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Chapter 1

Introduction

My name’s Guybrush Threepwood, and I want to be a PhirateD.
The secret of Monkey Island.

S
WARM robotics consist of mostly simple robots with a desired collective
behavior that emerges from the local interactions among individual robots
and the environment. An exhaustive survey about swarm robotics can

be found in [12, 14, 66], where it is shown how the swarm engineering1 is an
emergent discipline with numerous practical applications. The usage of robots
in a coordinated fashion is a reality in many tasks such as the transportation of
objects [83], area exploration & surveillance [86], vehicle platooning for energy
efficiency [71] or tracking and enclosing a target [51]. All these tasks have practical
applications in the society such as rescue missions in disaster areas or in the more
controversial military field.

In other fields such as precision agriculture, deployment of communication
networks or coverage of sport/art events, among others, a large set of problems
shows up. For example, we have the early identification of diseases in cultivations,
the temporary increase of the local capacity of a cellphone network or the real
time acquisition of 3-D images and video. The usage of micro aerial vehicles offers
potential solutions in these areas that can be enhanced by swarm engineering.
Nowadays, the study of swarms of flying robots is not only limited to controlled
laboratories which employ precise motion capture systems [49]. On the contrary,
the development of low-cost high accuracy outdoor localization systems [29, 65]
makes employment of aerial swarms in outdoors scenarios possible and in an
affordable and safe way. Indeed, small autonomous robots facilitate cheaper
designs and easy maintenance, opening their usage and experimentation to a
broader range.

1Swarm engineering [14] is the systematic application of scientific and technical knowledge, to model
and specify requirements, design, realize, verify, validate, operate and maintain a swarm intelligence
system.
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In order to accomplish many of the swarm missions we find in the formation
control an important and useful tool. The purpose of this tool is to help to achieve
the goal of keeping a desired shape of a multi agent2 formation.

There are tasks that simply would not be accomplished by working with a single
robot. On the other hand, a controlled formation can be employed in order to offer
novel functionality. One class of examples is the enhanced sensing instrumentation,
which includes the outstanding jointed ESA’s and NASA’s eLISA (evolved Laser
Interferometer Space Antenna) mission forecasted for 2034 for the detection of
gravitational waves [25]. In this mission, three spacecrafts are deployed in the space
for flying along an Earth-like heliocentric orbit. These spacecrafts are arranged
in an equilateral triangle with a side-length of five million kilometers but aiming
at an accuracy close to the atomic level. Another example is the ESA’s PROBA 3
(Project for On-Board Autonomy) mission for the investigation of the Sun [24] that
is scheduled to 2018. Here the two spacecrafts will fly in formation separated by
hundred meters with an accuracy of millimeters.

This thesis is mainly focused in the field of formation control for autonomous
robots.

1.1 Distributed formation control in practice

Considerable research efforts have been made in the past few years in order to de-
sign distributed control laws that stabilize the shapes of formations of autonomous
agents [32, 50, 52, 79]. In particular, within the research area of developing
cooperative control theory for multi-agent systems, a sequence of theoretical in-
vestigations have been made to design formation control laws using the notion of
graph rigidity [4, 19, 48, 85]. Such control laws are usually based on the gradients
of the potential functions [78] closely related to the graphs describing the distance
constraints between the neighboring agents. The latter is what characterizes a
distributed strategy, that is to say the agents rely their autonomy and behaviour on
only local information, mostly relative quantities with respect to their neighbors.
The benefits of using such distributed systems is as follows:

• Scalability: The resources needed by a single autonomous agent do not grow
with the increase of the total number of agents in the system.

• Fault tolerance: There is not a single/central unit of control/failure.

• Concurrency: The process of (local) information is performed in a parallel
and independent fashion in order to achieve a global goal.

2Sometimes in this book we will employ the broader term agent. We mean by an agent something
whose behaviour fits within a set of mathematical models. We will see that a robot is an example of
agent.
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(a)

(b)

(c)
(d)

(e) (f)

Figure 1.1: a) ESA’s and NASA’s eLISA mission (planned for 2034) for detecting
gravitational waves where the spacecrafts fly in a triangular formation with a
side-length of five million kilometers; b) ESA’s PROBA3 (planned for 2018) mission
for studying the Sun, where the two spacecrafts fly in a coordinated formation in
order to be in eclipse all the time; c) and d) typical coordinated motion of military
vehicles; e) one hundred coordinated drones employed in INTEL’s musical/visual
performance at the end of 2015; f) team of quadcopters flying in formation. Photos
courtesy of ESA, NASA, US. Army and Intel.
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However, during the implementation and execution of the solutions available
in the published literature about formation control to actual autonomous agents
one has to face some practical and common problems that degrade the expected
performance of the distributed system. When one uses gradient control laws, it has
been recently reported in [10, 73] that if agents disagree with their neighboring
peers on the measured (e.g., biased range sensors) or prescribed distances between
them, two main undesired effects occur: an unknown distorted final shape and
a steady-state group motion. While the former effect can be expected due to
the change in the system equilibrium point caused by a constant disturbance,
the latter seems somehow surprising. Such inconsistency induced motions take
peculiar forms: in R2, the agents move collectively in a distorted but rigid formation
following a closed orbit that is determined by a single sinusoidal signal; in R3, the
orbit becomes helical that is determined by a single sinusoidal signal and a constant
drift.

This undesired group motion is rather unexpected especially when knowing the
robustness property as a consequence of the exponential convergence of gradient
control; after all, exponential convergence of a dynamic system usually implies its
robustness against small disturbances. With the hindsight gained from [10, 73],
one realizes that the exponential convergence takes place for the error signals
determined by the differences of the real and prescribed distances between neigh-
boring agents, but this does not prevent the ill behavior of the position or velocity
signals of the agents when measurement inconsistency exists. Such an observation
is by no means trivial, but may affect the application of robotic formations because
robustness issue is particularly relevant in practice, where distance disagreements
may arise for several reasons. Firstly, robots may have different guidance systems,
which may differ in their setting points; secondly, sensors equipped on robots may
not return the same reading even if they are measuring the same distance due to
heterogeneity in manufacturing processes; and thirdly, the same sensor can produce
different readings for the same distance in face of random measurement noises.

These mentioned issues and their practical consequences motivate us to study
how to address and solve them but without adding extra requirements, e.g., no extra
sensing or communication, or without loosing the nice features from the original
system, such as its distributed nature or exponential convergence properties.

1.2 Manipulation of the formation

Keeping and maintaining a formation is usually not the only task for the swarm of
agents. It is a pretty common scenario to demand from a formation to maintain
a prescribed shape and to travel without breaking it. Furthermore, the formation
may interact with the surrounding environment by changing its desired trajectory
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or by morphing its shape in the presence of an obstacle or by changing the covered
area.

The formation and the group motion control problems are usually tackled
separately, namely by using the gradient-based strategies for formation control and
by leader-follower coordination for motion control, where for the latter the leader
moves according to a desired trajectory and the followers simply track the leader
[9]. But when the separately designed different controllers (formation, motion,
scaling for avoiding obstacles, etc) are jointly in force as in the common scenario
in practice, conflict often occurs: the shape of the formation is distorted when an
agent compromises between the demands from formation and motion controls as
to where and how it needs to move [6, 69]. Furthermore, in order to achieve a
coordinated motion of the whole formation, global information is required such as
a common frame of coordinates for the agents or the position of the centroid of
the formation, or extra sensing such as neighboring agents measuring their relative
velocities.

This issue is addressed in this thesis by studying how to accomplish, simulta-
neously and in a distributed fashion, the tasks of scale-free shape keeping, group
motion and controlled scaling of the shape. We show that the proposed technique
is potentially compatible with different agent’s dynamics and that it allows us to
make the study of more difficult problems easier, such as the interception, tracking
and enclosing a free target with an unknown velocity. Moreover, the practical imple-
mentation of the presented algorithms in this thesis is computationally inexpensive,
making the proposed algorithms attractive for autonomous robots with limited
computational power.

1.3 Outline and main contributions of this thesis

In Chapter 2 we briefly introduce the notation used in this thesis and review the ba-
sics of gradient-based formation control together with the robustness issues caused
by the presence of inconsistent measurements or mismatches in the prescribed
distances of neighboring agents.

We start with the main results in Chapter 3 where we focus on dealing with the
tricky robustness issue by the use of an estimator-based gradient control. We are
able to show that under mild assumptions, the proposed control strategy stabilizes
formations in the presence of measurement inconsistency eliminating all the re-
ported undesirable steady-state collective motions and distortion in the formations’
final shapes. It takes full advantage of the strength of the existing gradient control,
especially the exponential convergence speed, and at the same time preserves the
distributed nature of the local cooperative control laws. Furthermore, we show
that we can deal with inconsistencies in the form of a combination of a constant
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bias and a finite number of sinusoidal noise, which often arises from resonance
vibrations from motors, or in marine robotic tasks when sea waves perturb sensing
[18] [11]. The main results regarding this matter have been published in [34, 35].

We address the formation-motion control problem in Chapter 4 by introducing
distributed parameter pairs in the gradient-based formation control law for steering
the whole formation; in particular, for each prescribed distance constraint, we
introduce a pair of motion parameters, mimicking the mismatches. By a systematic
design of such motion parameters, we show that we can steer the entire formation
in rotation and/or translation in a distributed manner. The proposed gradient-
based formation-motion joint controller using the motion parameters has several
advantages. First, one can achieve precisely the desired steady-state formation
shape and the group motion simultaneously, including rotational motion, in a
distributed fashion. To the best of our knowledge, no such result has been reported
in the literature. For single-integrator agent dynamics, we relate analytically the
magnitude of the motion parameters to the speed of the group motion. Second,
our proposed approach enables us to align the formation with respect to a global
coordinate frame by adding a simple control term to an arbitrary agent when
guiding the group in motion. In comparison, in the literature such an alignment
is usually obtained by assigning a leader who knows the global frame and letting
the other agents (followers) estimate the leader’s velocity employing a distributed
estimator [9]. Obviously in our approach, such estimators are not needed at all.
Third, one can easily use our method to address the target tracking and enclosing
problem both in R2 and R3 where one assigns the formation shape to specify how
the target is enclosed and tracked by the pursuers. In comparison to the solution of
such problems in [43, 54] among other works, we do not confine our formation
to follow the same circular trajectory nor require all enclosing agents to measure
their relative positions with respect to the target. The main results regarding this
matter have been published in [36].

The surprisingly simple structure of our proposed control law opens possibilities
to solve other difficult problems, such as controlling the scaling of a formation as
we show in Chapter 5. The proposed distributed controller even allows to control
the change between two different shapes or to vary periodically the scale of a
given scale-free shape, e.g., the family of regular squares. The results regarding this
matter have been summarized in the papers [38, 39].

We will also address the formation coordination task for agents governed by
second-order dynamics addressed in Chapter 6. We analyze the robustness issue
by the inconsistent measurement or mismatches and show that exactly the same
non-desired consequences take place as in the first-order case. We further extend
the estimators for removing these issues and the group-motion controllers from the
first-order case. Finally we show how to apply these findings in a practical case
where the agents are quadcopters in Chapter 7. The results regarding this matter
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have been summarized in the submitted paper [37, 40].
In Chapter 8, we reemphasize the common thread of this thesis and summarize

our contributions. We also highlight some topics that may become interesting for a
future research.

Finally, the experimental setups3 employed in this thesis with actual mobile
robots and a flight simulator are explained in Appendices A and B.

1.3.1 List of publications

Journal papers:

• H. Garcia de Marina, Ming Cao, and B. Jayawardhana. Controlling rigid
formations of mobile agents under inconsistent measurements. Robotics,
IEEE Transactions on, 31(1):31–39, Feb 2015.

• H. Garcia de Marina, B. Jayawardhana, and Ming Cao. Distributed rota- tional
and translational maneuvering of rigid formations and their applications.
Robotics, IEEE Transactions on, 32(3):684-696, Jun 2016.

• H. Garcia de Marina, B. Jayawardhana, and Ming Cao. Taming inter-distances
mismatches for formation-motion control of rigid formations in second-order
agents. 2016. Under review. Automatic Control, IEEE Transactions on.

• H. Garcia de Marina, B. Jayawardhana, and Ming Cao. Precise scaling with
motion control for teams of robots in rigid formations. 2016. In preparation.

Conference papers:

• H. Garcia de Marina, M. Cao, and B Jayawardhana. Controlling formations
of autonomous agents with distance disagreements. In Proc. of the 4th
IFAC Workshop on Distributed Estimation and Control in Networked Systems,
2013.

• H. Garcia de Marina, B. Jayawardhana, and Ming Cao. On the Role and
Compensation of Distance Mismatches in Rigid Formation Control for Second-
Order Agents. In Proc. of the 10th IFAC Symposium on Nonlinear Control
Systems, NOLCOS 2016.

• H. Garcia de Marina, B. Jayawardhana, and Ming Cao. Distributed scaling
control of rigid formations. In Proc. of the 55th IEEE Conference on Decision
and Control, 2016.

3The raw footage of the experiments reported in this thesis can be found in the playlist Robotics at
http://www.youtube.com/c/HectorGarciadeMarina

http://www.youtube.com/c/HectorGarciadeMarina




Chapter 2

Theoretical preliminaries

A beginning is the time for taking the most delicate care that the balances
are correct. Knowing where the trap is– that’s the first step in evading it.

Bernard: I’m sure Dr. Fred wouldn’t start this if it weren’t safe!
Laverne: After all, he IS a doctor.
Bernard: Has anyone ever been hurt reading this thing?
Dr. Fred: Of course not! This is the first time I’ve ever tried it on people.

The day of the tentacle.

I
N this chapter, we first introduce the general notation that will be used
throughout the thesis. Some basic knowledge of graph theory, in particular
rigidity graph theory, is reviewed. Rigidity graph theory plays an important

role in the design of a desired shape for the formation of the agents. In order to
achieve such desired shape by the agents we will cover the popular gradient-based
technique for formation-control in both of the two popular variants: position-
based and distance-based. In the position-based strategy the agents control the
relative positions (vector quantities) between them, whereas in distance-based
strategy the agents just control the distances (scalar quantities) between them.
We will see how in the distance-based approach the exponential stability does not
provide protection for the formation against some classes of disturbances and
biases in the range sensors of the agents. We will show how these biases are
mathematically equivalent to assume perfect measurements by neighboring agents
but having different understanding about the distance that they want to maintain
between each other, i.e., there is a mismatch in the desired distance. As a practical
illustration, we finish this chapter by showing some lab experiments covering
realistic situations with mobile robots in order to validate the theoretical findings.

2.1 Notation

Let us introduce some notation employed throughout the thesis. For a given
matrix A ∈ Rn×p, define A ∆

= A ⊗ Im ∈ Rnm×pm, where the symbol ⊗ denotes
the Kronecker product, m = 2 for R2 or otherwise m = 3 for R3, and Im is the
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m-dimensional identity matrix. We denote by |X | the cardinality of the set X , by
||x|| the Euclidean norm of a vector x and by x̂ ∆

= x
||x|| the unit vector of x. We

denote by col(·) the column vector by collecting all its arguments as the vector’s
components. For a stacked vector/matrix x

∆
=
[
xT1 xT2 . . . xTk

]T
with xi ∈

Rn×l, i ∈ {1, . . . , k}, we define the block diagonal matrix Dx
∆
= diag{xi}i∈{1,...,k} ∈

Rkn×kl. We define the orthogonal projector operator as P⊥x̂
∆
=
(
Im − x̂kx̂Tk

)
. Finally

we use 1n×m and 0n×m to denote the all-one and all-zero vector/matrix in Rn×m

respectively and we will drop the subscripts if the dimensions are clear from the
context.

2.2 Graphs and frameworks

We consider a formation of n > 2 autonomous agents whose positions are denoted
by pi ∈ Rm with i ∈ {1, . . . , n}. The agents are able to sense the relative positions of
its neighboring agents. The neighbor relationships are described by an undirected
graph G = (V, E) with the vertex set V = {1, . . . , n} and the ordered edge set E ⊆
V ×V . The set Ni of the neighbors of agent i is defined by Ni

∆
= {j ∈ V : (i, j) ∈ E}.

We define the elements of the incidence matrix B ∈ R|V|×|E| for G by

bik
∆
=


+1 if i = E tail

k

−1 if i = Ehead
k

0 otherwise

, (2.1)

where E tail
k and Ehead

k denote the tail and head nodes, respectively, of the edge Ek,
i.e., Ek = (E tail

k , Ehead
k ). For undirected graphs in this thesis, as we will see, how one

sets the direction of the edges is not relevant for the stability results.
A framework is defined by the pair (G, p), where p is the stacked vector of the

agents’ positions pi with i ∈ {1, . . . , n}. The stacked vector of the sensed relative
positions by the agents can then be described by

z = B
T
p. (2.2)

Note that each vector zk = pi−pj in z corresponds to the relative position associated
with the edge Ek = (i, j).

2.3 Distance and bearing rigid formations

A distance rigid formation or simply a rigid formation of autonomous agents is simply
a formation whose corresponding framework (G, p) is distance rigid or simply rigid.
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But to define rigid frameworks, we need some other basic concepts and definitions.

Definition 2.1. The edge function fG : Rmn → R|E| is defined by

fG(p)
∆
= col
∀k∈{1,...,|E|}

(||zk||2) = DT
z z = DT

B
T
p
B
T
p.

Definition 2.2. [8] A framework (G, p) is locally rigid if for every p ∈ Rmn, there
exists a neighborhood P of p such that f−1

G (fG(p))∩P = f−1
K (fK(p))∩P , where K

is the complete graph with the same vertex set V of G.

Definition 2.3. [8] A framework (G, p) is globally rigid if f−1
G (fG(p)) = f−1

K (fK(p))

for all p ∈ Rmn.

Roughly speaking a framework (G, p) is rigid if it is not possible to smoothly
move one node of the framework without moving the rest while maintaining the
inter-agent distances given by fG(p). We are interested in a particular class of rigid
formations that are infinitesimally rigid. Take the approximation of fG(p) given by

fG(p+ δp) = fG(p) + dfG(p)δp+O(δp2),

where δp is an infinitesimal displacement of p and compute the Jacobian matrix

dfG(p) =
∂fG(p)

∂p
= 2DT

z B
T

= 2R(z),

where R(z) ∈ R|E|×m|V| is the rigidity matrix [4] of the framework (G, p). The non-
trivial kernel of R(z) includes the translation and rotation of the whole framework
in the Cartesian space. An infinitesimally rigid framework (G, p) is a rigid frame-
work that is invariant under and only under such infinitesimal transformations
using R(z), i.e., fG(p+ δp) = fG(p) for all p. Equivalently and more precisely,

Definition 2.4. [8] We say that p is a regular point of fG if rankR(B
T
p) =

max
{

rankR(B
T
q) : q ∈ Rm|V|

}
.

Definition 2.5. [8] A framework (G, p) is infinitesimally rigid in R2 (resp. R3) if
rankR(z) = 2n− 3 (resp. 3n− 6).

Theorem 2.6. [8] A framework (G, p) is infinitesimally rigid in Rm if and only if p
is a regular point of fG and (G, p) is rigid in Rm.

Note that with Theorem 2.6 some nongeneric sets such as the set of all collinear
agents in 2D or all coplanar agents in 3D are not infinitesimally rigid.

Definition 2.7. [8] A framework (G, p) is minimally rigid if it has exactly 2n− 3

(resp. 3n− 6) edges in R2 (resp. R3).
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(a) (b) (c) (d)

(e)
(f) (g)

Figure 2.1: a) The square without an inner diagonal is not rigid since we can
smoothly move the top two nodes keeping the other two fixed without breaking
the distance constraints; b) A rigid but not infinitesimally rigid framework. If
we rotate the left inner triangle, then the right inner triangle can be counter-
rotated in order to keep fG(p) constant; c) A rigid but not infinitesimally rigid
framework. Although the graph is complete, the nodes’ positions are collinear
leading to rankR(z) = 1 < 3; d) The triangle is infinitesimally and minimally
rigid. The only possible transformations in order to keep fG(p) constant are the
translation or rotation of the whole framework; e) The cube formed by squares
without diagonals is not rigid; f) The zero-volume tetrahedron is rigid but not
infinitesimally rigid in R3, since all the nodes are co-planar; and g) The tetrahedron
in R3 is infinitesimally and minimally rigid.

The last definition is due to the fact that if we remove one edge from a minimally
rigid framework, then the framework is not rigid anymore. One special property of
R(z) in infinitesimally and minimally rigid frameworks is that it is full row rank
[8]. We illustrate in Figure 2.1 some examples in R2 and R3 of rigid and non-rigid
frameworks.

We see clearly that the concept of infinitesimal rigidity is associated to the
definition of a particular shape by only setting some inter-distances between the
nodes of the framework, therefore by controlling only these inter-distances we can
achieve, at least locally, the specific desired shape. It is locally since the same set of
inter-distances for an infinitesimally rigid formation can define more than one (but
finite number) shape at once, e.g., a mirrored one.

Let the following stacked vector of relative positions z∗ = [ z∗1
T z∗2

T ... z∗|E|
T ]T

define a desired infinitesimally and minimally rigid shape with ||z∗k|| = dk for all
k ∈ {1, . . . , |E|} where dk is the desired inter-distance. The resulting set Z of the
possible formations with the same shape is defined by

Z ∆
=
{(
I|E| ⊗R

)
z∗
}
, (2.3)

where R is the set of all rotational matrices in 2D or 3D. Roughly speaking, Z
consists of all formation positions that are obtained by rotating z∗. Note that if we
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define the set

D ∆
=
{
z : ||zk|| = dk, k ∈ {1, . . . , |E|}

}
,

in general it holds that Z ⊆ D. This is usually one of the reasons why distance-
based gradient control can only achieve Z locally, since the potential function
where the gradient is taken from has a local minimum at all the shapes defined by
D.

Consider a scale-free shape based on an infinitesimally and minimally rigid
shape, for example the collection of all regular squares with an internal diagonal.
This collection can be distinguished from other (infinitesimally and minimally rigid)
scale-free shapes by checking its inner angles or equivalently by looking at all the
scalar products ẑTl ẑn where l and n are two edges sharing a node; this fact has
been explained in more detail in [87]. Bearing-based rigid frameworks are related
to the distance-based ones where the bearing-based shape can be defined by the
inner angles, instead of the distances. Let us review some fundamental concepts in
bearing rigidity.

Definition 2.8. [88] Frameworks (G, p) and (G, p′) are bearing equivalent if P⊥zkz
′
k =

0 for all k ∈ {1, . . . , |E|}.

Definition 2.9. [88] Frameworks (G, p) and (G, p′) are bearing congruent if P⊥(pi−pj)(p
′
i−

p′j) = 0 for all i, j ∈ V.

Definition 2.10. [88] The bearing function is defined by fBG(p)
∆
= ẑ ∈ Rm|E|,

where1 ẑ is the stacked vector of ẑk for all k ∈ {1, . . . , |E|}.

Analogous to the rigidity matrix we can define the bearing rigidity matrix by
computing the Jacobian matrix of the bearing function

RB(z) =
∂fBG(p)

∂p
= D

T

z̃D
T
P⊥ẑ
B
T
,

where P⊥ẑ ∈ Rm|E|×m is the stacked matrix of operators P⊥ẑk and z̃ ∈ R|E| is the
stacked vector of 1

||zk|| for all k ∈ {1, . . . , |E|}. The non-trivial kernel of RB(z) in-
cludes the scalings and translations of the framework [88], leading to the following
definition.

