of the hybrid system, i.e., cycling, stability, etc.School of Electrical & Computer Engineerin

    Safe navigation and motion coordination control strategies for unmanned aerial vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) have become very popular for many military and civilian applications including in agriculture, construction, mining, environmental monitoring, etc. A desirable feature for UAVs is the ability to navigate and perform tasks autonomously with least human interaction. This is a very challenging problem due to several factors such as the high complexity of UAV applications, operation in harsh environments, limited payload and onboard computing power and highly nonlinear dynamics. Therefore, more research is still needed towards developing advanced reliable control strategies for UAVs to enable safe navigation in unknown and dynamic environments. This problem is even more challenging for multi-UAV systems where it is more efficient to utilize information shared among the networked vehicles. Therefore, the work presented in this thesis contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems. The first part of this thesis deals with single-UAV systems. Initially, a hybrid navigation framework is developed for autonomous mobile robots using a general 2D nonholonomic unicycle model that can be applied to different types of UAVs, ground vehicles and underwater vehicles considering only lateral motion. Then, the more complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed. To that end, advanced 3D reactive control strategies are developed adopting the sense-and-avoid paradigm to produce quick reactions around obstacles. A special case of navigation in 3D unknown confined environments (i.e. tunnel-like) is also addressed. General 3D kinematic models are considered in the design which makes these methods applicable to different UAV types in addition to underwater vehicles. Moreover, different implementation methods for these strategies with quadrotor-type UAVs are also investigated considering UAV dynamics in the control design. Practical experiments and simulations were carried out to analyze the performance of the developed methods. The second part of this thesis addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed. These methods offer good computational cost for large-scale systems. Simulations were performed to verify the performance of these methods considering systems with different sizes
    • …
    corecore