Definition 2.11. [88] A framework is infinitesimally bearing rigid if the kernel of
its bearing rigidity matrix only corresponds to scalings and translations.

In order words if a scale-free shape can be determined uniquely by its inner
angles, then it belongs to the infinitesimally bearing rigid framework. It is important

1In order not to overload the notation, here by ẑ we exclusvely mean the vector-element wise
normalization of z.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.2: The square and the rectangle without an inner diagonal in (a) and
(b) are bearing equivalent but not bearing congruent. The square (c) has been
rotated and scaled in (d) and both are infinitesimally and minimally congruent. The
tetrahedron in (e) is infinitesimally and minimally rigid in R3 and it is infinitesimally
and minimally congruent with its scaled and rotated version in (f). In R2 all
the infinitesimmaly minimally rigid shapes are also infinitesimally bearing rigid,
however in R3 this is not true, for example, the pyramid in with a hexagonal base
in (g).

to highlight the following relevant result in R2 (unfortunately for higher dimensions
it is not true) connecting both distance and bearing rigidity theories.

Lemma 2.12. [88] In R2 a framework is infinitesimally bearing rigid if and only if
it is infinitesimally rigid.

Consider a given a shape defined by Z, we define the scale-free ZS by taking
Z rescaled by all the possible scale factors s ∈ R+ such that ||zk|| = sdk for all
k ∈ {1, . . . , |E|}. This leads to the following definition

Definition 2.13. The shapes defined by Z within the set ZS are infinitesimally and
minimally congruent rigid.

The name comes from the fact that all the scales of an infinitesimally and
minimally rigid shape are bearing congruent. Note that obviously ZS ⊆ DS , where
DS is defined in the same way as D but with ||zk|| = sdk for all k ∈ {1, . . . , |E|}.
We define Zs as Z for a fixed s. We provide examples of the introduced concepts
about bearing rigidity in Figure 2.2.

2.3.1 Realization of infinitesimally and minimally rigid forma-
tions

For a desired shape, one can always design G to make the formation infinitesimally
and minimally rigid. In fact in R2, an infinitesimally and minimally rigid framework
with two or more vertices can always be constructed through the Henneberg
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(a) (b) (c)

Figure 2.3: In (a) and (b) we illustrate the two operations for the Henneberg inser-
tion in R2 taking as a starting point a triangular framework with three nodes. These
two operations can construct any infinitesimally and minimally rigid framework
in R2. Although there is not (yet) a collection of operations for constructing any
infinitesimally and minimally rigid framework in R3, we illustrate in (c) how to
construct a set of them by taking as a starting point a tetrahedron with four nodes.

construction [45], starting from a single edge, by a sequence of the following
operations:

1. Add a new vertex to the graph, together with edges connecting it to two
previously existing vertices.

2. Subdivide an edge of the graph, and add an edge connecting the newly
formed vertex to a third previously existing vertex.

Unfortunately there is no known corresponding systematic operations in R3 yet.
Nevertheless in R3 one can always obtain an infinitesimally and minimally rigid
framework by following analogous steps as in the R2 case. For example, starting
from a tetrahedron, add a new vertex and form another tetrahedron with three
other vertices that forms a triangle in the existing framework. These algorithms in
R2 and R3 are graphically illustrated in Figure 2.3.

2.3.2 Frames of coordinates

In order to describe and design motions for a desired formation defined by Z it will
be useful to attach a frame of coordinates to the centroid of the shape. We denote
by Og the global frame of coordinates fixed at the origin of Rm with some arbitrary
fixed orientation. In a similar way, we denote by Ob the body frame fixed at the
centroid pc of the desired scale-free rigid formation. Furthermore, if we rotate the
scale-free rigid formation with respect to Og, then Ob is also rotated in the same
manner. Note that pc is invariant with respect to ZS . Let bpi denote the position of
agent i with respect to Ob. In order to simplify notation whenever we represent an
agent’s variable with respect to Og, the superscript is omitted, e.g., pi

∆
= gpi.
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2.4 Modelling the agents, first and second-order dy-
namics

The dynamical model of the agents plays a fundamental role in the formation
control problem. In this thesis we will mainly use two kinds of dynamical models
for the agents: the first-order and the second-order dynamics. In addition to
defining the behaviour of the agents themselves, how we model the dynamics of
the agents has further consequences on the behaviour of the formation such as its
stability, rate of convergence and transient behaviors.

A simple approach is to consider just to actuate over the velocities of the agents
or, equivalently, to model them employing the first-order dynamics

ṗ = u, (2.4)

where u is the stacked vector of control inputs ui ∈ Rm for i = {1, . . . , n}. This
model might represent the commanded velocity to a more complex system, e.g.,
quadrotors or ocean vehicles. Indeed one can employ the signal generated by
(2.4) as the desired 3D-velocity for the proposed tracking controllers of the quadro-
tor in [13, 41, 46, 56] or vessels in [30], which have been widely employed in
experimental setups in formation and motion control [28, 31, 55].

A more realistic dynamical model for actual vehicles is the so-called second-
order dynamics given by {

ṗ = v

v̇ = u
, (2.5)

where v is the stacked vector of agents’ velocities vi ∈ Rm for i = {1, . . . , n}.
It is more realistic in the sense that the control input in (2.5) is actuating over
the accelerations of the system, i.e., we consider Newtonian dynamics where the
actuators of the system produce a desired force or torque. In practice this means
that we can by-pass the generated velocity reference in (2.4) and command directly
the corresponding motors with the control signal in (2.5). However the analysis,
design and other aspects, such as guaranteeing the stability of the system, become
more complex for second-order in comparison to first-order dynamics. It is up to
the designer to consider and analyze first the characteristics of the actual agents in
order to choose the better approach. In this thesis we first derive the main results
considering the first-order dynamics and in Chapter 6 we will extend them to the
second-order case.
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2.5 Gradient formation control

Consider a formation of n agents governed by the first-order dynamics (2.4) and
associated with the neighbor relationship graph G. For each edge Ek one can
construct a potential function Vk with its minimum at the desired distance ||z∗k||
so that the gradient of such functions can be used to control inter-agent distances
distributively. Then the function Vk should satisfy the following conditions

Vk : Rm → R>0 (2.6)

Vk(zk) = 0 ⇐⇒ ||zk|| = dk (2.7)

∇zkVk(zk) = 0 ⇐⇒ ||zk|| = dk, (2.8)

where we define ∇x
∆
= [ ∂

∂x1
, . . . , ∂

∂xm
]T for the calculation of the vector gradient

along x ∈ Rm. We take as a potential function

V
(
B
T
p
)

= V (z) =

|E|∑
k=1

Vk(zk),

and apply to each agent i in (2.4) the following gradient descent control

ui = −∇pi
|E|∑
k=1

Vk(zk). (2.9)

One can then show straightforwardly that the multi-agent formation will converge
locally to the desired shape employing the following known results.

Theorem 2.14. [1, 60] If V (z) satisfies (2.6), (2.7) and (2.8) and is real analytic,
i.e., it possesses derivatives of all orders and agrees with its Taylor series in the
neighborhood of every point, then the system (2.4) under the distributed (2.9) will
converge locally asymptotically to the desired shape Z.

The authors of [1, 60] have shown that for a real analytic potential function
V , system (2.4) with the control law (2.9) is locally asymptotically stable about
the point corresponding to the local minima of V (z). In order to achieve D we can
employ the following family of quadratic2 potential functions

Vk(zk) =
1

2l
(||zk||l − dlk)2, l ∈ N, (2.10)

2Any analytic potential functions, including the ones for collision avoidance [80], can be approxi-
mated by a quadratic function in a small neighborhood about their local minima, and for this reason
such quadratic potentials are of special interest of study.
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with the following gradient along zk

∇zkVk(zk) = (∇zk ||zk||)
(
∂Vk(zk)

∂||zk||

)
= zk||zk||l−2(||zk||l − dlk). (2.11)

One immediate observation is that when l = 1 we have that (2.10) is the classical
elastic potential function and the right-hand side of (2.11) becomes the unit vector
ẑk multiplied by the distance error (||zk|| − dk).

LetZR be the setZ whereR in (2.3) has been substituted by a desired rotational
matrix R with respect to Og. Then define the set ẐR as the collection of unit vectors
ẑk for all k ∈ {1, . . . , |E|} taken from ZR. Note that ẐR and ZS are intimately
related to the same scale-free shape. For achieving ẐR we can employ the following
potential function

V (z) =

|E|∑
k=1

Vk(zk) =
1

2

|E|∑
i=1

||ẑk − ẑ∗k||2, (2.12)

where the desired unit vector ẑ∗k encodes the desired orientation with respect to Og
and the collection ẑ∗k for all k ∈ {1, . . . , |E|} defines a family of infinitesimally and
minimally congruent rigid shapes and therefore it is infinitesimally bearing rigid.
Finally for controlling orientation, position and scale, i.e., the prescribed shape
given by ZR, we use the standard potential function

V (z) =

|E|∑
k=1

Vk(zk) =
1

2

|E|∑
i=1

||zk − z∗k||2. (2.13)

For obvious reasons, in the literature about formation control, the usage of (2.10)
is regarded as a distance-based control strategy, while those of (2.12) and (2.13)
are considered as position-based control strategy where the potential function
(2.12) involves vectorial orientation which is a piece of position-based information.
Distance-based control has the advantage over position-based since all robots can
work in their own local coordinate system, with the main drawback of losing the
control on the final orientation of the formation. In addition, the position-based
control usually requires fewer number of edges than in the distance-based one, see
[9, 88] for more details.

Remark 2.15. If a desired shape given by a collection of z∗k ’s is not geometrically
feasible, then there is not exist a p∗ such that B̄T p∗ = z∗. Hence the minimum of
V (z) in practice will be impossible to reach. For example, a formation consisting
of three agents in R2 where the desired d1, d2 and d3 do not satisfy the triangular
inequality or the desired z∗1 + z∗2 + z∗3 6= 0. A study about impossible desired shapes
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in distance-based control is given in [75].

For the mentioned potentials (2.10)-(2.13) it is straightforward to check that
for every edge Ek = (i, j) one has ∇piVk = −∇pjVk = ∇zkVk, and obviously
∇phVk = 0m×1 for all h 6= i, j. Thus the agent dynamics (2.4) under (2.9) can be
written in the following compact form

ṗ = −B∇zV (z). (2.14)

In this thesis we will mainly focus on the distance-based strategy. Denoting the
distance error for edge k by

ek = ||zk||l − dlk, (2.15)

it follows that
∇zkVk(||zk||) = zk||zk||l−2ek.

By substituting it into (2.14) and noting that

ėk = l ||zk||l−1 d

dt
||zk|| = l ||zk||l−2zTk żk,

we can write down the closed-loop system dynamics in the compact form

ṗ = −BDzDz̃e = −R(z)TDz̃e (2.16)

ż = B
T
ṗ = −BTR(z)TDz̃e (2.17)

ė = lDz̃D
T
z ż = −lDz̃R(z)R(z)TDz̃e, (2.18)

where e, z̃ ∈ R|E| are the stacked vectors of ek ’s and ||zk||l−2’s respectively for all
k ∈ {1, . . . , |E|}. In the following proposition, we establish the local exponential
convergence of the error (2.15) to zero for arbitrary l ∈ N. This fact is a straightfor-
ward extension of the result in [59] for the case when l = 2, and we provide the
proof below for completeness.

Proposition 2.16. Consider the closed-loop system (2.16)-(2.18) with graph G driven
by the gradient of the potential function V =

∑
k Vk where Vk is defined in (2.10) for

a fixed l ∈ N. If the formation in the desired shape D is infinitesimally and minimally
rigid, then the error signal e goes to zero locally exponentially fast.

Proof. First we prove that the error system (2.18) is autonomous. The elements
of R(z)R(z)T = DT

z B
T
BDz are products of the form zTi zj , i, j ∈ {1, . . . , |E|}. It

has been shown in [44] that for any infinitesimally and minimally rigid framework,
there exists a neighborhood Uz about this framework such that any zTi zj , zi, zj ∈ Uz,
can be written as a smooth function gij

(
col(||zk||2)

)
, and since ||zk|| = (ek + dlk)

1
l ,
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we can write
zTi zj = gij(e). (2.19)

Thus the vector z̃ and the matrix R(z)R(z)T can be rewritten as smooth functions
depending locally only on e about the origin. This shows that the error system
(2.18) is at least locally an autonomous system.

Now to prove the stability of e = 0 for (2.18), we choose as a Lyapunov function
V = 1

2l ||e||
2 which satisfies

dV

dt
=

1

l
eT ė = −eTDz̃R(z)R(z)TDz̃e.

Since R(z)R(z)T and Dz̃ are positive definite matrices at the desired formation
shape as R(z) has full row rank at z ∈ D [59], the matrix

Q(e) = Dz̃R(z)R(z)TDz̃, (2.20)

is positive definite at e = 0. Since the eigenvalues of Q(e) are smooth functions of
e, there exists a compact set

Q ∆
= {e : ||e||2 6 ρ}, (2.21)

for some positive constant ρ where Q(e) is positive definite. Define λmin to be the
smallest eigenvalue of Q(e) in Q. Then

dV

dt
6 −λmin||e||2, (2.22)

which immediately implies the local exponential convergence of e to zero.

We want to emphasize that e(t) → 0 as t → ∞ does not imply z(t) → Z but
instead z(t)→ D. As pointed out by Theorem 2.14, z(t) is guaranteed to converge
to Z only when the initial condition z(0) is sufficiently close to Z .

Another interesting property of employing the kind of potential functions (2.10)-
(2.13) is that we have the following fact.

Lemma 2.17. The centroid defined by pc(t) = 1
|V|
∑|V|
i=1 pi(t) is invariant for all t

and it is equal to pc(0).

Proof. From system (2.14) the proof comes directly from the fact that 11×|V| is a
left eigenvector of B fot its zero eigenvalue.

Therefore we can determine the position of the centroid of the resulting forma-
tion given the initial conditions.
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z1

z2

z3

z4z5
α1

α2

Figure 2.4: In this infinitesimally rigid formation the dashed vector “z6” is missing in
G. Therefore the computations zT1 z2 and zT3 z4 are not straightforward anymore just
employing (2.24). Nevertheless, ||z6||2 = ||z1||2 + ||z2||2 + 2||z1||||z2|| cos(α1 + α2),
where α1 and α2 can be determined employing the law of cosines with the norms
||z1||, ||z3|| and ||z5|| and ||z2||, ||z4|| and ||z5|| respectively. Therefore zT1 z2 = g12(e)
and zT3 z4 = g34(e).

Example 2.1. As an illustrative example throughout the thesis we consider a
generic triangular formation consisting of three agents whose G has the following
incidence matrix

B =

 1 0 −1

−1 1 0

0 −1 1

 . (2.23)

For this example, (2.16) becomes

ṗ1 = −z1||z1||l−2e1 + z3||z3||l−2e3

ṗ2 = −z2||z2||l−2e2 + z1||z1||l−2e1

ṗ3 = −z3||z3||l−2e3 + z2||z2||l−2e2

 .

Let us now provide the computation of (2.19). First in view of the law of cosine for
this triangle

2zTi zj = ||zk||2 − ||zi||2 − ||zj ||2, (2.24)

where i, j, k ∈ {1, 2, 3} are different, we can compute trivially the three gij(e).
The computation of gij for a general formation is not as easy as in this triangular
formation, see for example a particular case in Figure 2.4. In order to compute λmin

as in (2.22), which requires implicitly the knowledge of Q that is not easy to obtain,
we calculate the minimum eigenvalues of (2.20) evaluated in the neighborhood Uz
of the desired shape Z. Note that Q is the neighborhood of D.

Although Theorem 2.14 and Proposition 2.16 have provided local asymptotic
and exponential stability of the closed-loop systems respectively, there are inherent
robustness issues associated with the gradient-based formation control as reported
recently in [10, 44, 59]. The cause is rooted in the possible mismatches in the
prescribed inter-agent distances.
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2.6 Mismatches and robustness issues in gradient
formation control

It is clear from (2.9) with Vk as in (2.10) that both agents i and j share the same
potential Vk in the implementation of the gradient formation control. Let us focus
on agent i whose control is

ui = −
|E|∑
k=1

uki ,

where uki is the corresponding gradient ∇piVk. More precisely, for the edge Ek =

(i, j), we have

uki = ∇piVk = zk||zk||l−2(||zk||l − dlk) (2.25)

ukj = ∇pjVk = −zk||zk||l−2(||zk||l − dlk). (2.26)

However, when the two agents disagree on the desired distance dk in between,
namely

dtail
k = dhead

k − µk, (2.27)

the applied control input, with l = 1, corresponding to Ek for agent i becomes

uki = ẑk(||zk|| − dhead
k + µk)

= ẑk(||zk|| − dhead
k ) + ẑkµk. (2.28)

In other words, mismatched prescribed distances lead to mismatched potential
functions, and agents i and j do not share anymore the same Vk for Ek = (i, j) and
so

V ik =
1

2l
(||zk||l − dlk + µk)2

V jk =
1

2l
(||zk||l − dlk)2.

Remark 2.18. The control law (2.28) is equivalent to the situation where agent i
measures precisely the relative direction ẑk with respect to its neighbor j, but their
range sensors giving ||zk|| are biased with respect to each other by µk.

It is obvious that for a general distance-based formation control problem with
n = 2, if the two agents do not share the same prescribed distance to maintain,
then an eventual steady-state motion will happen regardless of the dynamics of the
agents since the agent with a smaller prescribed distance will chase the other one.
Therefore, for n > 2 it would not be surprising to observe some collective motion
in the steady-state of the formation if the neighboring agents do not share the same
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prescribed distance to maintain. The scenario of having one mismatch per edge in
its prescribed distance dlk with l = 2 has been studied rigorously in [44, 59] with
the following two identified consequences for the formation:

1. Unknown distorted final shape. When the mismatches are small, due to the
exponential decay of the error system, the errors ek(t) converge to some
unknown small but non-zero values, and thus the shape of the formation
becomes distorted even as t goes to infinity.

2. Steady-state collective motion induced by the mismatches. In R2, the agents
move collectively in formation following a closed orbit that is determined by
a single sinusoidal signal; in R3, the orbit becomes helical that is determined
by a single sinusoidal signal and a constant drift.

Remark 2.19. For the sake of simplicity and clarity in the notation, if it is not
otherwise explicitly stated, from this point onwards we will consider the case for
l = 2 in (2.10) and the main results can be easily extended to any l ∈ N. Then
z̃ = 1|E|×1 and thus Dz̃ is the identity matrix.

2.7 Illustrative experiments

In this section we validate and illustrate the findings of the chapter using the
E-pucks mobile robots described in Appendix A. We first show the effectiveness of
the control (2.9) employing the distance-based potential (2.10) with l = 1 for a
formation of four robots with sensing topology defined by

B =


1 0 −1 0 −1

−1 1 0 0 0

0 −1 1 −1 0

0 0 0 1 1

 , (2.29)

where the desired shape defined by Z is a square with side-length of 250 pixels and
we set the edge E2 to be the diagonal as in the Figure 2.2c. In addition we apply a
control gain c = 3.5 × 10−1 to (2.9) in order to shape the exponential transitory,
i.e., making it slower for not reaching the saturation levels of the robots’ motors.
The experimental results are shown in Figure 2.5.

So far we have considered that all the robots have the same perfect calibrated
sensors. Now we are going to add a bias of −20 pixels to the range sensor of the
robot 1 in the edge E1 = (1, 2), i.e., it measures precisely the relative direction ẑ1

but not the range ||z1||. According to (2.28) this is equivalent to have a mismatch
µ1 = −20. The consequences are depicted in Figure 2.6.
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(a) Time t = 0 secs. (b) Time t = 25 secs.

(c) Time t = 29 secs. (d) Time t = 59 secs.

0 10 20 30 40 50 60
Time [s]

−200

−100

0

100

200

300

400

500

Er
ro

r n
or

m
 [p

ix
el

s]

Disturbance

e1

e2

e3

e4

e5

(e)

0 10 20 30 40 50 60
Time [s]

0

50

100

150

200

250

300

350

Ve
lo

cit
y 

no
rm

 [p
ix

el
s/

s]

Disturbance

||u1||
||u2||
||u3||
||u4||

(f)

Figure 2.5: Experimental results of a team of four robots forming a regular square
with sensing topology as given in (2.29). The robot 1 and the edge E1 have been
marked in red. All the distances errors ek for all k ∈ {1, . . . , 5} and velocities vi
for i ∈ {1, . . . , 4} converge to zero as it can be checked in plots (e) and (f) with
z(t) → Z as t → ∞. Since we are employing a distance-based control strategy,
the final orientation of Z is not under control and it is determined by the initial
conditions pi(0) for all i ∈ {1, . . . , 4}.
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(a) Time t = 0 secs. (b) Time t = 76 secs.
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Figure 2.6: Experimental results of a team of four robots forming a regular square
with sensing topology as given in (2.29). The robot 1 and the edge E1 have been
marked in red. We have also added a bias of −20 pixels in the sensor of robot 1 for
measuring the inter-distance ||z1||. According to Remark 2.18, this is equivalent for
robot 1 to have a prescribed distance dtail1 = 270, whereas robot 2 has a prescribed
distance of dhead1 = 250 pixels for the same edge E1. In the steady-state, robot
1 wants to be further from robot 2 and vice versa. This misbehavior leads to a
distorted shape and to a stationary collective motion as observed in (c) and (d).
The collective motion has the form of a closed-orbit, whose radius (which can be
infinity) is determined by the mismatches, Z.





Chapter 3

Estimation and compensation of
measurement inconsistencies in formations

T.W.: It is not the tools we use which make us good, but rather how we
employ them? You see this bit of wall there? Well, I can’t patch it with air.
RdY: I’m beginning to see why they made you the engineer.

Icewind Dale.

M
EASUREMENT inconsistencies, or equivalently mismatches, are a source of
undesired effects in a formation, hence, it makes sense to try to eliminate
such misbehaviors but without adding too much extra requirements or

complexity to the whole networked system. A straightforward solution would
be to allow communication among neighboring agents, if they exchange at the
time instant t0 their information about the desired inter-distance to maintain and
the actual measured inter-distance between them, then a simple calculation can
determine the mismatch at time t0, e.g.

dtail
k − dhead

k = µk.

Unfortunately, this task cannot usually be solved in a simple way by just one-
round communication or transmission. For example, we have already mentioned
that agents’ sensors may not return the same reading about the same physical
quantity, e.g., they are biased or miscalibrated, and this bias can be slowly time-
varying due to other factors such as the sensor’s temperature. Second, agents
may have different guidance systems, which may differ in their setting points
about a prescribed distance to maintain during the time. Third, the same sensor
can produce different readings for the same physical distance in face of random
measurements noises. Fourth, a continuous communication among agents may not
be possible or desired. And last but not least, the agents may have different clocks
complicating the data comparison in a possible communication.

In this chapter we will present in detail how local estimators can be designed
for a set of chosen agents, called the estimating agents, such that the measurement
inconsistencies can be estimated and compensated distributively. Three main
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challenges are worth pointing out. First, the estimators’ dynamics should not, if
possible, affect the exponential convergence that is associated with the gradient
control. Second, compensation should be done locally and different estimating
agents should not give rise to conflicting compensation goals. Third, the class of
discrepancies should be broad enough to contain at least constant signals. In view
of these challenges, one soon realizes that the design task is not easy at all. In what
follows, we propose two different estimator-based gradient controllers. The first one
presented in Section 3.2 is based on the well-known internal model principle that
has been used for solving tracking and disturbance rejection problems [17, 23], and
more recently for cooperative control of multi-agents systems [84]. This solution
requires to select the estimating agents in a particular way and a lower bound to a
gain in the estimator must be satisfied in order to guarantee the convergence. On
the other hand the second estimator-based gradient controller presented in Section
3.3 does not need such requirements for removing the undesired collective motion,
however the desired steady-state shape can only be guaranteed for the special cases
of triangles and tetrahedrons.

3.1 Modeling measurement inconsistency and esti-
mating agents

We assume that the mismatches µk as in (2.27) are in the form of the superposi-
tion of a constant signal and qk ∈ N sinusoidal signals with known frequencies
{ω1, ω2, . . . , ωqk}, namely

µk(t) = αk +

qk∑
f=1

βf sin(ωf t+ φf ), (3.1)

where αk, βf and φf are fixed but unknown offset, amplitude and phase respectively.
This noise model is widely used for formation control when the robots are known to
work in the environment with periodic background noises. For example, short-term
sea waves can be described by a superposition of periodic waves whose frequencies
can be accurately estimated [11], and thus the measurement noise for underwater
marine vehicles using floating buoys [18] can be treated as the superposition of a
finite number of sinusoidal signals with known frequencies.

The system (2.16) including the mismatches as in (2.27) can be written in the
following compact form1

u = −BDze− S1Dzµ, (3.2)

1Recall that for the sake of clarity in the analyses we have set l = 2 by default in the quadratic
potential (2.10), hence we have that d2 tail

k = d2 head
k −µk.
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where µ ∈ R|E| is the stacked column vector of µk for all k ∈ {1, . . . , |E|} and the
elements of S1 ∈ R|V|×|E| are derived from G as follows

s1ik
∆
=


1 if i = E tail

k

0 if i = Ehead
k

0 otherwise

. (3.3)

In the sensing topology given by the graph G, for each edge Ek = (E tail
k , Ehead

k ) ∈
E we implement a local estimator to the agent E tail

k , defined as an estimating
agent. Therefore we are encoding the estimating agents in S1 as well. We can
change the estimating agent E tail

k in the edge Ek by just changing the direction
of the corresponding arrow in G, which is perfectly safe for the gradient-based
controllers presented in Chapter 2 since G is an undirected graph. The mission
of the estimating agents will be to estimate and compensate the mismatch µk in
(2.28), but considering the case l = 2, by the output µ̂k ∈ R of an estimator in the
following way

uki = zk(ek + µk − µ̂k), (3.4)

noting that agent E tail
k is measuring (ek + µk) as a whole since it does not know

how biased or mismatched its actual error distance ek is. It is clear that the main
goal of the estimating agent in view of (3.4) is to achieve µ̂k = µk. Now we are
ready to include the output of the estimators in (3.2) as follows

u = −BDze− S1Dz(µ− µ̂), (3.5)

where µ̂ ∈ R|E| is the stacked column vector of µ̂k for all k ∈ {1, . . . , |E|}.

As it was mentioned in the introduction of this chapter, in the following sections
we are going to propose two different estimators for generating µ̂.

3.2 Estimator-based gradient control I

This first estimator will be designed for estimating and then compensating the
mismatches of the form of (3.1). We propose the following estimator’s dynamics
described by {

ξ̇k = Λkξk + κΥk(ek + µk − µ̂k)

µ̂k = ΥT
k ξk

(3.6)
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where ξk ∈ R1+2qk is the state of the estimator k and it can be initialized arbitrarily,

Λk =

0 0 0

0 0 −DΩ

0 DΩ 0

 , Υk =

[
b1
b2

]
, (3.7)

where Ω is the stacked column vector of ωf for all f ∈ {1, . . . , qk} from the
mismatch µk as in (3.1), the constants b1 ∈ R and b2 ∈ R2qk are such that the pair
(Υk,Λk) is observable, and κ > 0 is a gain to be designed.

Now we are ready to present the state-space model for the closed-loop n-agent
system derived from (2.4), (3.5) and (3.6) in the following compact form

P :

{
ė = −2R(z)R(z)T e− 2R(z)S1(z)T (µ− µ̂)

y = e
(3.8)

C :

{
ξ̇ = DΛξ + κDΥ(y + µ− µ̂)

µ̂ = DT
Υξ

(3.9)

W :

{
ẇ = DΛw

µ = DT
Υw

, (3.10)

where S1(z) = DT
z S

T

1 , ξ ∈ R|E|+2
∑|E|

1 qk as the stacked column vector of ξk ’s is the
state of C, Λ ∈ R(|E|+2

∑|E|
1 qk)×(|E|+2

∑|E|
1 qk) and Υ ∈ R|E|+2

∑|E|
1 qk are the stacked

matrices of Λk and Υk and w ∈ R|E|+2
∑|E|

1 qk as the stacked column vector of wk ’s
is the state of the exosystem W whose output is the discrepancy signal given in
(3.1). For all the defined signals we have that k ∈ {1, . . . , |E|}. Note that the
state equations (3.8)-(3.10) define an autonomous system by using (2.19). The
initial estimates of the offset, phase and amplitude of µk are encoded in the initial
condition w(0). We recall that the estimating agents are measuring e+µ as a whole,
while the unknown mismatch µ appears in (3.8) and (3.9). The signal flow of the
closed-loop system is shown in the block diagram in Figure 3.1.

Using the standard framework in robust output regulation problem, one can
take the inconsistency µ to be the disturbances that directly influence the input
and the output signals of the plant P, and the controller C must contain internal
models that are copies of the exosystem W. One can check that in this case the
Byrnes-Isidori regulator equation [16] is solvable with the trivial solution ξ = w

and e = 0.
After setting up the mathematical descriptions of the estimator-based control

and the corresponding state-space system model, we are ready to show that the
n-agent system under mismatches is exponentially stabilized by our proposed
distributed control.

Theorem 3.1. For the closed-loop n-agent formation (3.8) and (3.9) with the mea-
surement inconsistency vector µ driven by the exosystem (3.10) and unknown initial
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W P

C

µ e
−

µ̂

Figure 3.1: The plant P corresponds to the error system e, where its input and
output are perturbed by the discrepancy µ generated by the exosystem W as in
(3.10). The disturbance rejection is achieved by using the internal controller C that
contains a copy of the exosystem.

condition w(0) ∈ R|E|+2
∑|E|

1 qk , if the matrix

Z
∆
= −R(z∗)R(z∗)T +R(z∗)S1(z∗)T (3.11)

is Hurwitz at the desired shape z∗ ∈ Z corresponding to e = 0, then there exist κ∗ > 0

and b∗ > 0 such that for any κ||DΥ||2 > κ∗ and ||b2|| < b∗, the system admits a
locally exponentially attractive invariant manifold Q ∆

= {(w, p, ξ) | e = 0, ξ = w}, and
thus the shape of the formation converges exponentially to the desired shape defined
by e = 0 with z ∈ Z, the estimation µ̂ converges exponentially to µ and the velocity ṗ
converges exponentially to zero (i.e., the formation eventually stops).

Proof. We take the coordinate transformation α = e+ µ−DT
Υξ and θ = w− ξ, and

then the equations (3.8)-(3.10) can be rewritten into ėα̇
θ̇

 =

−2R(z)S2(z)T −2R(z)S1(z)T 0

−2R(z)S2(z)T −2R(z)S1(z)T − κDT
ΥDΥ DT

ΥDΛ

−κDΥ 0 DΛ − κDΥD
T
Υ

eα
θ

 ,
(3.12)

where S2(z) = R(z) − S1(z). We then calculate its Jacobian matrix L at the
equilibrium point e = 0, α = 0 and θ = 0. Although the system matrix of (3.12) is
state dependent, several of its components are functions of the inner products zTi zj
and thus their partial derivatives can be computed straightforwardly. In fact, the
Jacobian matrix is

L =

[
L1 L2

L3 L4

]
, (3.13)



32 3. Estimation and compensation of measurement inconsistencies in formations

where

L1 =

[
−2R(z∗)S2(z∗)T −2R(z∗)S1(z∗)T

−2R(z∗)S2(z∗)T −2R(z∗)S1(z∗)T − κDT
ΥDΥ

]
L2 =

[
0

DT
ΥM

]
, L3 =

[
−κDΥ 0

]
, L4 = DΛ − κDΥD

T
Υ.

We now prove that L1 is Hurwitz, and this is equivalent to prove the system

ė = −2R(z)S2(z)T e− 2R(z)S1(z)Tα (3.14)

α̇ = −2R(z)S2(z)T e− 2R(z)S1(z)Tα− κDT
ΥDΥα (3.15)

is asymptotically stable at the origin e = 0 and α = 0 in which case µ̂ = µ. Let
f(e, α)

∆
= −2R(z)S2(z)T e− 2R(z)S1(z)Tα, and we compute

F0
∆
=
∂f(e,0)

∂e
|e=0 = 2Z, (3.16)

which is Hurwitz since Z is in view of the condition in the theorem. Therefore,
there exists a positive definite matrix P = PT such that

FT0 P + PF0 = −2I. (3.17)

Then for system (3.14)-(3.15) consider the candidate Lyapunov function

V (e, α) = eTPe+
1

2
αTα, (3.18)

whose time derivative along the system’s solution is

V̇ (e, α) = 2eTPf(e, α) + αT f(e, α)− κ||DΥ||2||α||2

= 2eTPf(e,0) + 2eTP (f(e, α)− f(e,0))

+ αT f(e, α)− κ||DΥ||2||α||2

= 2eTP (F0e+ g(e) + f̄(e)α) + αT f(e, α)

− κ||DΥ||2||α||2, (3.19)

where g(e) is the Taylor-series residue that satisfies

lim
||e||→0

||g(e)||
||e||

= 0, (3.20)

and f̄(e) = −2R(z)S1(z)T . In particular, (3.20) implies that for any ε > 0, there
exists a δ such that ||e|| 6 δ =⇒ ||g(e)|| 6 ε||e||. Taking ε = 1

2||P || with the
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corresponding δ, since f̄(e) is locally Lipschitz, we know that for all ||e|| 6 δ,
||α|| 6 δ, there exist p, q > 0 such that

V̇ (e, α) 6 −2||e||2 + 2||e||||P || 1

2||P ||
||e||+ p||e||||α||+

+ q||α||2 − κ||DΥ||2||α||2, (3.21)

where the third and fourth terms on the right-hand side are due to the boundedness
of f̄(e) in an open ball. Hence, by choosing κ||DΥ||2 > 0 such that

q +
p2

2
− κ||DΥ||2 6 −1

2
, (3.22)

we have, in view of Young’s inequality, that

V̇ (e, α) 6 −1

2
(||e||2 + ||α||2), (3.23)

and thus system (3.14)-(3.15) converges exponentially to the origin for all the
initial conditions e(0), α(0) starting in the compact set C := {p, µ̂, µ |λmin(P )||e||2 +
1
2 ||e+ µ− µ̂||2 6 δ2}, where λmin(P ) is the minimum eigenvalue of P . So we have
proved that L1 is Hurwitz.

We further observe that L4 is Hurwitz for any κ > 0, which follows from the
asymptotic stability of θ̇ = L4θ since L4+LT4 = −2κDΥD

T
Υ and the pair (DΥ, DΛ) is

observable. Thus, if L2 is zero, i.e., b2 = 0 since ΥT
k =

[
b1 0

]
is a left eigenvector

for the single zero eigenvalue of Λk, then the eigenvalues of L are the eigenvalues
of L1 and L4. Therefore, for a sufficiently small DΥ such that 0 < ||b2|| < b∗, L is
still Hurwitz. Hence, system (3.12) is locally exponentially stable, which implies
that (w, p, ξ) locally exponentially converges to Q. Since ṗ = 0 in the invariant
manifold Q, we conclude also that ṗ(t) → 0 exponentially as t → ∞, i.e., the
formation eventually stops.

Remark 3.2. Note that we have not only removed all undesired effects induced by
the presence of inconsistency, but with the estimation of µ(t), Theorem 3.1 provides
a systematic method to calibrate the offset of the sensors in the estimating agents
with respect to the sensors in the non-estimating agents.

In the next section, we explain how to choose the estimating agents systemati-
cally to guarantee the conditions in Theorem 3.1 to hold.

3.2.1 Selecting the estimating agents

The condition of Z being Hurwitz in Theorem 3.1 is a sufficient condition for the
local exponential stability of system (3.8)-(3.9). To check this condition, one needs
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Figure 3.2: A triangular formation associated with a cyclic and acylic estimating-
agent graph where the tails of the arrows indicate the corresponding estimating
agents.

to calculate the eigenvalues of an |E| × |E| square matrix. Such computations
can be burdensome and in this section we are going to show that for a large
class of infinitesimally and minimally rigid formations one can still guarantee the
admissibility of the condition by choosing smartly the estimating agents and thus
avoid computing the eigenvalues.

3.2.2 Stabilizing a large class of infinitesimally and minimally
rigid formations in R2

In this subsection we study a class of infinitesimally and minimally rigid formations
in R2 that are generated by a sequence of Henneberg insertion operations (see
Section 2.3.1) starting from triangular formations, for which we present two ways
of picking the estimating agents. Then we introduce a systematic way of choosing
the estimating agents based on such a Henneberg insertion.

Proposition 3.3. For any undirected triangular formation, where each agent acts as
an estimating agent for only one edge, then its associated Z matrix is Hurwitz.

Proof. One can check that in this case R(z)S2(z)T + S2(z)R(z)T = R(z)R(z)T .
In addition, R(z∗)R(z∗)T is a positive definite matrix since undirected triangular
formations are infinitesimally and minimally rigid. So −R(z)S2(z)T is Hurwitz at
z ∈ Z or equivalently e = 0, and this in turn is equivalent to Z is Hurwitz.

Proposition 3.4. For any undirected triangular formation, where one agent is the
estimating agent for both of the two edges that it is associated with and exactly
one other agent is the estimating agent for the remaining edge, then its Z matrix is
Hurwitz.
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Proof. In this case, we have

R(z)ST2 (z) =

 ||z1||2 0 0

−zT2 z1 ||z2||2 −zT2 z3

0 −zT3 z2 ||z3||2

 , (3.24)

which can be rewritten into the block lower-triangular form

R(z)ST2 (z) =

[
A11 0

A12 A22

]
. (3.25)

Here, A11 = ||z1||2 is always positive; the characteristic polynomial of A22 is
quadratic and thus it is easy to compute that both of its two eigenvalues live in the
open left half-plane when z2 and z3 are not parallel, which has to be true since the
formation is infinitesimally rigid. So the Z matrix itself is Hurwitz.

The two situations of choosing estimating agents for triangular formations are
illustrated in Fig. 3.2.

Proposition 3.5. For any infinitesimally and minimally rigid formation in R2 that is
generated by the Henneberg insertion operation, its associated Z matrix is Hurwitz
if one chooses the estimating agents following exactly the sequence of the Henneberg
insertions and in addition: (i) for the first three agents, pick the estimating agents as
in Proposition 3.3 or Proposition 3.4; (ii) for any new insertion operation that has
just added two edges from a new agent to two existing agents, pick those two existing
agents to be the estimating agents for the newly added two edges. Note that only those
two chosen estimating agents are involved and the other agents are not affected at all.

Proof. It suffices to prove that for an n-agent, n > 3, infinitesimally and minimally
rigid formation in R2 whose Z matrix is Hurwitz with its chosen estimating agents,
the new (n + 1)-agent formation obtained from the n-agent formation by the
Henneberg insertion operation still has a Hurwitz Z matrix if its estimating agents
are chosen according to the rule stipulated in the proposition.

Let the n-agent formation’s Z matrix be R(z)ST2 (z) and the Z matrix for the
(n+ 1)-agent formation be R̄(z)S̄T2 (z). Then

R̄(z)S̄T2 (z) =

[
R(z)ST2 (z) 0

> C(z)

]
, (3.26)

where “>” denotes the submatrix of less importance and

C(z) =

[
||zl||2 −zTl zl+1

−zTl+1zl ||zl+1||2

]
, (3.27)
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Figure 3.3: Tetrahedron formation where the tails of the arrows indicate the
corresponding estimating agents.

where zl and zl+1 are the two vectors pointing from the two chosen estimating
agents’ positions to the (n+ 1)th agent’s position. Then using the similar argument
as proving Proposition 3.4, one can show that R̄(z)S̄T2 (z) is also Hurwitz.

3.2.3 Stabilizing a special class of infinitesimally and minimally
rigid formations in R3

Now we look at undirected rigid formations in R3. We start with simple tetrahedron
formations.

Proposition 3.6. For an undirected tetrahedron formation in R3, if its estimating
agents are chosen as shown in Figure 3.3, then its Z matrix is Hurwitz.

Proof. The Z matrix for the tetrahedron formation with the estimating agents
chosen as shown in Figure 3.3 is

R(z)ST2 (z) =

[
A(z) 0

> G(z)

]
, (3.28)

where A(z) is the same matrix as in (3.24), G(z) is the Grammian matrix z̄T z̄
and z̄ is the stacked column vector of z4, z5, and z6. Since the tetrahedron
formation is infinitesimally and minimally rigid at z∗, all the vectors in z̄ are
linearly independent. Therefore, G(z̄) is positive definite at z∗ and thus the Z
matrix is Hurwitz.

Since there is no necessary and sufficient combinatorial conditions for forma-
tions’ rigidity properties in R3 yet, we can only look at a special class of rigid
formations in R3.
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Proposition 3.7. Consider the class of infinitesimally and minimally rigid formation
in R3 that can be generated by adding in sequence new agents to a tetrahedron
formation such that every time the new agent is connected to three existing agents
that form a triangular formation. If in each insertion operation, the three estimating
agents for the three newly added edges are exactly the three associated existing agents,
then the Z matrix for the overall formation is Hurwitz.

The proof for this proposition is very similar to that of Proposition 3.5 and then
we omit it.

3.2.4 Experimental results

We have already shown an experiment in Section 2.7 where the robots use directly
the standard gradient control strategy but a single bias in robot 1 makes the
formation to drift away with a distorted shape.

We then validate the result in Theorem 3.1 for the same team of four robots,
where their desired shape Z is a square with side-length of 250 pixels and we have
set the edge E2 to be the diagonal as in Figure 2.2c. The robots follow the modified
gradient control law (3.5) including the output of the local estimators but with
l = 1 for the quadratic potential function (2.10), therefore Dz is substituted by
Dẑ in (3.5). In addition we have added a control gain c = 3.5 × 10−1 to all the
robots in order to prevent saturations in their motors. The sensing topology of the
formation is given by the following incidence matrix

B =


1 0 1 0 1

−1 1 0 0 0

0 −1 −1 1 0

0 0 0 −1 −1

 , (3.29)

Assuming that robots 2, 3 and 4 have a well calibrated range sensor, we have
introduced a bias of 20 pixels to the range sensor of robot 1 or equivalently we set
the following vector of mismatches

µ =
[
20 0 20 0 20

]
. (3.30)

In order to estimate and compensate the mismatches we implement a local estima-
tor of the form of (3.6) to the estimating agents defined by Propositions 3.4 and
3.5, namely

S1 =


1 0 1 0 1

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

 . (3.31)
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Note that robots 2 and 3 are also running an estimator for the edges E2 and E4
respectively. We have set the estimator control gain to κ = 1 × 10−1, where
numerical computations show that this value is smaller than the bound given in
Theorem 3.1, so the condition about κ∗ in Theorem 3.1 is just a sufficient condition.
The experimental results are discussed in Figure 3.4

In order to validate the results of Theorem 3.1 for a 3D formation under the
time varying mismatches as in (2.27) we set a numerical simulation. We consider a
formation of five agents in R3. The measurement inconsistency takes the form of the
superposition of a constant random offset and a sine wave with a known frequency.
Each inconsistency µk has different frequencies and offsets. We implement the
control law (3.5) in the agents with the local estimators as in (3.6) and choose
the estimating agents according to Proposition 3.6. The five agents are prescribed
to maintain two regular tetrahedrons sharing the same base where all the edge
lengths are d = 5 units. The five agents are placed randomly within a volume
of 50 cubic units. We choose κ = 1, ΥT

k =
[
1 1 0

]
, and the estimators ξk ’s are

initialized to be zero. In Figure 3.5 it is clear that the agents’ velocities converge
to zero and the formation shape converges to the desired one. Moreover, µ̂(t)

converges to the periodic inconsistency µ(t).

3.3 Estimator-based gradient control II

Although the proposed distributed estimator (3.6) estimates and compensates
effectively all the mismatches, it is gain dependent and the estimating agents
have to be chosen carefully. In this section we are going to show an alternative
estimator which is gain independent and the estimating agents can be chosen
arbitrarily. Unfortunately, although this new estimator removes the undesired
collective motion in the steady-state, it can only guarantee the desired shape in the
steady-state for the particular cases of triangles and tetrahedrons. Nevertheless, we
will see that by choosing the estimating agents in a particular way, we can focus
the final distortion on chosen edges.

Consider only constant mismatches, i.e., µ(t) = µ, and the following dynamics
for the estimator µ̂ in (3.5)

˙̂µ = −DT
z S

T

1

(
BDze+ S1Dz(µ− µ̂)

)
, (3.32)

where as in Section 3.2 the matrix S1 has encoded the estimating agents. Analyzing
the right hand side of (3.32) we have that each estimator installed at the estimating
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(a) Time t = 0 secs. (b) Time t = 60 secs.
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Figure 3.4: Experimental results of a team of four robots forming a regular square
with sensing topology as given in (3.29). We have added a bias of 20 pixels to the
range sensor of robot 1, therefore there will be a mismatch in the edges E1, E3 and
E5. The biased robot and its edges have been marked in red in the video caps. In
order to remove the undesired effects caused by the mismatches, we have chosen
the estimating agents according to (3.31) for running the proposed local estimators
in (3.6). Indeed the undesired collective motion is removed as it is shown in (c).
Furthermore, the robot 1 estimates its bias as shown in (d) and µ̂2 and µ̂4 converge
to zero since the rest of robots do not have any biases. Hence, the mismatches can
be effectively compensated and the shape of the formation converges to the desired
one as shown in (b), (e) and (f).
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Figure 3.5: Simulation results of a 3D formation with inconsistent measurements
using our proposed estimator-based gradient control where the inconsistencies are
biased sinusoidal signals; (a) the plot of the trajectories where the initial positions
are shown in circles and the final positions are shown in crosses; (b) the error
ek, k = 1, 2, 3; (c) the plot of the agents’ speeds which shows that the five agents
eventually stop; (d) the plot of the estimated measurements inconsistencies for the
first three edges (shown in solid-line) which asymptotically converge to the actual
ones (shown in dashed-line).

agent i can be written as

˙̂µk = −zTk

( |E|∑
l=1

bil zl

(
el + s1il(µl − µ̂l)

))
. (3.33)

The estimating agent i is employing the compromised position by a mismatch zk
and its own velocity in the bracket at (3.33) for the dynamics of µ̂k. We will show
that when the formation starts close to the desired infinitesimally and minimally
rigid one, the local estimator µ̂k will remain constant once the velocity of the
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corresponding estimating agent is zero, i.e., we remove the undesired collective
motion in the steady-state.

Let us compute the error system derived from (3.5) and (2.4) employing the
distributed estimator dynamics (3.32)

ė = −2DT
z B

T
BDze− 2DT

z B
T
S1Dz(µ− µ̂), (3.34)

therefore the system composed by (3.33) and (3.34) is autonomous in view of
(2.19).

Theorem 3.8. Consider the autonomous system given by (3.33) and (3.34). Then
the equilibrium points e∗ and µ̂∗ are exponentially stable. Furthermore, ṗ(t)→ 0 and
the steady-state deformation of the shape satisfies ||e||2 6 2||µ − µ̂(0)||2 + ||e(0)||2.
For the particular cases of triangles and tetrahedrons, the equilibrium is e∗ = 0, i.e.,
µ̂∗ = µ.

Proof. Consider the following Lyapunov function candidate

V =
1

4
||e||2 +

1

2
||ξ||2, (3.35)

with ξ = µ− µ̂, which satisfies

dV

dt
=

1

2
eT ė+ ξT ξ̇

= −eTDT
z B

T
BDze− eTDT

z B
T
S1Dzξ

− ξTDT
z S

T

1 S1Dzξ − ξTDT
z S

T

1 BDze

= −||BDze+ S1Dzξ||2

= −||R(z)T e+ ST1 (z)ξ||2, (3.36)

therefore e and ξ are bounded. By invoking the LaSalle’s invariance principle the
states e and ξ converge exponentially to the largest invariance set given by

T ∆
= {e, z, ξ : BDze+ S1Dzξ = 0m|V|×1}, (3.37)

in the compact set

Q ∆
= {e, ξ :

1

2
||e||2 + ||ξ||2 6 ρ}, (3.38)

with 0 < ρ 6 2V (0). In order words e(t) → e∗ and ξ(t) → ξ∗ as t goes to infinity
and from (3.5) we also have that ṗ(t)→ 0 as t goes to infinity, therefore we can
also conclude that z(t) → z∗ as t goes to infinity, where e∗, ξ∗ and z∗ are fixed
points satisfying (3.37). In general we have that e∗ and ξ∗ are not zero vectors,
therefore z∗ /∈ Z, but it is also clear that ||e∗|| 6 2ρ. Hence, for a sufficiently small
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ρ the resultant (distorted) formation will also be infinitesimally and minimally
rigid.

Now we are going to show that e∗, ξ∗ = 0 for triangles and tetrahedrons.
Since triangles and tetrahedrons are derived from complete graphs, the distorted
shape when ρ is sufficiently small will also be a triangle or a tetrahedron, i.e.,
we are excluding non-generic situations (e.g., collinear or coplanar alignments
of the agents in R2 or R3). In the triangular case we have two possibilities after
choosing the estimating agents: their associated directed graph is cyclic (each agent
estimates one mismatch) or acyclic (one agent estimates two mismatches and one
of the other two agents estimate the remaining mismatch).

The cyclic case for the estimating agents in the triangle corresponds to the
following matrices

B =

 1 0 −1

−1 1 0

0 −1 1

 , S1 =

1 0 0

0 1 0

0 0 1

 ,
and by substituting them into the equilibrium condition in T we have that

z∗1e
∗
1 − z∗3e∗3 + z∗1ξ

∗
1 = 0

z∗2e
∗
2 − z∗1e∗1 + z∗2ξ

∗
2 = 0

z∗3e
∗
3 − z∗2e∗2 + z∗3ξ

∗
3 = 0

 . (3.39)

Since the steady-state formation is also a triangle for a sufficiently small ρ, then
z∗1 , z

∗
2 and z∗3 are linearly independent. Therefore from (3.39) we have that

e∗3, e
∗
1, e
∗
2 = 0 respectively and consequently we have that ξ∗1 , ξ

∗
2 , ξ
∗
3 = 0.

Without loss of generality the acyclic case for the estimating agents in the
triangle corresponds to the following matrices

B =

−1 0 −1

1 1 0

0 −1 1

 , S1 =

0 0 0

1 1 0

0 0 1

 , (3.40)

and by substituting them into the equilibrium condition in T we have that

−z∗1e∗1 − z∗3e∗3 = 0

z∗2e
∗
2 + z∗1e

∗
1 + z∗2ξ

∗
2 + z∗1ξ

∗
1 = 0

z∗3e
∗
3 − z∗2e∗2 + z∗3ξ

∗
3 = 0

 . (3.41)

It is immediate from the first equation in (3.41) that e∗1, e
∗
3 = 0 and then from the

third equation in (3.41) we derive that e∗2, ξ
∗
3 = 0, and hence ξ∗1 , ξ

∗
2 = 0 from the

second equation in (3.41).
For the sake of brevity we omit the proof for the tetrahedrons, but analogous to
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the analysis for the triangles, the key idea behind the proof is that the three relative
vectors associated to an agent are linearly independent in 3D.

3.3.1 Controlling the shape-distortion

In Theorem 3.8, we have shown the use of distributed estimators which have an
undesirable effect of a stead-state shape distortion where the error norm ||e|| is
bounded by a constant

√
2ρ > 0. Since ||e|| is a combination of all errors in every

edge, we cannot use ρ to prescribe a zero asymptotic error for some focus edges or
to concentrate the bound only on some edges. This property is relevant if we want
to reach a prescribed distance for a high-degree of accuracy for some edges. By
exploiting the result in Theorem 3.8 for triangles or tetrahedrons, we can construct
a network topology (based on a star topology) that enables us to impose the error
bound only on one edge while guaranteeing that the other errors converge to zero.
We show this in the following proposition.

Proposition 3.9. Consider the same mismatched formation control system as in
Theorem 3.8 with the equilibrium set given by T as in (3.37). Consider the triangular
formation defined by B and S1 as in (3.40) for the incidence matrix and the estimating
agents respectively. For any new agent i, i > 4 added to the formation, if we only link
it to the agents 2 and 3, and at the same time we let the agents 2 and 3 to be the
estimating agents for the mismatches in the new added links, then for a sufficiently
small ρ as in (3.38)

lim
t→∞

ek(t) = 0, ∀k 6= 2, (3.42)

and |e2(t)| 6
√

2ρ for all t.

Proof. Clearly a star topology has been used for the new added agents, where the
central node is the triangle formed by agents 1, 2 and 3. Note that the newly added
agent i, i > 4 is forming a triangle with agents 2 and 3. Therefore, as explained in
Theorem 3.8, if ρ is sufficiently small, then the resultant distorted formation is also
formed by triangles. We prove the claim by induction. First we derive the equations
from T as in (3.37) for the proposed star topology with four agents

−z∗1e∗1 − z∗3e∗3 = 0

z∗2e
∗
2 + z∗1e

∗
1 − z∗4e4 + z∗2ξ

∗
2 + z∗1ξ

∗
1 + z∗4ξ4 = 0

z∗3e
∗
3 − z∗2e∗2 − z∗5e5 + z∗3ξ

∗
3 + z∗5ξ5 = 0

z∗4e
∗
4 + z∗5e

∗
5 = 0

 . (3.43)

As explained in the last part of the proof of Theorem (3.8), it is clear that the errors
e∗1, e

∗
3, e
∗
4 and e∗5 must be zero and e2

2 6 ρ. For any newly added agent i > 5, we add
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a new equation to (3.43) of the form

z∗l e
∗
l + z∗l+1e

∗
l+1 = 0, (3.44)

where l and l+1 are the labels of the two newly added edges. Thus for a sufficiently
small ρ we have that z∗l and z∗l+1 are linearly independent so e∗l , e

∗
l+1 = 0.

3.3.2 Experimental results

In this section we experimentally validate the results in Theorem 3.8 for a team of
three robots where the prescribed shape is an equilateral triangle with side-length
of 250 pixels. The sensing topology is given by the following incidence matrix

B =

−1 0 1

1 −1 0

0 1 −1

 , (3.45)

therefore note that the estimating agents are following an cyclic scheme. The three
robots have implemented the control law (3.5) but with l = 1 for the quadratic
potential function (2.10), hence Dz is substituted by Dẑ in (3.5) and (3.32). In
addition we have added a control gain c = 3.5× 10−1 to all the robots in order to
prevent saturations in their motors. We have set to the robots the following three
distance mismatches

µ =
[
10 15 −35

]T
. (3.46)

In order to estimate and compensate them, the three local estimators follow the
dynamics given by (3.33). The experimental results are discussed in Figure 3.6

3.4 Concluding remarks

In this chapter we have presented two distributed estimator-based gradient con-
trollers for stabilizing rigid formations in R2 and R3. These estimators are run
locally by a set of agents called the estimating agents. The first estimator proposed
in Section 3.2, based on the internal model principle, handles periodic time-varying
measurement inconsistencies with known frequencies but unknown amplitudes,
phases and offsets. However, in addition to choosing the estimating agents in a
specific way, a controller gain has to satisfy a lower bound. The estimator works
effectively to remove the undesired effects of deformation in the steady-state shape
and the eventual collective motion. In comparison, the second estimator presented
in Section 3.3 is gain independent and the estimating agents can be chosen arbi-
trarily. It has been shown the effectiveness of the estimator for formations with
triangles and tetrahedron as desired shapes. However, only the removal of the
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steady-state collective motion is guarantee for a generic formation, nevertheless, it
has been shown that the deformation of the steady-state shape can be focused on
selected inter-distances.

All the findings in this chapter have been validated in experimental results for a
team of four mobile robots in R2 and numerical simulations have been done for
formations in R3.
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(a) Time t = 0 secs. (b) Time t = 50 secs.
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Figure 3.6: Experimental results of a team of three robots forming an equilateral
triangle with sensing topology as given in (3.45). The robots 1, 2 and 3 have
been marked with red, blue and green colors respectively in the video caps. The
setup suffers of the distance mismatches given in (3.46). In order to remove the
undesired effects caused by the mismatches we have installed a local estimator with
dynamics (3.33) in each robot. Indeed the undesired collective motion is removed
as it is shown in (c). Furthermore, all the robots estimate their mismatches as it is
shown in (d). Hence, the formation converges to the desired one as shown in (b),
(e) and (f).



Chapter 4

Distributed rotational and translational
motion control of formations

What if I apply some mismatches to this formation in purpose? Mmm but
wait a minute, you said that mismatches are a bad thing aren’t they?
You see, the right man in the wrong place can make all the difference in
the world.

Half-Life.

C
OORDINATED robot tasks, such as, the enclosing of a target [51], area
exploration & surveillance [15, 20, 86] and the vehicle platooning for
energy efficiency [71, 81], can be achieved by combining two different

cooperative controls: multi-agent formation control and group motion control.
The former is to achieve and maintain a specific desired shape of a multi-agent
formation as it has been shown in Chapter 2, while the latter to guide the motion of
the group as a whole. For simple formations, such as, line formations in the vehicle
platooning problem, these two control problems can be solved simultaneously
by using the passivity-based control approach as pursued in [26]. However, for
formations in more complicated shapes, these two control problems are usually
tackled separately, namely using the gradient-based strategies for formation control
and leader-follower coordination for motion control, where for the latter the leader
moves according to a desired trajectory and the followers simply track the leader
[9]. But when the separately designed formation controller and motion controller
are jointly in force as in the common scenario in practice, conflict often occurs:
the shape of the formation is distorted when an agent compromises between the
demands from formation and motion controls as to where and how it needs to
move [6, 69].

While efforts have been made before to solve such conflict by installing velocity
sensors in addition to position sensors on mobile agents and thus compensating
the distortion with the help of the more sensed information [9], we in this chapter
take a much more head-on approach. We generalize the gradient-based distributed
formation control law for both control objectives, i.e., we simultaneously guarantee
no shape distortion (e = 0) in the steady-state desired formation motion even
without the knowledge of any additional sensed information in comparison to the
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conventional control. The surprisingly simple structure of our proposed control law
opens possibilities to solve other difficult problems, such as collective rotational
motion or the enclosing of a moving target. It facilitates even to study the formation
coordination task for agents governed by higher-order dynamics as we will see in
Chapter 6.

Motivated by the findings in [74], we treat in this chapter the mismatches
in prescribed inter-agent distances not as the annoying source of deteriorating
formation control performances, but to the contrary, as the profitable parameters
of novel gradient control that solves formation and motion controls simultaneously
without sacrificing the performance of one for the other. The key idea is to introduce
a pair of mismatches as motion parameters that “reconcile” each other for every
pair of neighboring agents in order to steer the formation. Here by reconciling we
mean that the corresponding pairs of motion parameters are designed to satisfy
a set of equations to be specified later related to the formation’s translational or
rotational motion under which no distortions appear in the steady-state formation
shape. In fact, we will show that the desired steady-state motion is a function of
the desired steady-state shape Z.

The proposed gradient-based formation-motion joint controller using the men-
tioned distributed motion parameters has several advantages. First, one can achieve
precisely the desired steady-state formation shape and the group motion simulta-
neously, including rotational motion, in a distributed fashion. To the best of our
knowledge, no such result has been reported in the literature. For single-integrator
agent dynamics, we relate analytically the magnitude of these motion parameters to
the speed of the group motion. Second, our proposed approach enables us to align
the formation with respect to a global coordinate frame by adding a simple control
term to an arbitrary agent when guiding the group in motion. In comparison, in the
literature such an alignment is usually obtained by assigning a leader who knows
the global frame and letting the other agents (followers) estimate the leader’s
velocity employing a distributed estimator [9]. Obviously in our approach, such
estimators are not needed at all. Third, one can easily use our method to address
the target tracking and enclosing problem both in R2 and R3 where one assigns the
formation shape to specify how the target is enclosed and tracked by the pursuers.
In comparison to the solution of such problems in [43, 54] among other works, we
do not confine our formation to follow the same circular trajectory nor require all
enclosing agents to measure their relative positions with respect to the target.

The rest of the chapter is organized as follows. The design of the desired
steady state motion with the desired formation shape is described in Section 4.1;
the corresponding stability analysis is presented in Section 4.2. We apply the
distributed motion parameters for the design of the translation of a formation
in global coordinates in Section 4.3; another application addressing the target
tracking and enclosing problem is presented in Section 4.4.



4.1. Mismatches as distributed motion parameters 49

4.1 Mismatches as distributed motion parameters

We start recalling equation (3.2), where in the presence of a mismatch in the
prescribed distance in every edge, system (2.16) can be rewritten using (2.27) as

ṗ = −BDze− S1Dzµ. (4.1)

In Chapter 3 and other works [35, 44, 59, 74], the vector µ is addressed as a small
disturbance. In this chapter we substitute the mismatches by motion parameters,
and instead of having one motion-parameter per prescribed distance, we consider a
pair of motion parameters per edge. More precisely, one motion parameter for each
agent i and j in the edge Ek = (i, j). We will then design these motion parameters
in the following way: the motion parameters are used to control the steady-state
movement of the formation without distorting the final desired shape.

We consider a pair of parameters µk
c ∈ R and µ̃k

c ∈ R (scaled by a gain c ∈ R)
for being added to the term d2

k for each agent in the edge Ek = (i, j). More precisely,
agent i uses a controlled distance d2

k+ µk
c and correspondingly, agent j, d2

k−
µ̃k
c . For

the edge Ek = (i, j) we include these parameters to the gradient descent controller
in (2.25) and (2.26) and apply the same gain c, namely

uki = czk(||zk||2 − d2
k)− µkzk

ukj = −czk(||zk||2 − d2
k)− µ̃kzk,

where µk and µ̃k are not mismatches anymore but motion parameters. The two
equations above lead to the following compact form

ṗ = −cR(z)T e+A(µ, µ̃)z, (4.2)

where the elements aik of A are constructed in a very similar way as in the incidence
matrix as

aik
∆
=


µk if i = E tail

k

µ̃k if i = Ehead
k

0 otherwise.

(4.3)

Note that if µ̃k = 0 for all k ∈ {1, . . . , |E|}, then (4.2) is identical to (4.1) with
c = 1. The gain c is a free design parameter for achieving exponential stability of
the formation as we will see later in the stability analysis.

One important property of (4.2) is that each agent i can work with only its own
local frame Oi. One can see this more in detail in the following lemma.

Lemma 4.1. The control law applied in (4.2) can be implemented for each agent i
using only its local frame Oi, i.e., each agent can use its own coordinate system to
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measure the relative position and a global coordinate system is not involved.

The proof is omitted for the sake of brevity, but is straightforward by following
similar arguments as in [9, 19].

In order to induce some desired steady-state motion of the formation in the
desired shape, we can manipulate µ and µ̃ at the equilibrium of (4.2). Then the
steady-state motion will be a function of the desired shape z∗ ∈ Z and µ, µ̃:

ṗ∗ = A(µ, µ̃)z∗. (4.4)

Before discussing on how to design the motion parameters µ and µ̃ in order to keep
Z invariant, let us first recall some facts from rigid body mechanics [42]. As in
the case of points in a rigid body, the steady-state velocity of every agent ṗ∗i at the
desired rigid formation shape can be decomposed into

ṗ∗i = ṗ∗c + bω × bp∗i︸ ︷︷ ︸
ṗ∗iω

, (4.5)

where bω is the angular velocity of the rigid formation (similar to that for the rigid
body). In particular, in view of (4.2) with A as defined in (4.3), the velocity (4.5)
at the desired shape z∗ ∈ Z is given by

ṗ∗c + ṗ∗iω =

|E|∑
k=1

aikz
∗
k. (4.6)

Let us decompose the motion parameters into µ = µv +µω and µ̃ = µ̃v + µ̃ω, where
µv, µ̃v ∈ R|E| and µω, µ̃ω ∈ R|E| will be used to assign the desired translational and
rotational velocity, respectively, of the rigid formation. Using this decomposition,
we can rewrite (4.6) for all the agents into the following compact form

ṗ∗ = A(µv, µ̃v)z
∗︸ ︷︷ ︸

1|V|×1⊗ṗ∗c

+A(µω, µ̃ω)z∗︸ ︷︷ ︸
ṗ∗ω

, (4.7)

where ṗ∗ω ∈ Rm|V| is the stacked vector of all the rotational velocities ṗ∗iω , i ∈
{1, . . . , |V|}.

In the desired shape, the stacked vector bz∗ of relative positions bz∗k, k ∈
{1, . . . , |E|} in Ob becomes a constant. This is due to the fact that Ob follows
the steady-state motion, and thus according to (4.7) the velocities bṗ∗c and bṗ∗iω
become also constant. In particular, if bω = 0, then we will have a drift of the
desired formation in Og; otherwise for a nonzero constant vector bω, the formation
will follow a closed circular orbit (which is always the case in 2D formations) when
bω is perpendicular to bṗ∗c , or otherwise a helical trajectory in Og. Figure 4.1
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ṗ∗c

bω × bp∗i

ṗ∗c
ṗ∗i

(a)

Og Ob

bω

bṗ∗c

(b)

Og
Ob

bω

bṗ∗c

(c)

Figure 4.1: Illustration of the steady-state motion in different frames of coordinates:
(a) in Og, the steady-state velocity ṗ∗i can be decomposed into translational and
rotational term given by (4.5); (b) in Ob the steady-state velocity vector bṗ∗i
becomes constant. For 2D formations the steady-state trajectory in Og becomes a
circular closed orbit since bω and bṗ∗c are perpendicular; and (c) in general for 3D
formations bω and bṗ∗c are not perpendicular, and therefore the resultant trajectory
(shown in red) is helical in Og.

shows an illustration of the these facts on the steady-state velocity of the desired
formation expressed in either Og and Ob.

Now we are ready to show how to design the motion parameters µ and µ̃ in
(4.7). Note that the steady-state motion must not distort the desired shape, i.e.,
the motion parameters have to be designed such that Z is an invariant set in (4.7).
In a similar way as in (4.1), the desired steady-state velocity (4.4) in Ob can be
rewritten as

bṗ∗ = S1Dbz∗ µ+ S2Dbz∗ µ̃ =
[
S1Dbz∗ S2Dbz∗

] [µ
µ̃

]
= T (bz∗)

([
µv
µ̃v

]
+

[
µω
µ̃ω

])
,

where S2 = S1 −B. The motion parameters will be used to design both velocities
in (4.7) with respect to Ob as in Figure 4.1c since they are constant in such a frame.
Note that the knowledge about Ob is only needed during the design stage for the
desired steady-state velocity. During the implementation of the distributed control
law, the agents only need to know about their own Oi’s as shown in Lemma 4.1.
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We now demonstrate how to design the velocity bṗ∗c employing the motion
parameters. It is important to note that in an infinitesimally and minimally rigid
framework, the minimum number of edges associated to a node is two in R2 or
three in R3. So if bz∗ ∈ Z then the relative positions bz∗k ’s associated to agent i can
span the whole R2 for the planar formations (or R3 in the 3D case). This implies
that the domain of the desired velocity bṗ∗i is the whole space and it can be assigned
by an appropriate choice of µ and µ̃ (c.f. (4.6)). Since the velocity bṗ∗c is the same
for all the agents, we set the following requirement for µv and µ̃v

B
T

(1|V|×1 ⊗ bṗ∗c) = B
T
T (bz∗)

[
µv
µ̃v

]
= 0m|E|×1, (4.8)

which implies that [
µv
µ̃v ] ∈ Ker{BTT (bz∗)}. However, since in general the kernel of

T (bz∗) can be non-trivial, there may exist non-zero [
µv
µ̃v ] such that bṗ∗ = 0m|V|×1,

which is irrelevant for our motion control. Taking this into account, the set of
motion parameters µv and µ̃v should satisfy[

µv
µ̃v

]
∈ U ∆

= PKer{T (bz∗)}⊥
{

Ker{BTT (bz∗)}
}
, (4.9)

where PX stands for the projection over the space X . The lower bound for the
degrees of freedom of choosing the elements of µv and µ̃v for constructing bṗ∗c can
obviously be given by the number of motion parameters of the agent that has the
least number of neighbors. In other words,

dim{U} > min
i
{|Ni|}, (4.10)

where Ni is defined in Section 2.1 and U in (4.9). Consequently, we propose the
following algorithm to compute µv and µ̃v for given bṗ∗c and bz∗.

Algorithm 4.2. 1. Choose an agent i with the least number of neighbors.

2. Assign µvk and µ̃vk associated to agent i that solves bṗ∗c =
∑|E|
k=1 aik

bz∗k.

3. Compute a basis V that spans the space defined in (4.9).

4. Compute a vector v ∈ R2|E| employing the basis V such that the previously
computed µvk ’s and µ̃vk ’s are the k’th and (|E|+ k)’th elements of v. Then, the
rest of elements of v are necessarily the motion parameters defining bṗ∗c for the
whole formation, i.e., v = [

µv
µ̃v ].

From (4.3) it is clear that the implementation of the motion parameters is
distributed, while the computation in Algorithm 4.2 is centralized since it requires
the knowledge of Ob and Z. On the other hand, the motion parameters only need
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to be computed once since the desired speed of the motion can be modified by just
rescaling µv and µ̃v. For a new agent j joining the formation, its motion parameters
for the translational motion can be computed in a distributed way. Consider
agent j joins the formation: if it enquires a neighboring agent i about iṗ∗c and Oi,
then it becomes straightforward for agent j to compute the corresponding motion
parameters for the desired j ṗ∗c by only following the second step of Algorithm 4.2.

Now we proceed to show how to design the motion parameters for the rota-
tional velocity bṗ∗ω in (4.7), i.e., the rotational motion of the agents around the
centroid. Note that this rotational motion maintain the constant norms ||z∗k||’s but
not the relative positions z∗k ’s. Since 1

2
d||zk||2

dt = zTk żk, we can impose the following
condition for maintaining constant ||z∗k||,

DT
z∗ ż
∗ = DT

z∗B
T
T (z∗)

[
µω
µ̃ω

]
= 0|E|×1. (4.11)

As discussed after equation (4.7) the relative positions bz∗k are constant because
Ob is rotating with the rigid formation. However, for having such rotation of the
formation, the constant velocities bṗ∗ωi must be designed in order to keep the norms
||bzk||’s constant. Therefore, we impose the following restricting condition for µω
and µ̃ω in addition to (4.11)

DT
bz∗B

T
T (bz∗)

[
µω
µ̃ω

]
= 0|E|×1. (4.12)

As in the case for calculating the motion parameters for bṗ∗c , the set of motion
parameters µω and µ̃ω has to satisfy[

µω
µ̃ω

]
∈ W ∆

= PU⊥
{

Ker{DT
bz∗B

T
T (bz∗)}

}
, (4.13)

where U is as in (4.9). We remark that the dimension ofW in (4.13) is at least, one
less than the dimension of U in (4.9). This is due to the fact bṗ∗iω is perpendicular
to bp∗i (as shown in (4.5)) and hence, the degree-of-freedom for choosing [

µω
µ̃ω ] is at

least one less than that for choosing [
µv
µ̃v ]. The calculation of the motion parameters

µω and µ̃ω for a desired bω can be done in a similar way to Algorithm 4.2

Algorithm 4.3. 1. Choose an agent i with the least number of neighbors.

2. Assign µωk and µ̃ωk associated to agent i that solves bω = (bp∗i )×
(∑|E|

k=1 aik
bz∗k

)
.

3. Compute a basis W that spans the space defined in (4.13).

4. Compute a vector w ∈ R2|E| employing the basis W such that the previously
computed µωk ’s and µ̃ωk ’s are the k’th and (|E|+ k)’th elements of w. Then, the
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rest of elements of w are necessarily the motion parameters defining bω for the
whole formation, i.e., w = [

µω
µ̃ω ].

As before the implementation of µω and µ̃ω is fully distributed but their compu-
tation at the design stage is not. On the other hand, they only need to be computed
once and the angular speed can be regulated by just rescaling their magnitude.

If we want to design different trajectories in Og as in Figure 4.1, we only need to
change the speed of bṗ∗c and bω. Unfortunately, if a new agent j joins the formation,
then the centroid will change, requiring to recompute µω and µ̃ω. Nevertheless,
if the instantaneous center of rotation [42] pr ∈ Rm is independent of the new
agent, e.g., as we will see in the target enclosing problem where it will be fixed at
agent 1, then agent j can still compute its motion parameters by only asking local
information from a neighboring agent i, i.e., its iṗ∗i and iṗ∗c along with Oi and in
addition we also require agent i to know about i(pi − pr).

Example 4.1. Let us continue with Example 2.1 on the triangular formation. In
the following discussion, we will show how to find [

µv
µ̃v ] and [

µω
µ̃ω ] that satisfy (4.8)

and (4.12) and that belong to the spaces defined in (4.9) and (4.13) respectively.
Since triangular formation is a special case, we can obtain these motion parameters
explicitly without employing the proposed algorithms 4.2 and 4.3.

Obviously for a triangular formation, it always holds that

z1 + z2 + z3 = 0. (4.14)

The control law in (4.2) with the distributed motion parameters is

ṗ1 = c(−z1e1 + z3e3) + µ1z1 + µ̃3z3

ṗ2 = c(−z2e2 + z1e1) + µ2z2 + µ̃1z1

ṗ3 = c(−z3e3 + z2e2) + µ3z3 + µ̃2z2

 .

In order to compute µv and µ̃v for a given bṗ∗c with bz = bz
∗ ∈ Z, we need to solve

for the following three equations that are derived from (4.8)

bz∗1(µv1 − µ̃v1) + bz∗3 µ̃v3 − bz∗2µv2 = 0
bz∗2(µv2 − µ̃v2) + bz∗1 µ̃v1 − bz∗3µv3 = 0
bz∗3(µv3 − µ̃v3) + bz∗2 µ̃v2 − bz∗1µv2 = 0

 . (4.15)

Substituting (4.14) into (4.15) we obtain the following conditions for µv and µ̃v
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(any four implying the remaining one)

µv1 + µv2 + µv3 = 0

µ̃v1 + µ̃v2 + µ̃v3 = 0

µv2 + µ̃v3 = 0

µv3 + µ̃v1 = 0

µv1 + µ̃v2 = 0


, (4.16)

which has a non-trivial solution with two degrees of freedom satisfying (4.10).
Obviously the set of equations in (4.16) is independent of Z. One can check that
solutions to (4.16) always satisfy (4.8). Indeed, substituting (4.16) in (4.8), we
arrive at  m1 m1 m1

m2 m2 m2

−m1 −m2 −m1 −m2 −m1 −m2

 bz∗ = 06×1, (4.17)

where m1,m2 ∈ R are constants depending on µv and µ̃v, and the last equation is
due to (4.14), which is independent of Z. Note that T (bz∗) has a trivial kernel since
the three bzk ’s are not colinear. Therefore the motion parameters [

µv
µ̃v ] satisfying

the set of equations (4.16) are in U as defined in (4.9) and obviously this space has
dimension two.

Now we will show on how to calculate the motion parameters [
µω
µ̃ω ] which can

form a basis forW in (4.13). First we notice that for a triangle we have

pc =
1

3

3∑
i=1

pi,

and

bp∗i = b
gR(p∗c − p∗i ) =

1

3
(bz
∗
[k+2] − bz

∗
k), k = i ∈ {1, 2, 3}, (4.18)

where p∗c and p∗i are the positions of the centroid and the agents when the formation
is at z∗ ∈ Z, respectively, the matrix b

gR is the rotational matrix relating the attitude

of Ob with respect to Og and [i]
∆
= 1 + mod3(i), with modn(·) be the modulus

operator with respect to n.

Since we want to have only rotational motion of the agents around the centroid
of the triangle, we have to set the velocity of the centroid ṗ∗c as follows

ṗ∗c =
1

3

3∑
i=1

ṗ∗iω =
1

3

3∑
k=1

(µωk + µ̃ωk)z∗k = 0,

which together with the triangular property (4.14) leads to the following set of
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conditions (with two of them implying the third) for µω and µ̃ω

µωk + µ̃ωk − µω[k+2]
− µ̃ω[k+2]

= 0, k ∈ {1, 2, 3}, (4.19)

which is independent of Z. As mentioned after equation (4.13) that(
bṗ∗iω

)T bp∗i = 0, i ∈ {1, 2, 3},

which together with (4.6) and (4.18) implies that

(µωk
bz∗k + µ̃ω[k+2]

bz∗[k+2])
T (bz∗[k+2] −

bz∗k) = 0, k ∈ {1, 2, 3}. (4.20)

Using (2.24), the two set of equations (4.19) and (4.20) define the following
algebraic condition for µω and µ̃ω

f1 0 0 0 0 f̃1

0 f2 0 f̃2 0 0

0 0 f3 0 f̃3 0

1 −1 0 1 −1 0

0 1 −1 0 1 −1

−1 0 1 −1 0 1


[
µω
µ̃ω

]
= 06×1, (4.21)

where
fk = − 3

2d
2
k + 1

2 (d2
[k+1] − d

2
[k+2])

f̃k = 3
2d

2
[k+2] + 1

2 (d2
k − d2

[k+1])

}
, k ∈ {1, 2, 3}. (4.22)

Since (4.21) ensures that the norms ||z∗k|| are constant with a rotational motion
around the centroid pc, it implies that µω and µ̃ω satisfying (4.21) also fulfill (4.13).

Note that the last three rows of the matrix in (4.21) form the matrix
[
BT BT

]
with B as in (2.23), which implies that the matrix in (4.21) has at least one
eigenvalue equal to zero. The multiplicity of the zero eigenvalue must be one
because the dimension ofW is one. Indeed, as discussed after (4.13), the dimension
ofW is at least one less than the dimension of U , which is two, but it cannot be
zero since (4.21) has non-trivial solution. Therefore we have only one degree of
freedom for the six motion parameters in µω and µ̃ω, which directly implies that
[
µω
µ̃ω ] satisfying (4.21) forms a basis ofW.

Let w ∈ W be an unitary vector. In this case the motion parameters µω and µ̃ω
clearly satisfy [

µω
µ̃ω

]
= aw, a ∈ R\{0}, (4.23)

where a is a parameter that determines the angular speed ||bω||. Since we know the
steady-state velocity bṗ∗iω by design and the radius of the orbit around the centroid
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||bp∗i ||, the steady-state angular speed can be set by the formula

||bω|| =
||bṗ∗iω ||
||bp∗i ||

, i ∈ {1, 2, 3}

= 3|a|
||µωk bz∗k + µ̃ω[k+2]

bz∗[k+2]||
||bz∗[k+2] − bz∗k||

, k ∈ {1, 2, 3}.

Note that the sign of a denotes the sign of the rotation and a = 0 means no rotation
at all.

The unit vector w in (4.23) can be computed directly for the special case of
having an equilateral or an isosceles triangle as shown in the following proposition.

Proposition 4.4. If bz∗ ∈Z defines an equilateral triangle, then the eigenvector w in
(4.21) corresponding to the eigenvalue 0 is given by

w =
1√
6

16×1.

If bz∗ ∈Z defines an isosceles triangle with d1 = d2, then

w = α
[

3d23
2d21+d23

2− 3d23
2d21+d23

1 2− 3d23
2d21+d23

3d23
2d21+d23

1
]T
, (4.24)

with α ∈ R+ being a normalizing factor.

Proof. For the equilateral case we have dk = d, k ∈ {1, 2, 3}. Then fk = −f̃k in
(4.22) and in addition to (4.19) it follows that µωk = µ̃ωk , k ∈ {1, 2, 3}. Therefore
w = 1√

6
16×1.

For the isosceles case, without loss of generality, let d1 = d2. By evaluating
(4.20) for the agents 1 and 3 we have

µ̃3(||z∗3 ||2 − z∗3
T z∗1)− µ1(||z∗1 ||2 − z∗1

T z∗3) = 0 (4.25)

−µ3(||z∗3 ||2 − z∗3
T z∗2) + µ̃2(||z∗2 ||2 − z∗2

T z∗3)− = 0, (4.26)

where we have used the identity bzTi
bzj = zTi zj . For an isosceles triangle it holds

that zT1 z3 = zT2 z3 and ||z1|| = ||z2||. Consequently, it follows from (4.25) and (4.26)
that we can choose µω3

= µ̃ω3
and µω1

= µ̃ω2
. Substituting this fact to (4.19)

we get that µω2
= µ̃ω1

. Direct substitution of these relations into (4.20) gives us
(4.24).

As it was mentioned before, by default all computations of µ and µ̃ are for l = 2

for the potential function (2.10). Nevertheless it is worth to note that for l = 1,
instead of dealing with the relative positions bz∗k ’s as in (4.15), we deal with the
unitary vectors bẑ∗k ’s for the computation of the motion parameters. Therefore the
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motion parameters for the steady-state velocity bṗ∗ with l = 1 are valid for any
scaled version of the triangle defined by Z. As we will see, this will have important
implications in Chapter 5 for scaling infinitesimally and minimally rigid formations
at the same time that we preserve the desired motion.

Remark 4.5. Note that in the case of dealing with the unitary vectors bẑ∗k ’s for
the computation of µ and µ̃, in general we cannot take advantage of the property
(4.14) anymore.

4.2 Stability analysis

In the previous section we have shown how to design the desired steady-state
behavior of the formation. Here, we provide the stability analysis of the closed-
loop system. In particular we show that the control law applied in (4.2), with
A designed as in Section 4.1, indeed steers the formation, at least locally, to the
desired formation motion.

Similar to (2.17) and (2.18), we derive from (4.2) the following closed-loop
system with the motion parameters

ż = −cBTR(z)T e+B
T
Az (4.27)

ė = −2cR(z)R(z)T e+ 2R(z)Az. (4.28)

Note that as shown in Proposition 2.16, the error system (4.28) is autonomous
since the elements of R(z)Az ∈ R|E| are linear combinations of the inner products
zTi zj = gij(e). Therefore we can write (4.28) as

ė = −2cQ(e)e+ 2f(e), (4.29)

with Q(e) as in (2.20) with l = 2 and f(e) = R(z)A(µ, µ̃)z. Note that f(e) is closely
related to the desired shape Z since z ∈ Z implies f(0) = 0|E|×1. However, in
general z ∈ D does not necessarily imply f(0) = 0|E|×1 since

R(z)A(µ, µ̃)z = DT
z B

T
T (z)

[
µ

µ̃

]
is designed to be zero only at z ∈ Z but not at arbitrary z ∈ D.

Theorem 4.6. There exist constants ρ, c∗ > 0 such that for system (4.29), e = 0

corresponding to z ∈ Z with the motion parameters [
µv
µ̃v ] and [

µω
µ̃ω ] belonging to the

spaces (4.9) and (4.13) respectively is locally exponentially stable for all c > c∗ in
the compact set Q ∆

= {e : ||e||2 6 ρ}. In particular, the formation will converge
exponentially to the shape defined by Z and the velocity bṗi will converge to bṗ∗i for
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i ∈ {1, . . . , |V|}.

Proof. We divide the proof in two parts. Firstly we analyze the inter-agent distance
dynamics and show that the shape formed eventually by the agents is the desired
shape. Secondly we analyze the individual agent dynamics in order to show that
they converge to the steady-state motion defined by the motion parameters.

Consider the following candidate Lyapunov function

V =
1

4
||e||2,

with its time derivative given by

dV

dt
=

1

2
eT ė = −c eTQ(e)e+ eT f(e).

As shown in Proposition 2.16, there exists a constant ρ > 0 such thatQ(e) is positive
definite in the compact set Q ∆

= {e : ||e||2 6 ρ} since Q(0) is positive definite as the
framework is infinitesimally minimally rigid at z ∈ Z. Since f(e) is real analytic
with f(0) = 0|E|×1 at z ∈ Z because of (4.8) and (4.12), it is also locally Lipschitz
in Q. Therefore there exists a constant q ∈ R+ such that

dV

dt
6 −cλmin||e||2 + eT f(e)

6 (−cλmin + q)||e||2, (4.30)

where λmin is the minimum eigenvalue of Q(e) in Q. Thus if one chooses c > c∗ >
q
λmin

, then the local exponential stability of the origin of (4.29) follows, showing
that the formation converges exponentially to the desired shape defined by Z.

For the second part of the proof, we substitute e(t)→ 0 and z(t)→ Z as t→∞
into (4.2), which gives us

ṗ(t)− Ā(µ, µ̃)z(t)→ 0, as t→∞.

In other words, the velocity of the agents converges exponentially to the desired
velocities given by bṗ∗c and bṗ∗iω for all i.

The findings in [76, 77], based on the exponential convergence property of the
autonomous error signal in (4.29), suggest the implementation of the controller
(4.2) using a distributed self-event triggered strategy, i.e., the control law ui in
(4.2) is updated by the agent i at discrete local events, where the self-triggered
strategy is based on local information. This scheme can be adopted directly to our
proposed motion control law. This allows us to parsimoniously use the sensors for
minimizing energy and bandwidth consumption.
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Example 4.2. Let us continue with the Example 4.1 and show how to compute
f(e) and q in (4.30) for the special case of the triangular formation. First we notice
that using (2.24), we can identify f(e) as a linear function of e as follows

f(e) = R(z)Az =
1

2
F (µ, µ̃)(e+ d),

where d =
[
d2

1 d2
2 d2

3

]T
and F (µ, µ̃) ∈ R3×3 is given by

F (µ, µ̃) =

2(µ1 − µ̃1) + µ2 − µ̃3 µ2 + µ̃3 −µ2 − µ̃3

−µ3 − µ̃1 2(µ2 − µ̃2) + µ3 − µ̃1 µ3 + µ̃1

µ1 + µ̃2 −µ1 − µ̃2 2(µ3 − µ̃3) + µ1 − µ̃2

 .
It can be checked that F (µ, µ̃)d = 03×1, since f(0) = 03×1. This means that

f(e) =
1

2
Fe. (4.31)

If we substitute (4.31) into (4.30) we have that q = 1
2 ||F ||2, where || · ||2 is the

induced 2-norm.
We would like to pinpoint two special cases. Firstly we notice that for µω = 0

and µ̃ω = 0 we have that B
T
Az is zero in (4.27) because of (4.17). In this case,

f(e) = 0 for all e. Secondly, if Z defines an equilateral triangle, then F is skew
symmetric in view of Proposition 4.4. This means that eTFe = 0 for all e in (4.30).
Therefore both special cases have q = 0, and hence for any c > 0 the origin of
(4.28) is locally exponentially stable. The same special cases can be derived for 3D
tetrahedrons just following the same arguments for the triangular case in Example
4.1.

Remark 4.7. Note that the condition (4.19) is independent of z(t) in the triangular
case, implying that for all t the centroid of the triangular formation is stationary.
Therefore pc(t) = 1

3

∑3
i pi(0).

It is important to note that we are assuming that the measurements done by
the agents are not biased with respect to each other, i.e., we do not consider any
undesired mismatches that will affect the performance of the motion controller.

The results from Theorem 4.6 allow one to design the behaviour of the steady-
state motion of the desired formation. However, these results are restricted to
the design of the velocities bṗ∗i for all i, which are obviously defined in Ob. In
particular, for the case of having only translational motion, i.e., [

µω
µ̃ω ] = 02|E|×1, the

steady-state orientation of Ob with respect to Og is unknown and depends on the
initial condition p(0). Similarly, for the rotational motion around the centroid, i.e.,
[
µv
µ̃v ] = 02|E|×1, the steady-state position of the centroid pc of the formation also

depends on p(0).
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Throughout the following two sections, we are going to extend the results of
Theorem 4.6 in order to overcome the issues mentioned above. The first extension
concerns the control of the steady-state orientation of Ob with respect to Og in the
special case of having only a translational motion. The second extension deals with
the control of the instantaneous center of rotation for the formation, which is closely
related to the problem of tracking and enclosing a target as briefly mentioned at
the beginning of this chapter.

4.3 Translational motion with controlled heading

Suppose that the motion parameters have been assigned such that the steady-state
motion of the formation defines a pure translation, i.e., [

µω
µ̃ω ] = 0. In this special

case, we are interested in controlling the steady-state orientation of Ob with respect
to Og, and consequently the heading of the translational motion in Og. This task
can be accomplished if we control only one relative position among all the bzk ’s with
respect to Og. Without loss of generality we set the relative position z1 associated
to edge E1 = (1, 2) for achieving this task. Since z∗ ∈ Z defines an infinitesimally
minimally rigid formation, if we control the orientation of z1 then the orientation
of the rest zk ’s will also be controlled. In other words, we are setting the desired
orientation of the formation in Og with the following relation

z∗1 = g
bR

bz∗1 , (4.32)

where z∗1 has the orientation with respect to Og given by the desired rotational
matrix g

bR ∈ Rm×m defining the steady-state orientation of Ob with respect to Og.
We will use the following potential function in order to settle the orientation

controller for z1 implemented by the agents in E1

V1o =
1

2
||z1 − z∗1 ||2, (4.33)

and define the alignment error

e1o = z1 − z∗1 .

The orientation controller derived from the gradient of (4.33) is

∇p1V1o = −∇p2V1o = e1o. (4.34)

Note that we require agents 1 and 2 to know Og, since they will need iz∗1 for the
computation of (4.34) in Oi. Let us introduce some definitions before writing in a
compact form the dynamics of the agents including the controller (4.34). Define
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the orientation error vector

eo
∆
= col{e1o, . . . , eko} ∈ Rm|E|,

where eko = 0m×1 for all k 6= 1, and the following augmented incidence matrix

Ba =

[
Bo 02×(|E|−1)

0(|V|−2)×1 0(|V|−2)×(|E|−1)

]
∈ R|V|×|E|,

where
Bo =

[
1 −1

]T
,

describes the neighbor relationships for the alignment task and Ba has been ad-
justed to have the same dimensions of B. Now we can extend the control law in
(4.2) including the controller (4.34) in agents 1 and 2 as follows

u = c(−R(z)T e−Baeo) +Az. (4.35)

As we have done earlier, we derive the following closed-loop system by substituting
(4.35) into (2.4)

ż = −c(BTR(z)T e+B
T
Baeo) +B

T
Az

ė = −2c(R(z)R(z)T e+R(z)TBaeo) + 2DT
z B

T
Az (4.36)

ėo = B
T

a ṗ = −c(BTaR(z)T e+B
T

aBaeo) +B
T

aAz. (4.37)

Without restricting the value for the desired velocity bṗ∗c , we introduce the following
assumption on G and the construction of bṗ∗c .

Assumption 4.8. For 2D (3D) formations the subset of agents H ∆
= {1, 2, 3, (4)}

forms a complete subgraph Gh ⊆ G. In addition for the desired shape z∗ ∈ Z the
agents in H form a triangle (tetrahedron). The desired velocities bṗ∗i = bṗ∗c for
i ∈ H are constructed employing only the motion parameters derived from Gh.

Under Assumption 4.8, from Example 4.1 we have that

B
T

aAz = 0m|E|×1. (4.38)

The Assumption 4.8 is imposed only on the agents in H in order to make easier the
following analysis. For the other agents we construct their motion parameters in
µv and µ̃v with the only condition of satisfying (4.9).

We are ready now to present and prove the following convergence result.

Theorem 4.9. Consider a minimally and infinitesimally Z. Suppose that A as in
(4.3) is not zero, its motion parameters [

µ
µ̃ ] define a pure translational motion and
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Assumption 4.8 is satisfied. Then, there exists constants ρ, c∗ > 0 such that the origin
of the error systems (4.36) and (4.37) are locally exponentially stable for all c > c∗ in
the compact set Q ∆

= {e, e1o : || ee1o ||2 6 ρ}. In particular, the formation will converge
exponentially to the shape defined by z ∈ Z with z1 = z∗1 , and the velocity of the
centroid

ṗc(t)→ g
bR

bṗ∗c , t→∞ (4.39)

where gbR is the desired rotational matrix between Ob and Og as given in (4.32).

Proof. First we prove the convergence of the formation to the desired shape Z.
Consider the following candidate Lyapunov function

V =
1

4
||e||2 +

1

2
||eo||2, (4.40)

whose time derivative is

dV

dt
=

1

2
eT ė+ eTo ėo = −c

(
eTR(z)R(z)T e+ eTR(z)Baeo

+ eTo B
T

aR(z)T e+ eTo B
T

aBaeo

)
+ eT f(e)

= −c||R(z)T e+Baeo||2 + eT f(e), (4.41)

where f(e) is as in (4.29) and we have employed (4.38) under the Assumption 4.8.
Because of the zero elements of eo and Ba, we can further rewrite (4.41) as

dV

dt
= −c

[
eT eT1o

]
Q
[
eT eT1o

]T
+ eT f(e), (4.42)

where

Q =

[
R(z)R(z)T R2m(z)Bo

B
T

o R2m(z)T B
T

o Bo

]
,

with the matrix R2m(z) being the first 2m columns of R(z), regarding the relative
positions involving the agents 1 and 2. According to Theorem 2.14, the first term
of (4.42) coming from the gradient of a potential function is strictly negative in
the compact set Q for some positive constant ρ excluding the origins of e and e1o.
Thus Q is positive definite in Q. Since f(e) is locally Lipschitz with f(0) = 0|E|×1

at z ∈ Z there exists a constant q ∈ R+ such that

dV

dt
6 (−cλmin + q)

∣∣∣∣∣∣∣∣ [ ee1o

] ∣∣∣∣∣∣∣∣2,
where λmin is the minimum eigenvalue of Q in Q. Therefore choosing c > c∗ > q

λmin

implies that (4.40) is not increasing if e(0), e1o(0) ∈ Q. Hence the origin of the
system formed by (4.36) and (4.37) is exponentially stable.
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For the second part of the proof, note that e1o(t) → 0 as t → ∞ implies that
z1(t)→ z∗1 as t→∞, and because z(t)→ Z as t→∞, we have that

ṗ(t)−
(
1|V|×1 ⊗ g

bR
bṗ∗c
)
→ 0, as t→∞,

i.e., all agents converge to the same velocity ṗ∗i = g
bR

bṗc .

Remark 4.10. It is possible to assign only one agent as a leader for the orientation
of the formation. In such a case the neighbor relationships for the alignment are
described by a directed graph. In fact this directed graph consists of only two nodes
and therefore it is strongly connected. The stability analysis can be worked out
employing as a potential function the one shown in [21] for strongly connected
directed graphs in substitution of the potential 1

2 ||eo||
2 in (4.40).

Remark 4.11. If one does not want any steady-state movement, i.e., A = 0|V|×|E|,
then the local exponential stability of the desired aligned formation happens for
any c > 0.

Remark 4.12. The constant q in the proof of Theorem 4.9 is the same as that in the
proof of Theorem 4.6. For triangular and tetrahedron formations, the convergence
to the desired shape with the desired heading occurs for any c > 0 since q = 0.

The steady-state behavior of the formation is pretty similar to an unicycle model
travelling with a constant speed. We highlight that this configuration is relevant in
applications such as [64], where the authors propose a distributed algorithm for
enclosing a known area by agents travelling at a constant speed, e.g., airplanes
flying at a constant altitude. With our presented work, it is possible to replace
each agent in [64] by a subgroup of agents travelling with a constant speed where
a leader controls the heading of the subgroup. Note that the standard approach
for the translational motion of a rigid formation is to assign a velocity to a leader
and the other agents are equipped with local estimators in order to track the
velocity of the leader [9]. In the special case of having the formation travelling
at a constant speed, we have shown in Theorem 4.9 that such estimators are not
necessary, reducing the complexity of the implementation of the control law. In
addition in our algorithm the order of the agents in the formation is preserved with
respect to the direction of motion. Finally, in Theorem 4.9 we have shown that the
convergence to the desired velocity is exponential and not only asymptotic as in
the leader-follower case.

4.3.1 Experimental results

In this experiment we will validate the results from Theorem 4.9. We consider four
robots that have a square with 225 pixels (45.0mm) for the length of the side as
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a prescribed shape Z. The incidence matrix describing the sensing topology for
maintaining the prescribed shape and the derived A(µ, µ̃) are

B =


1 0 −1 1 0

−1 1 0 0 0

0 −1 1 0 1

0 0 0 −1 −1

 , A =


µ1 0 µ̃3 µ4 0

µ̃1 µ2 0 0 0

0 µ̃2 µ3 0 µ5

0 0 0 µ̃4 µ̃5

 .
We designate the robot number 1 to be the agent that controls the orientation of z1,
which is associated to the edge E1 = (1, 2). As usual for the experiments we take
l = 1 for the potential function (2.10), so the implemented control law is

u = c(−BDẑe−Baeo) +Az.

The chosen speed for the translation is 5 pixels/s (1cm/s), and we set the desired
heading of the translational motion to be the same as the one defined by the
direction of bz1. Because of simplicity and in order to show that Assumption 4.8
is only a sufficient condition, for achieving the mentioned desired steady-state
velocity we set the motion parameters as

µ =
[
−5 0 0 0 5

]T
, µ̃ =

[
−5 0 0 0 5

]T
. (4.43)

At the beginning of the experiment robot 1 has for the desired orientation the vector
z∗1 =

[
225 0

]T
pixels. Therefore the desired heading of the formation is zero

radians with respect to Og. The robots start in random positions close to the origin
of Og. During the experiment, once the agent 1 reaches the imaginary vertical line

crossing the position
[
1100 0

]T
pixels, the value of z∗1 changes to

[
−225 0

]T
pixels. Therefore the formation will switch to a heading of π radians with respect
to Og. The gain c has been set to 3.5× 10−2. As a remark the chosen c is smaller
than the conservative c∗ in Theorem 4.9.

Remark 4.13. Since all the unicycle robots have the same reference point for the
feedback linearization, once the system is at e = 0 and eo = 0, i.e., all the robots
have the same velocity ṗ∗c , the headings of the robots achieve consensus, i.e., all
the unicycle robots are pointing at the same direction.

We proceed to discuss the experimental results presented in Figure 4.2. The
initial positions of the robots are shown in (a) and the squared configuration of the
formation with zero rads of heading after 90 seconds is shown in (b). The error
and speed plots corresponding to the experiment are shown in (e) and (f). The
desired speed of 5 pixels/s (1 cm/s), is achieved in a short time as it is shown in (f).
The orientation leader is marked with a red dot in the video captures, as well as its
trajectory. The relative position bz1 corresponding to the edge E1 = (1, 2) has been
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also marked in red, whereas the rest of sensed relative positions have been marked
in green. The desired orientation for z∗1 at the beginning is zero rads, so Og and Ob
have the same orientation. The steady-state velocity bṗ∗c has been designed to have
the same direction as bz1. Therefore the steady-state translation of the formation is
heading to the right in (b). The norm of the orientation error eo is shown in (e)
in red color. At the time t = 186 secs, the orientation leader changes the desired
orientation of z∗1 to π rads, i.e., horizontal motion to the left as it can be noticed
in (c) and (d). The video capture (c) shows the rearranging of the agents for the
new desired orientation. Finally in (d) at time t = 283 secs it is shown that the
formation achieves the new desired heading of π rads along with the desired speed
of 5 pixels/s as it is shown in (f). Note that Ob is only defined once the square is
formed.

4.4 Tracking and enclosing a target

The target enclosing problem addresses the scenario of having a team of enclosing
agents with the objective of surrounding some specific independent target which
is either stationary or moving with an unknown (constant) velocity. Furthermore,
in orbiting missions, we not only require the agents to surround the target but
to circumnavigating it. Many work has been done in this area such as [43, 68]
among others. However they usually do not allow the manipulation of the desired
formation consisting of the enclosing agents together with the target; all of the
agents are usually restricted to follow the same circular trajectory around the target,
which is at the center of the circle. It is worth noting that in other works, such as
in [54], the complexity of the controller is much higher than the one proposed in
this paper using the motion parameters. Furthermore, other drawbacks that are
usually present in many works is that all the enclosing agents have to measure their
relative positions or distances to the target, and the proposed algorithms have only
been tested in 2D scenarios.

It has been shown in Section 4.1 that the instantaneous center of rotation pr
for the desired steady-state motion of the formation is fixed in Og. Note that for
ṗ∗c = 0m×1, i.e., [

µv
µ̃v ] = 02|E|×1, the instantaneous center of rotation pr is coincident

with pc. However the steady-state of pr in Theorem 4.6 depends on the initial
condition p(0). In this section we are going to associate pr to the target to be
enclosed, and without loss of generality we set p1 = pr. Furthermore, we will
assume that ṗ1 = v̂1 ∈ Rm is constant and unknown to the enclosing agents. Let us
define

Bd
∆
= ĨB,

where Ĩ|V|×|V| is obtained from the identity matrix setting its first element to zero.
With this operation we are setting all the elements of the first row of Bd to zero.
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(a) Time t = 0 secs. (b) Time t = 90 secs.

(c) Time t = 195 secs. (d) Time t = 283 secs.
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Figure 4.2: Experimental results of a 2D squared formation traveling with desired
heading and speed.
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The interpretation for Bd is that some of the enclosing agents are measuring their
relative positions with respect to the target, and that obviously the target is not
interacting with the rest of the formation.

In order to estimate the unknown v̂1 by the enclosing agents, we will use an
estimator v̂i for each enclosing agent, whose dynamics is

˙̂vi = −κ∇piV, i ∈ {2, . . . , |V|}, (4.44)

where κ ∈ R+ is a constant gain and V the potential function as used in the
formation control. The estimator (4.44) can be written for all the agents in the
following compact form

˙̂v = −κBdDze, (4.45)

where v̂ ∈ Rm|V| is the stacked column vector of v̂i’s. Note that ˙̂v1 = 0m×1

corresponds to the target, i.e., it does not have any estimator.

Consider the following control law

u = −cBdDze+A(µ, µ̃)z + v̂, (4.46)

where c ∈ R+ is a positive gain. Since all the elements of the first row of Bd
are zero, the first term of the control law in (4.46) is not playing a role in the
target’s position p1. The motion parameters of A(µ, µ̃) have been designed to have
bp1 = bpr as the desired steady-state instantaneous center of rotation for the desired
shape z ∈ Z. Recall that the desired infinitesimally and minimally rigid formation
includes p1 and this is why we can calculate the needed motion parameters. For
example if by design we set bp1 = bpr = bpc then [

µv
µ̃v ] = 02|E|×1 and [

µω
µ̃ω ] is as

shown in Section 4.1. In general, however, the instantaneous center of rotation can
be inside or outside of the area or volume defined by the enclosing agents. Note
that since p1 = pr, the motion parameters of the target are zero, i.e., the elements
of the first row of A(µ, µ̃) are zero. Therefore the second term in (4.46) is not
playing any role in the dynamics of p1. This is an obvious requirement since the
target is not collaborating with the rest of the enclosing agents.

Our approach has two obvious limitations. Firstly we require to have more
than two (three) agents including the target in 2D (3D) in order to form an
infinitesimally and minimally rigid framework. Secondly, because of the definition
of infinitesimally and minimally rigid framework, the desired shape including the
target must exclude the ones where all the agents are collinear or coplanar in 2D
or 3D respectively.

Define the error velocity as

ev = v̂ − (1|V|×1 ⊗ v̂1).
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Note that the first m elements of ev are zero, therefore

B
T
ev = B

T

d ev, (4.47)

and in addition one can check the following identity as well

BTBd = BT ĨB = BT ĨT ĨB = BTd Bd. (4.48)

Before stating the main result of this section, let us write down the closed-loop
dynamics by substituting (4.46) in (2.4)

ż = B
T
ṗ = −cBTdBdDze+B

T
A(µ, µ̃)z +B

T

d ev (4.49)

ė = 2DT
z ż = −2cDT

z B
T

dBdDze+ 2f(e) + 2DT
z B

T

d ev (4.50)

ėv = ˙̂v = −κBdDze, (4.51)

where we have employed the identities (4.47) and (4.48), f(e) is the same as in
(4.29), and for the third term of (4.49) we have used the following well known
fact

B
T

(1|V|×1 ⊗ v̂1) = B
T

d (1|V|×1 ⊗ v̂1) = 0m|E|×1. (4.52)

Theorem 4.14. Suppose that the steady-state motion of the rigid formation bz∗ ∈ Z
defined by the motion parameters µ and µ̃ has bp∗1 as the instantaneous center of
rotation. Suppose that agent 1 is a free target with constant velocity v̂1 which is
unknown to the rest of the enclosing agents. Then there exist constants ρ, c∗ > 0 such
that the origins of (4.50) and (4.51) are locally asymptotically stable in the compact
set Q ∆

= {e, ev : || eev ||2 6 ρ}. In particular, the formation will converge asymptotically
to the shape defined by Z, and the motion of the enclosing agents converge to a
rotation around the target with angular speed ||ω|| = ||bṗ∗i ||

||bp∗1−bp∗i ||
, i ∈ {2, . . . , |V|}.

Proof. Consider the following candidate Lyapunov function

V =
κ

4
||e||2 +

1

2
||ev||2,

where κ is as in (4.44), with time derivative given by

dV

dt
=
κ

2
eT ė+ eTv ėv

= −κceTDT
z B

T

dBdDze+ κeT f(e) + κeTDT
z B

T

d ev

− κeTv BdDze

6 κ(−cλmin + q)||e||2, (4.53)

where f(e) is as in (4.29) and q is obtained from f(e) since it is locally Lipschitz
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with f(0) = 0|E|×1 if z ∈ Z. Note that M(e) = DT
z B

T

dBdDz is not defined by the
rigidity matrix R(z) because of Bd. Nevertheless it can be checked that M(0) is
still positive definite if for z ∈ Z the framework is infinitesimally and minimally
rigid. Therefore M(e) is positive definite for some ρ 6 ρ1 ∈ R+ in the compact set
Q, and then λmin in (4.53) is the minimum eigenvalue of M(e) in Q. If one chooses
c > c∗ > q

λmin
, then the time derivative (4.53) is not increasing, and it is zero if

and only if e = 0. For such case, we can conclude that the shape of the formation
converges to z∗ ∈ Z, which means that the steady-state motion of the agents will
not distort the desired shape. Thus following a similar argument as in Section 4.1,
the largest invariant set of the closed-loop system (4.49), (4.50) and (4.51) with
e = 0 and z∗ ∈ Z is given by

T ∆
=
{
v̂ : DT

z∗B
T (
S1Dz∗µ+ S2Dz∗ µ̃+ v̂

)
= 0

}
. (4.54)

Since v̂1 in v̂ is fixed, only two steady-state motions for the agents are possible
when v̂ ∈ T = Tu ∪ Td. In the set Tu all the agents travel with the same velocity
ṗi = v̂1 and hence ||ev||2 = ρ2 ∈ R+. In the set Td the enclosing agents rotate
around p1 with ||ev|| = 0. Therefore invoking the LaSalle’s invariance principle, we
have that the origins of ev and e defining z ∈ Z are locally asymptotically stable in
Q with ρ < min{ρ1, ρ2} and

ṗ(t)−A(µ, µ̃)z(t)− (1|V|×1 ⊗ v̂1)→ 0, t→∞, (4.55)

which defines the steady-state rotational movement of the enclosing agents around
the target. The steady-state angular speed of the enclosing agent i around the
target is its speed over the radius of the rotation. Since the target is moving with
velocity v̂1 we have to compensate it in the following formula

||ω|| = ||ṗ
∗
i − v̂1||

||p∗1 − p∗i ||
=

||bṗ∗i ||
||bp∗1 − bp∗i ||

, i ∈ {2, . . . , |V|}, (4.56)

where we have employed (4.55).

Remark 4.15. For the triangular formation consisting of three agents, one being
the target and the other two the enclosing ones, if Z defines an equilateral triangle,
then we have that eT f(e) = eTFe = 0 since F is skew symmetric in view of
Proposition 4.4. Therefore one can choose any c > 0 since q = 0 in (4.53). Also
note that q is the same constant in the proofs of Theorems 4.14 and 4.6.

Remark 4.16. The minimum number of enclosing agents sensing their relative
positions with respect to the target is the same as the minimum number of edges
needed for a node belonging to an infinitesimally and minimally rigid framework.
Therefore for planar frameworks the number is two and for 3D frameworks the



4.4. Tracking and enclosing a target 71

number is three.

Remark 4.17. The estimation of the constant velocity of the target is based on the
internal model principle as it has been used in [9] or in Chapter 3. This implies that
the velocity of the target might be also driven by a superposition of finite sinusoidal
signals with known frequency but unknown phase and amplitude. In such a case,
the dynamics of the estimator (4.45) have to be modified in order to include such
frequencies.

Remark 4.18. The enclosing agents employ their own local coordinate system in
view of Lemma 4.1. Therefore each enclosing agent i estimates the velocity of the
target v̂1 in Oi.

Since v̂1 is unknown, the conservative region of attraction Q is difficult to
stablish or estimate. Nevertheless we can avoid the undesired equilibrium set
Tu ⊂ T as in (4.54) when ρ2 6 ρ 6 ρ1. Firstly note that the constants ρ1 and ρ2

are mainly determined by p(0) and v̂(0) respectively. Secondly we know that Tu
determines a pure translation for all the agents. Suppose that the enclosing agents
can measure the angular velocity iω, e.g., with a gyroscope. If v̂(t) converges to
Tu, then iω will converge to zero as fast as z(t) approaches Z. Furthermore, ui for
all i will converge to v̂1. Therefore, we can program the agents such that when iω

is almost zero at t = t∗, their estimators are reset to v̂i(t∗) = ui(t
∗). Since z(t∗) is

very close to Z, then certainly the errors e(t∗), ev(t∗) ∈ Q with ρ < ρ2.

In the case that we do not require the enclosing agents to rotate around the
target, we can combine the results of the Theorems 4.9 and 4.14. The result of
such combination is: the enclosing agents estimate the unknown velocity of the
target; the enclosing agents form a rigid formation together with the target, whose
orientation with respect to the target can be determined by a leader. Furthermore
in such a special case we have that A = 0|V|×|E|, and therefore q = 0 in Theorems
4.9 and 4.14.

We finish by emphasizing again that the results presented here do not need
measuring any relative velocity, and not all of the enclosing agents need to measure
their relative positions with respect to the target agent.

4.4.1 Experimental results

We consider the scenario of having three pursuers and one independent target, set
as agent 1, with constant velocity v̂1 =

[
−3 0.35

]T
pixels/s. The velocity v̂1 is

unknown for the three pursuers. We ask the pursuers to form the shape in Figure
4.3 together with the target. The incidence matrix B corresponding to the sensing
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Figure 4.3: Desired shape for the three pursuers together with the target. The
target corresponds to the node number 1 and a is a scale factor.

topology for the shape in Figure 4.3 and the derived matrix A(µ, µ̃) are

B =


1 0 −1 0 0

−1 1 0 −1 0

0 −1 1 0 −1

0 0 0 1 1

 , A =


µ̃1 0 µ̃3 0 0

µ1 µ2 0 µ̃4 0

0 µ̃2 µ3 0 µ̃5

0 0 0 µ4 µ5

 .
We ask the pursuers to maintain the following set of inter-agent distances

d =
[√

2a a a
√

2a a
]T
, (4.57)

where a = 130 pixels. We choose l = 1 for the potential (2.10) and implement the
controls (4.45) and (4.46) to the robots. Note that again since l = 1, Dz has to be
replaced by Dz̃. The motion parameters for orbiting around the target p1 are

µ = [ 0 0 0 −2aγ
√

2 2aγ ]T , µ̃ = [ 0 aγ 0 −aγ
√

2 0 ]T , (4.58)

where γ ∈ R. Note that µ1 and µ̃3 are zero since they correspond to the target.
The agents 2 and 3 are only using µ̃4 and µ̃2 respectively since z∗4 and z∗2 are
perpendicular to z∗1 . We set the desired stationary angular speed to 0.038 rads/s,
therefore from (4.56) the value of γ is

||ω∗|| = ||bṗ∗3||
||bp∗1 − bp∗3||

=
aγ

a
= γ = 0.038rads/s.

We have set the control gains κ and c to 1 × 10−2 and 1 × 10−1 respectively in
(4.45) and (4.46). The gain κ has been chosen small in order to prevent saturation
in the robots. The chosen c is smaller than c∗ in Q, showing the conservative result
of c∗ in Theorem 4.14. The initial values v̂i(0) for i ∈ {2, 3, 4} of the estimators
have been set to zero.

We proceed to discuss the experimental results in Figure 4.4. The pursuers start
at the left of the scene whereas the target starts at the right in (a). The pursuers
are tagged with blue dots and the target with a red dot as well as their trajectories.
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The sensed relative positions are marked with colors, the pink ones concern the
target and the green ones concern only the pursuers. Note that there is a pursuer
that does not track the target at all. The pursuers have two tasks. The first one is to
form the prescribed shape with the target as the one shown in Figure 4.3 with the
side lengths defined in (4.57). The second one is to orbit around the target with an
angular speed ||ω∗|| = 0.0308 rads/s. The designed motion parameters employed
for satisfying such requirements are in (4.58). In addition the target travels with a
constant velocity v̂1 = [−3 0.35]T pixels/sec, which is unknown to the pursuers.
We have set the control gains c and κ to 1 × 10−1 and 1 × 10−2. The gain κ has
been set low in order to prevent the E-pucks to do not reach the saturation level
in their velocities. We show the estimation of the two components of v̂1 by the
pursuers in (e) and (f). The asymptotic convergence of the estimated v is slow due
to the low values of κ and c. The convergence of the distance errors to zero in
(g) with the estimation of v̂1, lead for the convergence of the angular speed of the
pursuers around the target to ||ω∗|| as it is shown in (h). The angular speed around

the target is computed as ||ωi|| =
||(P⊥

(bp1−bpi)
)ṗi||

||bp1−bpi|| . It is shown from (b) to (d) how
the pursuers enclose the target and circumnavigate it with the prescribed shape
shown in Figure 4.3.

4.5 Concluding remarks

In this chapter we have presented a distributed motion controller for rigid for-
mations, which is compatible with the popular gradient-based controllers. The
proposed controller allows us to design the steady-state formation motion in the
desired shape with respect to a frame attached to the rigid formation. The steady-
state velocity vector can be decomposed into two independent terms: one for the
constant translation of the centroid of the formation and the other for a constant
rotational formation motion around its centroid. Such design has been achieved
by adding distributed motion parameters to the prescribed distances between the
agents. Two main applications based on the motion controller have been presented:
the first is controlling the heading of a pure translational formation motion and the
second is addressing the problem of enclosing and tracking a target.
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(a) Time t = 0 secs. (b) Time t = 68 secs.

(c) Time t = 135 secs. (d) Time t = 335 secs.
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Figure 4.4: Experimental results of a team of three pursuers tracking and enclosing
an independent target.



Chapter 5

Scaling-control of formations

Look behind you, a three-headed scaled monkey!
The secret of Monkey Island.

S
CALING the shape of a formation of team of robots is a natural way of
interacting with the surrounding environment, e.g., it might be desirable
to rescale the formation in situations of obstacle avoidance or for changing

the area covered by the team. Work addressing this topic has been done, however
some drawbacks in the approaches presented in [6, 70] are that they require global
information, e.g., knowing about the centroid of the formation or about the desired
velocity by all the robots and that they have to compromise the performance among
the different tasks, i.e., they cannot achieve precisely the desired shape, the desired
steering and the desired scaling rate simultaneously. This is inherently due to the
fact of having a strategy based on assigning priorities to the different tasks. In
fact, a common practice for changing the scale of the shape is to command a new
setting point for the desired shape, i.e., a step input. This is a non desirable practice
in actual systems since the exponential convergence nature of the distance-based
gradient controller presented in Chapter 2 makes easier to reach saturation levels
in the system’s actuators if we are far from the equilibrium. Moreover, besides
of the exponential convergence, there is not any other result characterizing the
transient behaviour between two scaled shapes by just employing a step input.

In this chapter we will continue extending the findings from the previous
chapter by proposing a distributed algorithm for controlling the following three
tasks simultaneously:

i) Formation scale-free shape keeping, i.e., the formation’s shape will converge
to a shape in a set of a desired infinitesimally and minimally congruent rigid
ZS ;

ii) Steering the scale-free formation as a whole with a combination of a constant
translation velocity and a constant angular velocity applied at its centroid;

iii) Precise scaling of the formation, i.e., controlling precisely the rate of growing
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or shrinking of a shape formation in ZS . The proposed control law even
allows the changing between two different shapes.

In particular by precise scaling we mean to make the formation to converge to
an infinitesimally and minimally congruent rigid shape in ZS for a given desired
time varying scaling signal s(t). The results of this chapter employ the findings in
[88] about the already introduced bearing rigidity theory. In fact these findings
have been recently employed in order to control the translational motion of a rigid
formation with a precise scaling rate in [89] with a similar approach to the position-
based control in [9], where all the agents share a common frame of coordinates and
they want to achieve a set of relative unit vectors represented in such a common
reference. In [89] the translational motion is achieved by assigning the desired
velocity to at least two leaders, where the rest of the followers estimate such a
velocity. In order to control the rate of growing of the scale the leaders’ velocity
is not free of choice and it is constrained by knowing the desired velocity of the
centroid together with its position, i.e., more global information is required.

We will show in this chapter that our proposed solution is different and it stands
on the distance-based control strategy. The approach presented in this chapter has
several advantages such as not requiring a common frame of coordinates for the
agents, it is estimator free and it does not require complex global information like
the position of the centroid and its desired velocity. Furthermore, the distance-
based approach also allows rotational motion, a feature lost in the position-based
control since the stationary orientation is globally fixed by design.

By unifying the following two results on motion control by the distributed
motion parameters and on bearing rigidity theory, one can control simultaneously
both the motion of the prescribed rigid shape and its scaling in a precise way, i.e.,
not distorting a scale-free shape for a desired rate of growing/shrinking. Moreover,
following the same strategy we can show how to control the changing of the shape
among different rigid formations.

In addition to the formation-motion-scaling controller, we present two algo-
rithms as natural extensions of the work in [88] where the scale of a rigid formation
is chosen by controlling only the length of one edge and the shape is controlled by
keeping the relative unit vectors constant. This proposed strategy is considerable
simpler approach than those in the recent works of [22, 53, 62], where for the
same task they require the use of estimators, i.e., leader-follower approach, or the
computation of specific gains.

The rest of the chapter is organized as follows. In Section 5.1 we present
two algorithms where the scale of the infinitesimally and minimally rigid shape is
determined by controlling only one edge. Section 5.2 explains the design of the
motion controller with precise scaling/morphing of the formation by introducing
distributed parameters in a distance-based controller. Also in this section we
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demonstrate the exponential convergence of our proposed algorithm. As usual we
present experimental results at the end of each section.

5.1 Scaling-control by controlling one edge

In this subsection we are going to employ the position-based strategy in order
to control a team of agents for forming an infinitesimally and minimally rigid
shape where the scale will be determined by controlling only the inter-distance
associated to one edge. The difference with respect to other works such as in
[22, 53, 62] is that we do not require the use of estimators nor the knowledge on
stabilizing control gains a priori. Furthermore, our approach uses only local frame
of coordinates, i.e., no common frame of coordinates is assumed. In this case, we
can relax the sensing requirements for the robots, for instance most of them can
work with only directional sensors, i.e., they measure ẑk, except for the scaling
leaders.

For a desired deployment of agents given by an infinitesimally and minimally
rigid ZR, one can always construct it as a combination of the scale-free shape ẐR
and the scale can be set by Zs. In fact many of the information in Zs is redundant
because of bearing rigidity and we only need to know the scale factor s for only
one edge. Thus for the gradient based control in (2.9) we propose the following
potential function, which has clearly a minimum at ZR with ||zk|| = sdk for all
k ∈ {1, . . . , |E|}

V (z) =
1

2

|E|∑
k=1

||ẑk − ẑ∗k||2 +
1

2
(||z1|| − sd1)2, (5.1)

where the first term uses the ẑ∗k ’s from the desired scale-free shape ẐR and the
second term is only using sd1 from Zs (assuming without loss of generality that
E1 = (1, 2)) with s ∈ R+ being a scale factor.

Let B ∈ R|V|×|E| be the incidence matrix used for defining ẐR and let the matrix
sB ∈ R|V|×|E| to have the same first column as B and set the rest of elements to
zero. With these definitions at hand we can write the control input in (2.4) derived
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from the gradient of (5.1) as

ui = −
|E|∑
k=1

(
bik
(
Im − ẑkẑTk

) 1

||zk||
(ẑk − ẑ∗k)

+ sbikẑk

(
||zk|| − sdk

))

=

|E|∑
k=1

(
− bikP⊥ẑk

1

||zk||
ẑ∗k − sbikẑk

(
||zk|| − sdk

))
, (5.2)

where since P⊥x is the orthogonal projection operator over the vector x, we have
that P⊥x x = 0, and bik and sbik are the elements of B and sB respectively. We can
further write in a compact form the dynamics of all the agents as

ṗ = −BDP⊥ẑ
Dz̃ef − sBDzDz̃es, (5.3)

where ef ∈ Rm|E| is the stacked vector of formation errors efk = ẑk − ẑ∗k, es ∈ R|E|

is the stacked vector of the scale errors esk = ||zk||−sdk and we recall from Chapter
2 that P⊥ẑ ∈ Rm|E|×m is the stacked matrix of operators P⊥ẑk and z̃ ∈ R|E| is the
stacked vector of 1

||zk|| .
Using these notations, the closed-loop autonomous system is given by

ż = −BTBDP⊥ẑ
Dz̃ef −B

T sBDzDz̃es (5.4)

ėf = −Dz̃DP⊥ẑ
B
T
BDP⊥ẑ

Dz̃ef

−Dz̃DP⊥ẑ
B
T sBDzDz̃es (5.5)

ės1 = ẑ1(u1 − u2). (5.6)

Note that because of the zero elements of sB, the scaled errors ek for k ∈
{2, . . . , |E|} do not play any role in the above closed loop system. Now we are ready
to present the following result.

Theorem 5.1. There exists a positive constant ρ such that the origin of the error system
(5.5)-(5.6) is asymptotically stable in the compact set Q ∆

= { 1
2 ||es1 ||

2 + 1
2 ||ef ||

2 6 ρ},
i.e., the desired shape ZR is locally asymptotically stable with only robots 1 and 2

controlling the scale s of the shape. Furthermore, the position of all the robots converge
to p∗ determined by the initial conditions p(0).

Proof. The fact that the agents 1 and 2 are choosing the scale of the formation
follows from the definition of ZR as the combination of Zs and ẐR where we are
only taking the edge E1 = (1, 2) from Zs for defining the scale of the desired shape.

For proving the stability of the desired formation, consider the following Lya-
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punov candidate function

V (ef , es1) =
1

2
||ef ||2 +

1

2
||es1 ||2, (5.7)

whose time derivative is given by

dV

dt
= eTf ėf + eTs1 ės1

= −
[
eTf eTs

] [Dz̃ 0

0 Dz̃

]
H(z)

[
Dz̃ 0

0 Dz̃

] [
ef
es

]
= −||BDP⊥ẑ

Dz̃ef + sBDzDz̃es||2

= −||∇pV (z)||2 (5.8)

where

H(z) =

[
DP⊥ẑ

B
T
BDP⊥ẑ

DP⊥ẑ
B
T sBDz

DT
z
sB

T
BDP⊥ẑ

DT
z
sB

T sBDz

]
. (5.9)

Consider the compact set Q ∆
= { 1

2 ||es1 ||
2 + 1

2 ||ef ||
2 6 ρ} with ρ ∈ R+ sufficiently

small. It follows from Theorem 2.14 and LaSalle’s invariance principle that (5.8)
implies the asymptotic stability of the origin of ef and es1 in Q for sufficiently small

ρ. Therefore p(t) converges asymptotically to a point p∗ such that B
T
p∗ = z∗ ∈ ZR.

Since the centroid of the formation is fixed and the orientation of the formation
with respect to Og converges to the one determined by R we can conclude that p∗

must be unique.

In general H(z) is not positive-definite, but Theorem 2.14 guarantees the
stability of the desired shape if the initial conditions start close to it. We know
that not always all the efk ’s are free of choice for obvious geometrical reasons. For
example, in distance-based control for an infinitesimally rigid formation one can
always write (locally) all the inter-distances based only on the inter-distances of an
underlying infinitesimally and minimally rigid formation as it was shown in [59].
In position-based control the same reasoning applies to the inter-positions if there
exist loops in G. These geometrical findings are intimately related to the fact that
the null space of H(z) is avoided in a neighborhood of the desired shape in view of
Theorem 2.14.

Remark 5.2. Based on the works in [59] and [88], where in the former, the authors
study the local exponential convergence of distance-based infinitesimally rigid
formations while in the latter the authors study the same property for the bearing-
based formation control, we conjecture that the convergence rate in Theorem 5.1 is
also exponential. This is due to the similarity in the control law, i.e., gradient-based
law, and the Lyapunov function admits a similar time-derivative as in (5.8). The
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difficulty in our case is to analyze H(z) in (5.9) which is only positive semi-definite
in the neighborhood of ZR.

We would like to highlight, as it is pointed out in [88], that the control law in
Theorem 5.1 requires both the directional and range sensing information because
of the computation of Dz̃. This range sensing requirement can be dropped for all
the agents excepting for the agents 1 and 2, e.g., by using the control law

u = −BDP⊥ẑ
ef − sBDzes. (5.10)

The stability of the closed loop system at the desired shape can be analyzed using
the same Lyapunov function as in (5.7). In this case, its time derivative has a
slightly different form and is given by

dV

dt
= −

[
eTf eTs

] [Dz̃ 0

0 Dz̃

]
H(z)

[
ef
es

]
. (5.11)

In the particular cases where all the zk in ZR have almost the same norm, e.g., the
shape is composed of almost equilateral triangles or tetrahedra, the Lyapunov func-
tion in the neighborhood of the prescribed shape is decreasing and the trajectory
converges to the largest invariance set in

{
(ef , es) : [ eTf eTs ]

[
Dz̃ 0
0 Dz̃

]
H(z)[ efes ] = 0

}
which is given by the desired shape.

For covering more general shapes we refer to the analysis presented in [88],
where the authors show the non-positiveness of a similar expression as the one
given in (5.11). As it has been discussed in Section 4.3, in addition to not requiring
range sensors for the agents, we can also relax the requirement of having two
agents controlling the scale since only one agent can do such a task. Indeed if
we choose only the agent 1 for controlling the magnitude of z1, then in order to
show the stability of the system, instead of using the term 1

2 ||es1 ||
2 in the Lyapunov

function (5.7), we can employ an energy function for direct strongly connected
graphs as it has been suggested in [21]. Note that in such a situation the graph
defining the sensing topology for controlling the scale of the formation is not
undirected anymore, therefore we lose the property about the centroid as stated in
Lemma 2.17.

5.1.1 Distributed scaling-control without a common frame of
coordinates

In the previous section, the robots have lost the nice property of working only with
their local frame of coordinates due to the use of ẐR. This is due to the fact that in
the definition of ẐR we employ the bearing function ẑ as in Definition 2.10, where
all the ẑk refer to the same frame of coordinates.
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In Chapter 2 we have already introduced that the shapes in a infinitesimally
and minimally congruent rigid family share the same scalar products ẑTl ẑn where
l and n are the two edges of G sharing the same node. Using this fact, it is still
possible to have a distributed control law, at least in R2, where a team of agents
form an orientation-free shape Zs with s determined by only controlling one edge.
We first show that a control law for achieving ZS in 2D can be implemented in a
distributed fashion. This is a particular result derived from [67], where the authors
study the distributed feasibility of general gradient descent controllers.

Proposition 5.3. Consider a team of n agents in R2 where the sensing topology of
the infinitesimally and minimally rigid shape has been constructed employing only the
Henneberg insertions. Then for forming a prescribed shape ZS , the gradient-descent
control derived from the potential function

V (ẑ) =

|V|−2∑
l=1

Vl, (5.12)

where Vl is the potential function that corresponds to the formation of the l’th triangle,
namely

Vl = lV 1 + lV 2 + lV 3

=
1

2
(ẑTi ẑj − ẑ∗

T

i ẑ∗j )2 +
1

2
(ẑTj ẑk − ẑ∗

T

j ẑ∗k)2 +
1

2
(ẑTk ẑi − ẑ∗

T

k ẑ∗i )2, (5.13)

with i, j, k be the three edges of the l’th triangle, can be implemented in a dis-
tributed fashion if the three agents forming the l’th triangle know about the desired
ẑ∗
T

i ẑ∗j , ẑ
∗T
j ẑ∗k and ẑ∗

T

k ẑ∗i .1

Proof. From Lemma 2.12 we have that an infinitesimally and minimally rigid shape
in ZS is also infinitesimally bearing rigid in R2. Therefore the collection of desired
scalar products ẑ∗

T

m ẑ∗n where the edges m and n share a common node in the graph
G define a family of infinitesimally and minimally congruent rigid formations.
Without loss of generality, let us assume that the agents 1, 2 and 3 form the triangle
1 with E1 = (1, 2), E2 = (2, 3) and E3 = (3, 1) in ZS , then compute the following

1It is clear that a generic triangle can be determined by only two of these desired scalar products,
but for the sake of completeness we consider the three of them.
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Figure 5.1: In Proposition 5.3 the needed information (relative positions) by the
agent marked in red is also marked with the same color. Note that the needed
vectors belong to the triangles where the agent is a node from. No communication
is needed at all since we can exploit the identity zi + zj + zk = 0 as defined in
Proposition 5.3.

gradient of V1 for agent 1

∂ 1V 1

∂p1
=

(
ẑ2

||z1||
− ẑ1ẑ

T
1 ẑ2

)
e1 (5.14)

∂ 1V 2

∂p1
=

(
ẑ3

||z2||
+ ẑ2ẑ

T
2 ẑ3

)
e2 (5.15)

∂ 1V 3

∂p1
=

(
z3 − z1

||z3||||z1||
− ẑ1||z3|| − ẑ3||z1||

||z3||2||z1||2

)
e3, (5.16)

where e1 = ẑT1 ẑ2 − ẑ∗
T

1 ẑ∗2 , e2 = ẑT2 ẑ3 − ẑ∗
T

2 ẑ∗3 and e3 = ẑT3 ẑ1 − ẑ∗
T

3 ẑ∗1 . From the
sensing topology we know that agent 1 is able to measure z1 and z3 and the other
inter-position can be easily obtained from z2 = −z1 − z3. Therefore the gradient of
V1 can be implemented in a distributed way by agent 1 if it knows e1, e2 and e3. We
can easily derive the same result for agents 2 and 3. Since we construct the sensing
topology by only Henneberg insertions, then by induction it is also clear that the
agents involved in the l’th triangle will only need the information related to it.

We provide an example of the needed information by an arbitrary agent in a 2D
formation constructed by Hennerberg insertions in Figure 5.1.

The local stability of ZS by employing the gradient-descent control presented in
Proposition 5.3 is guaranteed by Theorem 2.14. Note that the potential function in
Proposition 5.3 can be extended to having agents 1 and 2 controlling s in ZS and
furthermore, as in Theorem 4.9 they can also control the orientation of ZS with
respect to Og. Note that the major advantage of using the gradient-based control
based on the potential function as in Proposition 5.3 over the one in Theorem
5.1 is that the agents can work in their own coordinate system since the desired
dot products are scalars and not vectorial quantities. On the other hand, the
agents require additional information and the gradients in (5.14)-(5.16) are more
cumbersome with respect to the control law in Theorem 5.1.
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5.1.2 Experimental results

In this experiment we want to validate the proposed controller in Theorem 5.1. We
consider four robots with the following sensing topology

B =


1 0 −1 1 0

−1 1 0 0 0

0 −1 1 0 1

0 0 0 −1 −1

 , (5.17)

which have a scale-free regular square as a prescribed shape ẐR. More precisely
the shape is given by the following set of unit vectors

ẑ∗1 =
[
1 0

]T
, ẑ∗2 =

[
0 1

]T
,

ẑ∗4 =
[
0 1

]T
, ẑ∗5 =

[
1 0

]T
,

ẑ∗3 =
[
− cos π4 − sin π

4

]T
.

Note that the square will be oriented along the X axis of Og. We implement the
control law (5.3) with B as in (5.17) and sB as

sB =


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 .
In this case, robot 1 will be the scaling leader defining the scale of ẐR by just adjust-
ing the desired inter-distance in the edge E1. For avoiding a possible saturation in
the actuators of the robots, we apply the gain cf = 1× 104 to the first term of (5.3)
responsible for the control of the scale-free square, and the gain cs = 5× 10−2 to
the second term of (5.3) responsible for the control of the inter-distance of the edge
E1. Robot 1 will choose among two different scales Zs1 and Zs2 of the scale-free
regular square ẐR with s1 = 1 and s2 = 2. We choose for the scale s1 = 1 the
inter-distance for d1 = 225 pixels. In particular the scaling leader will follow the
sequence of stages

1) t = 0, s = s1

2) t = 90, s = s2

3) t = 180, s = s1.

In order to test and speed up the convergence rate once the formation is close to
the desired shape, we boost the control gains by making them twice larger once
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es < 30 pixels in the stage 1) and es < 70 in the stage 3). We do not modify the
original gains during the stage 2).

We proceed to discuss the experimental results from Figure 5.2. The robot
marked in red is the scaling leader, deciding the size of the square by controlling
the inter-distance marked in red. The rest of edges are marked in green color. In
order to speed up the convergence to the desired shape, once the robots are close
to their target the control gain is doubled. The video capture (a) shows the initial
conditions for the robots, and the video captures (b), (c) and (d) show the robots
at their prescribed shape before the leader changes to a new scaled one. The plot
in (e) shows how all the errors converge to zero where the inter-distance error has
been rescaled by a factor of 600 pixels. The plot in (f) shows how the speed of the
robots eventually stop once the desired scaled shape is formed

5.2 Distributed changing-motion-control of rigid for-
mations

Suppose that a team of agents wants to double the scale of the current desired
shape that they are forming. If the agents are following a distance-based control
law, a team leader could broadcast a signal containing s = 2 and therefore the
agents will achieve the new scaled shape in ZS , or if they are following the control
law (5.3) then the scaling leaders will adjust the length of z1 to the new scale.
However this basic strategy contains two major drawbacks. The first one is related
to the fact that it cannot be guaranteed that the shape of the formation belongs
to ZS during the transient. The second one is due to the fact that we are dealing
with exponential convergence, i.e., we are demanding high control inputs if we are
far away from our target. This is not a suitable scenario since actual agents might
have saturations in their actuators.

Throughout this section we will show that the strategy of assigning distributed
motion parameters for steering the formation presented in Chapter 4 can also be
employed for precisely scaling over time a desired infinitesimally and minimally
rigid formation, i.e., the formation will converge to a desired Zs for a given s(t),
while at the same time the formation is traveling with a desired bv∗pc and bω. This
approach is easier and powerful in several aspects compared to the previous work
presented in [89]. Firstly, we do not need estimators for traveling at a constant
speed. Secondly, the desired formation can be rotated with respect to Og by only
one robot. Thirdly the robots can work using only local coordinates since we are
using the distance-based control strategy.

Let us recall that similar to the control law (4.2) but by setting l = 1 in the
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(a) Time t = 0 secs. (b) Time t = 86 secs.

(c) Time t = 179 secs. (d) Time t = 298 secs.
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(e) Evolution of the errors ef and es.
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Figure 5.2: A team of robots forming a regular square where the scale is defined by
the robots linked by the red edge.

potential function (2.10), we have that

u = −cBDẑe+A(µ, µ̃)ẑ. (5.18)

Suppose that the formation is at the prescribed shape, i.e., e = 0. In this case
if A(µ, µ̃)ẑ defines translations, rotations and a scaling of an infinitesimally and
minimally congruent rigid shape in ZS , then the shape of the formation will be
invariant under such an additional control term. Note that from (5.18) when e = 0
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the control law for robot i becomes

bui =

|E|∑
k=1

aik
bẑ∗k, (5.19)

where bẑ∗ ∈ ZS . Recall that the elements aik of A are related to µ and µ̃ as in
(4.3).

Similar to the spaces U andW for µ and µ̃ for computing bṗ∗c and bω in Section
4.1, we derive [

µv
µ̃v

]
∈ Û ∆

= PKer{T (bẑ∗)}⊥
{

Ker{BTT (bẑ∗)}
}

(5.20)[
µω
µ̃ω

]
∈ Ŵ ∆

= PÛ⊥
{

Ker{DT
bẑ∗B

T
T (bẑ∗)}

}
, (5.21)

that are the spaces to be used by µ and µ̃ in (5.19) for a desired given motion and
we remind that PX stands for the projection over the space X .

We introduce now the new changing parameters µs and µ̃s to be added to the
already introduced µv, µ̃v, µω and µ̃ω, which will be responsible for the scaling of
the formation. In order to compute µs, µ̃s we need to look at the bearing rigidity
matrix DT

P⊥ẑ
B
T

, whose transpose was employed previously in the control law (5.3).
It has been shown in [88] that the meaning of the kernel of the bearing rigidity
matrix stands for translations and scalings of the desired shape. Therefore in a
similar way as before the following condition[

µs
µ̃s

]
∈ S ∆

= PÛ⊥
{

Ker{DT
P⊥bẑ∗

B
T
T (bẑ∗)}

}
, (5.22)

will give us the space of changing parameters responsible for the scaling of the
formation. An example of the three spaces Û , Ŵ and S for infinitesimally and
minimally congruent regular squares is given in Figure 5.3.

5.2.1 Design of the controller for precise morphing and motion
of the formation

Here by precise scaling we mean the control of the robots such that the inter-
distances follow a time varying d(t) but with the shape in ZS . More precisely,
we set ek(t) = ||zk(t)|| − dk(t) for k ∈ {1, . . . , |E|} with Z ∈ ZS in a family of
infinitesimally and minimally congruent rigid shapes. For simplicity we set the
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Ob
Og

z∗1

z∗2z∗3

z∗4

z∗5

Figure 5.3: The velocity of the robots at the desired shape is the linear combination
of the unit vectors from their associated relative positions (black dashed lines)
given by (5.19). In order to keep the shape in the family of infinitesimally and
minimally congruent regular squares, the velocity of the robots can be split in
three terms. The common velocity bṗ∗c of the centroid is marked in blue and it
is given by the motion parameters µv and µ̃v. The rotational velocity about the
centroid defining bω is marked in red and it is given by the motion parameters
µω and µ̃ω. The velocity responsible for scaling the formation has been marked
in green and it is given by the morphing parameters µs and µ̃s. Note that these
velocities are constant with respect to Ob since by definition the unit vectors bẑ∗k for
all k ∈ {1, . . . , |E|} are constant in ZS , therefore the design of the morphing-motion
parameters has to be done employing bẑ instead of ẑ.

following relation in the edge Ek

dk(t) = s(t)d∗k + d∗k, (5.23)

where s(t) ∈ R is a time-variant scaling signal which is assumed to be at least C1

and d∗k is defined for a particular Z. We remark here that the form used in (5.23)
is for convenience purposes of design. One can of course choose dk(t) = s(t)d∗k.
Without loss of generality, we assume that s(0) = 0. Obviously, for well-posedness,
we also impose that s(t) is defined properly such that dk(t) > 0 for all t and
k ∈ {1, . . . , |E|}.

It is clear that the desired linear speed ||bv∗pc || and the desired angular speed
||bω∗|| are related to the norm of µv, µ̃v and µω, µ̃ω respectively. It can also be easily
checked that the speed d

dtdk(t) is also related to the norms of µs and µ̃s.
We derive the dynamics of z and e from (5.18) considering that we have time

varying desired inter-distances

ż = −cBTBDẑe+B
T
A(µ, µ̃)ẑ (5.24)

ė = −cDT
ẑ B

T
BDẑe+DT

ẑ B
T
A(µ, µ̃)ẑ − ḋ, (5.25)

where we have rewritten e as the stacked vector of ek(t) = ||zk(t)|| − dk(t) for
k ∈ {1, . . . , |E|}, and d is the stacked vector of dk(t) also for k ∈ {1, . . . , |E|}.

In order to compensate ḋ in (5.25) we impose the following condition for
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keeping invariant e for e = 0, i.e., the formation shape is always in Zs

ḋ =
ds

dt
d∗ = DT

bẑ∗B
T [
S1Dbẑ∗ S2Dbẑ∗

] [µ
µ̃

]
, (5.26)

so that the subtraction of the last two terms in (5.25) is zero when e = 0. Note
that the solution to (5.26) for µ and µ̃ includes the spaces Û and Ŵ. Therefore
the changing parameters that we are looking for scaling the desired shape with a
desired scaling rate are [

µs
µ̃s ] ∈ S such that (5.26) holds.

We will present two different general scaling cases, the first one concerning a
constant growing/shrinking of the formation and the second one with a periodic
change in the scale of the shape.

For the constant growing case, i.e., s(t) = st, where s ∈ R+ is a common
constant shared by all the agents, we have that ḋ = ds

dt d
∗ = sd∗ in (5.26) and

therefore the solution of (5.26) gives constant µs and µ̃s. However, as it has been
shown in Chapter 4, we have that the solution for µs and µ̃s is not unique since the
robot i might have more than two (three) ẑk available in 2D (3D) for constructing
a two (three) dimensional velocity vector in (5.19).

Remark 5.4. We can always guarantee a straightforward solution to (5.26) im-
posing the additional condition µ̃ = 0 since it was shown in Propositions 3.5 and
3.7 that the squared matrix DT

bẑ∗B
T
S1Dbẑ∗ can be made invertible for whatever

infinitesimally and minimally rigid formation if we choose the incidence matrix
B in a particular way. However, this last result does not guarantee that the com-
puted morphing parameters are only in S, for example, it can be checked that in a
triangular formation they will also involve a rotation.

Considering the periodic scaling case we have that s(t) = s sin(ωt), which
satisfies ḋ = ds

dt d
∗ = sω cos(ωt)d∗. Therefore the changing parameters µs and

µ̃s for the periodic case are the same ones previously calculated for the constant
growing case but multiplied by the periodic signal ω cos(ωt), which is obviously
independent of the actual shape.

5.2.2 Stability analysis

Before presenting the main result of this section, we need to show first that the
error system in (5.25) only depends on e. Note that the system is not completely
autonomous since e depends on the non-constant signal d(t). Indeed, the second
term at the right hand side of (5.25) depends on the dot products of the form ẑTi ẑj
for i, j ∈ {1, . . . , |E|} and as in (2.19), we have that

ẑTi ẑj = ĝij(e), i, j ∈ {1, . . . , |E|}, (5.27)
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where ĝij is a local smooth function around the shape z ∈ Zs. Note that when
z ∈ Zs, the subtraction of the second and third terms in the right hand side of
(5.25) vanish because of (5.26), therefore we can write the following local function

f(e) = DT
ẑ B

T
A(µ, µ̃)ẑ − ḋ, (5.28)

where in this case
z ∈ Zs =⇒ f(0) = 0, (5.29)

and recall from (2.20) that the matrix in the first term of the right hand side of
(5.25) can be rewritten as

Q(e) = DT
ẑ B

T
BDẑ, (5.30)

where Q(0) is positive definite if ZS defines a family of infinitesimally and mini-
mally congruent rigid shapes.

Theorem 5.5. Consider the distributed parameters [
µv
µ̃v ], [

µω
µ̃ω ] and [

µs
µ̃s ] belonging to

the spaces (??), (??) and (5.22) respectively. Then, there exist constants ρ, c∗ > 0

such that the origin of the system (5.25), corresponding to z ∈ Zs with time-varying
s(t) as in (5.23), is locally exponentially stable for all c > c∗ in the compact set
Q ∆

= {e : ||e||2 6 ρ}. In particular, the formation will converge exponentially fast to
the time-varying shape defined by Zs with the speed ds(t)

dt satisfying (5.26) and the
agents’ velocities

bṗi(t)→ bṗ∗i , t→∞, i ∈ {1, . . . , |V|}, (5.31)

where the bṗ∗i ’s are given by the desired bṗ∗c ,
bω and ds(t)

dt , that are determined by [
µv
µ̃v ],

[
µω
µ̃ω ] and [

µs
µ̃s ].

Proof. Consider the following candidate Lyapunov function

V =
1

2
||e||2, (5.32)

whose time derivative satisfies

dV

dt
= eT ė = −ceTQ(e)e+ eT f(e), (5.33)

with f(e) and Q(e) as in (5.29) and (5.30) respectively. Since in a neighborhood of
Zs the formation is still infinitesimally and minimally rigid, Q(e) is positive definite
in the compact set Q for a sufficiently small ρ. Furthermore, f(e) is locally Lipschitz
in the compact set Q and f(0) = 0 with z ∈ Zs, therefore there exists a constant
q ∈ R+ such that

dV

dt
6 (−cλmin + q)||e||2, (5.34)
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where λmin is the minimum eigenvalue of Q(e) in Q. Thus if one chooses c > c∗ >
q
λmin

, then the exponential stability of the origin of (5.25) follows by invoking the
Theorem 4.10 from [47] for non-autonomous systems. Therefore we have that the
formation shape converges exponentially to Zs.

Now we substitute e(t) → 0 and ẑ(t) → Zs as t goes to infinity into (5.18),
which gives us

ṗ(t)− Ā(µ, µ̃)ẑ(t)→ 0, t→∞. (5.35)

In other words, the velocity of the formation converges exponentially fast to the
desired velocity given as a superposition of bv∗pc and bω∗ with the scaling speed
ds(t)

dt satisfying (5.26).

The main advantage of the result of Theorem 5.5 is that we can still steer the
formation while at the same time changing the scale of the shape. In practice this
result can be applied in the following sense, by just assigning a leader that triggers
and broadcast a signal for starting/stopping the common scaling signal s(t). In fact,
if all the agents have preprogrammed two different scales to choose from, only the
starting/switching signal would be necessary since the signal s(t) would stop once
the new desired inter-distance is achieved. As it has been shown in Chapter 4, the
Theorem 5.5 is compatible with translating the formation with a desired heading
in Og and with the problem of tracking and enclosing a target.

We would like to highlight that for some particular cases we can employ the
results of Theorem 5.5 for controlling the changing of the formation shape but
without restricting it to be at ZS , using only the constants µ and µ̃. For example,
suppose that the desired motion of the shape is a pure translation, i.e., µω = µ̃ω = 0.
Consider the collection of all the rectangular shapes (with an inner diagonal). The
corners of whatever rectangle always form a right angle, i.e., all the infinitesimally
and minimally rigid rectangles share one underlying bearing equivalent shape. If
for the design of µ and µ̃ we only consider the bẑ∗k forming the corners, we can
use the result of Theorem 5.5 for changing the desired shape among different
rectangles. Note that in such a case, instead of a common s(t) we will use a sk(t)

for determining the scaling speed of the inter-distance associated to the edge k in
order to fit with the desired changing. We still have to satisfy (5.26) and in order to
keep the centroid of the formation stand-still by using µs and µ̃s, we should modify
slightly the condition (5.22) since it only holds for a particular family ZS . We
will see this particular example in one of the experiments in the following section.
Finally if we consider changing between generic infinitesimally and minimally rigid
shapes (sharing the same incidence matrix B), then in general µ and µ̃ will not be
constant and will depend on the different sk(t) for all {1, . . . , k}.
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5.2.3 Periodic scaling and spinning of a rigid formation

In this experiment we validate the performance of Theorem 5.5. We have four
robots forming a scale-free regular square. The objective of this experiment is to
design the morphing-motion parameters µ and µ̃ in the control law (5.18) such
that the square spins around its centroid and at the same time we vary periodically
the scale of the square. We define the sensing topology of the agents by

B =


1 0 −1 0 −1

−1 1 0 0 0

0 −1 1 −1 0

0 0 0 1 1

 , (5.36)

and we define the regular square that we will periodically scale as

d∗ =
[
300 300 300

√
2 300 300

]T
pixels. (5.37)

In order to induce the spinning motion we design the following µω and µ̃ω satisfying
(5.21)

µω =
[
−w −w 0 w −w

]T
, µ̃ω =

[
−w −w 0 w −w

]T
, (5.38)

with w = 8. We want to vary periodically the size of the square following the
desired time-varying distances

di(t) = d∗i + 2hd∗i sin(ωst), i = {1, . . . , 5} (5.39)

where we can deduce that s(t) = 2h sin(ωst). In our experiment, we set h = 0.1

and ωs = 0.2 rads/sec. The signal s(t) will be encoded to each robot and we assume
that all them are synchronized. The desired µs and µ̃s satisfying (5.22) and (5.26)
are µs(t) = hωs cos(ωst)

[
1 1 0 1 1

]T
µ̃s(t) = hωs cos(ωst)

[
−1 −1 0 −1 −1

]T
.

(5.40)

Finally we choose c = 3.5×10−3 for (5.18), which is much smaller, after numerically
checking some arbitrary values in the compact set Q, than the conservative gain in
Theorem 5.5. The experimental results are shown in Figure 5.4.
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(a) Time t = 0 secs. (b) Time t = 50 secs.

(c) Time t = 62 secs. (d) Time t = 90 secs.
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(f) Evolution of the signal errors ei(t) re-
garding the inter-distances.

Figure 5.4: Experimental results of a team of four robots forming a regular square
whose scale follows a sinusoidal signal defined by (5.39). The robots follow the
control law (5.18) with the morphing-motion parameters µω, µ̃ω, µs and µ̃s defined
in (5.38) and (5.40). We mark for visual purposes the robot 1 and z1 in red.
The video capture (a) shows the robots at their initial conditions and after few
seconds they are following their prescribed di(t) inter-distances. We show in (c) a
disturbance in one of the robots in order to show the stability of the system. In the
plot (e) the inter-distances ||zi(t)|| from initial random conditions converge to the
desired sinusoidal signals. We can check in (f) the behaviour of the error signals,
which are stable after applying disturbances.
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5.2.4 Avoiding obstacles by a precise change of the shape while
keeping the formation heading

In this experiment we consider a team of four travelling robots that has to avoid
an obstacle on their way by controlling the morphing of the prescribed shape. The
four robots have the same sensing topology defined in (5.36) and their prescribed
formation is a regular square given by

d∗ =
[
175 175 175

√
2 175 175

]T
pixels. (5.41)

We implement the control law (5.18) such that the four robots are commanded to
follow a constant velocity parallel to bz1 once they are at the prescribed shape. The
motion parameters µv and µ̃v in order to follow such desired bv∗pc satisfying (5.20)
are given by

µv =
[
v 0 0 v 0

]T
, µ̃v =

[
v 0 0 v 0

]T
. (5.42)

with v = 12, i.e., the formation will follow a fixed speed of 12 pixels/s. In order to
control the heading of the formation in Og, in a similar way as in Theorem 4.9, we
assign the robot 1 to control the orientation of ẑ1 in Og with the following extra
added term in its control signal

u1orientation = −(ẑ1 − ẑ∗1). (5.43)

We want to align the formation along the X axis of Og, so we set ẑ∗1 =
[
1 0

]T
.

Once the robot 1 detects in front of the formation an obstacle, it broadcasts a
switching signal to the other robots for changing the desired shape from a regular
square to a rectangle given by

d∗ =
[
175 471

√
1752 + 4712 471 175

]T
pixels. (5.44)

A step input from the square (5.41) to the rectangle (5.44) to all the robots is not a
desirable situation. For the following reasons the equilibrium of the control law
(5.18) is exponentially stable, a step input from the square to the rectangle will
cause the robots to reach their saturation values. Even with a small gain in the
controller for avoiding the saturation, we do not control the transient between
the two shapes, therefore we cannot keep the desired travelling velocity bṗ∗c . In
order to avoid such undesired scenario, we encode in the corresponding robots the
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following scaling signals

s2(t) = s5(t) =
2h

175
t

s3(t) =
d

dt

√
2(1752) + 350ht+ h2t2

175
√

2

s1(t) = s4(t) = 0,

with h = 12. These signals will be triggered once the leader detects the obstacle and
they will be stopped by the robots themselves once they achieve the desired final
rectangle. Note that we are only changing the inter-distances of the vertical sides
and the diagonal of the shape. We assume that the signals si(t) are all triggered at
the same time as in the previous experiment. Since the change maintains constant
the right angles at the corners between the two desired shapes, in order to use
constants µv and µ̃v we constrain them to use the corresponding invariant unit
vectors in ẑ during the change, i.e., ẑ1 and ẑ4. For the same reason the µs and
µ̃s will not use the vector ẑ3 since the time derivative of s3(t) is not constant, i.e.,
we are going to employ only the unit vectors ẑ2(t) and ẑ5(t) defining the vertical
sides. The changing parameters satisfying (5.26) for the morphing between the
two desired shapes are

µs =
[
0 h 0 0 h

]T
, µ̃s =

[
0 −h 0 0 −h

]T
. (5.45)

Obviously, the parameters µs and µ̃s are only applied for all the signals si(t) and
it is easy to check that they will maintain the centroid of the formation invariant
during the change of the shape, so they will not disturb in any way the controlled
translation given by µv and µ̃v. Once the obstacle is left behind, the leader will
trigger again another signal in order to change the shape from the rectangle to the
original regular square. In this case the scaling signals will obviously be

s2(t) = s5(t) = − 2h

175
t

s3(t) = − d

dt

√
2(1752) + 350ht+ h2t2

175
√

2

s1(t) = s4(t) = 0,

and the robots will stop them once the desired distances reach (5.41). Finally, the
chosen gain for (5.18) is c = 1× 10−1, which is again smaller than the conservative
one given in Theorem 5.5. The experimental results are shown in Figure 5.5.
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(a) Time t = 0 secs. (b) Time t = 23 secs.

(c) Time t = 55 secs. (d) Time t = 80 secs.

0 20 40 60 80 100
Time [s]

0

100

200

300

400

500

De
sir

ed
 v

s A
ct

ua
l i

nt
er

-d
ist

an
ce

s [
pi

xe
ls]

||z1||
||z2||
||z3||

||z4||
||z5||
ddesired
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(f) Evolution of horizontal velocities ṗx(t).

Figure 5.5: Experimental results of a team of four robots forming a regular square,
travelling with a constant speed in the X axis direction of Og and facing an obstacle
on their way. The robot 1, marked in red, is controlling the orientation of z1, also
marked in red, using (5.43). In order to avoid the obstacle, the robots will morph
their shape from a regular square defined in (5.41) to a rectangle defined in (5.44).
The morphing is done in a precise way such that we control the morphing rate of
shape at the same time that we control the desired horizontal velocity employing the
morphing-motion parameters µv, µ̃v, µs and µ̃s in (5.42) and (5.45) in the applied
control law (5.18). Once the obstacle is left behind, the robots come back to the
original squared shape. In the plots (e) and (f) we can check how at the beginning
the robots achieve the desired regular square with the desired travelling speed
within ten seconds. Once the scaling signals are triggered, the desired distances are
ramp signals. The inter-distances follow precisely these signals (morphing of the
shape) with a small transitory time due to the velocity tracking controller in the
robot, since it receives a step signal in the desired velocity once the scaling signals
are triggered.
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5.3 Concluding remarks

In this chapter we have dealt with the problem of scaling infinitesimally and
minimally rigid formations. We have presented and analyzed algorithms for both,
controlling the scale of a shape by means of controlling only one edge in the
formation and a distributed strategy for controlling the scaling rate of a shape in a
infinitesimally and minimally congruent rigid family. We have also shown that the
former is completely compatible with the formation-motion control introduced in
Chapter 4.



Chapter 6

Formation motion-control of second-order
agents

That’s the second biggest dynamics I’ve ever seen!
The secret of Monkey Island.

W
E extend the aforementioned results in Chapters 2, 3, 4 and 5 from the
first-order agent case to the second-order one. As mentioned before, the
second-order dynamics are more convenient since many robotic systems are

described by Euler-Lagrange equations which correspond to second-order agents.
In this case, the resulting formation control law can directly be used as the desired
acceleration in a guidance system feeding the tracking controller of a mechanical
system as the one proposed for quadrotors in [56] or for marine vessels in [31].
The robustness stability analysis of the closed-loop system for second-order agents,
as discussed in this chapter, cannot follow the same steps as those used in [44, 59].
In particular, the error system that is considered in these papers for stability analysis
is an autonomous system, which is not the case for the second-order agent as shown
later in Section 6.2. Hence, we need to establish further additional steps in deriving
the robustness results. In Section 6.3 we show how the distributed estimator design
in Chapter 3 can be also employed in order to eliminate the undesired behaviors
due to the existence of these mismatches. Finally in Section 6.4 we show how the
distributed motion parameters introduced in Chapter 4 can be also employed to
steer a formation of second-order agents. The experiments regarding second-order
agents will be further discussed in Chapter 7, where we will employ the findings
for formations of second-order agents to a team of quadcopters.

6.1 Gradient control in formations of second-order
agents

We first show the exponential convergence of the formation to the desired shape
and zero speed. This finding will give us a useful starting point for analyzing later
the behaviour of the formation of second-order agents in the presence of distance
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mismatches.

We start by recalling from Chapter 2 that the agents will be modelled by a
second-order system given by {

ṗ = v

v̇ = u
, (6.1)

and as it has been done for first-order agents, in order to control the shape of the
formation for each edge Ek = (i, j) in the infinitesimally and infinitesimally and
minimally rigid framework we assign the following potential function Vk

Vk(||zk||) =
1

4
(||zk||2 − d2

k)2,

with the gradient along pi or pj given by

∇piVk = −∇pjVk = zk(||zk||2 − d2
k).

In order to control the agents’ velocities, for each agent i in the infinitesimally and
infinitesimally and minimally rigid framework we assign the following potential
function Si

Si(vi) =
1

2
||vi||2,

with the gradient along vi be given by

∇viSi = vi.

One can check that for the potential function

φ(p, v) =

|V|∑
i=1

Si +

|E|∑
k=1

Vk, (6.2)

the closed-loop system (6.1) with the control input

u = −∇vφ−∇pφ, (6.3)

becomes the following dissipative Hamiltonian system [82]{
ṗ = ∇vφ
v̇ = −∇vφ−∇pφ.

(6.4)

Considering (6.2) as the storage energy function of the Hamiltonian system (6.4),
one can show the local asymptotic convergence of the formation to the shape given
by D and all the agents’ velocities to zero [9, 60].
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Let the following one-parameter family of dynamical systems Hλ be given by[
ṗ

v̇

]
= −

[
λIm|V| −(1− λ)Im|V|

(1− λ)Im|V| Im|V|

] [
∇pφ
∇vφ

]
, (6.5)

where λ ∈ [0, 1], which defines all convex combinations of the Hamiltonian sys-
tem (6.4) and a gradient system. The family Hλ has two important properties
summarized in the following lemma.

Lemma 6.1. [60]

• For all λ ∈ [0, 1], the equilibrium set of Hλ is given by the set of the critical
points of the potential function φ, i.e., Ep,v =

{[
pT vT

]T
: ∇φ = 0

}
.

• For any equilibrium
[
pT vT

]T ∈ Ep,v and for all λ ∈ [0, 1], the numbers of
the stable, neutral, and unstable eigenvalues of the Jacobian of Hλ are the same
and independent of λ.

This result has been exploited in [72] in order to show the local exponential
convergence of z(t) and v(t) to D and 0|V|×1 respectively. In the following brief
exposition we revisit such exponential stability via a combination of Lyapunov
argument and Lemma 6.1, which will play an important role once the formation is
under the presence of distance mismatches.

As we have done in Chapter 2, we define the distance error corresponding to
the edge Ek by

ek = ||zk||2 − d2
k,

whose time derivative is given by ėk = 2zTk żk. Consider the following autonomous
system derived from (6.5) with λ = 0.5

ṗ = −1

2
BDze+

1

2
v

ż = −1

2
B
T
BDze+

1

2
B
T
v (6.6)

ė = −DT
z B

T
BDze+DT

z B
T
v (6.7)

v̇ = −1

2
BDze− v. (6.8)

Define the speed of the agent i by

si = ||vi||,

whose time derivative is given by ṡi =
vTi v̇i
si

. Their compact form involving all the
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agents can be written as

ṡ = Ds̃D
T
v v̇ = −1

2
Ds̃D

T
v BDze−Ds̃D

T
v v, (6.9)

where s ∈ R|V| and s̃ ∈ R|V| are the stacked vectors of si’s and 1
si

’s for all
i ∈ {1, . . . , |V|} respectively. Now we are ready to show the local exponential
convergence to the origin of the speed of the agents and the error distances in the
edges.

Lemma 6.2. The origins e = 0 and s = 0 of the error and speed systems derived from
(6.4) are locally exponentially stable if the given desired shape D is infinitesimally and
minimally rigid.

Proof. Consider eλ and sλ as the stacked vectors of the error signals ek and speeds
sk derived from (6.5) for any λ ∈ [0, 1], which includes the system (6.4) for λ = 1.
From the definition of ek, we know that all the eλ share the same stability properties
by invoking Lemma 6.1, so do sλ as well.

Consider the following candidate Lyapunov function

V =
1

2
||e||2 + ||s||2, (6.10)

for the autonomous system (6.6)-(6.9) derived from (6.5) with λ = 0.5. Then the
time derivative of (6.10) is given by

dV

dt
= eT ė+ 2sT ṡ

= −eTDT
z B

T
BDze+ eTDT

z B
T
v − sTDs̃D

T
v︸ ︷︷ ︸

vT

BDze

− 2 sTDs̃︸ ︷︷ ︸
11×|V|

DT
v v

6 −σmin||e||2 − 2||s||2, (6.11)

where σmin is the minimum eigenvalue of DT
z B

T
BDz = R(z)R(z)T in the compact

set Q ∆
= {e : ||e||2 6 ρ} for some ρ > 0. Note that for an infinitesimally and

minimally rigid framework R(z) is full rank excepting for non-generic situations.
Therefore if the initial conditions for the error signal and the speed satisfy ||e(0)||2 +

||s(0)||2 6 ρ, then σmin > 0 for a sufficiently small ρ since D is infinitesimally and
minimally rigid. Hence we have shown the local exponential convergence of e(t)
and s(t) to the origin.

Remark 6.3. It is worth noting that the region of attraction determined by ρ in the
proof of Lemma 6.2 for λ = 0.5 might be different from the one for λ = 1, since
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Lemma 6.1 only refers to the Jacobian of (6.5), i.e., the linearization of the system
about the equilibrium.

It can be concluded from the exponential convergence to zero of the speeds of
the agents s(t) that the formation will eventually stop. This implies that p(t) will
converge exponentially to a finite point in Rm as z(t) converges exponentially to D.

6.2 Robustness issues caused by mismatches

We have already seen that when two neighboring agents disagree on the desired
squared distance d2

k in between, namely

d2 tail
k = d2 head

k − µk, (6.12)

where µk ∈ R is modelled as a constant mismatch, it can be checked that, in a
similar way as in (3.2), this disagreement leads to rewriting the control signal (6.3)
as

u = −v −BDze− S1Dzµ. (6.13)

Note that (3.2) can also be written as

u = −v −BDze−A1(µ)z, (6.14)

where the elements of A1 are

aik
∆
=

{
µk if i = E tail

k

0 otherwise.
(6.15)

Inspired by [59], we will show how µ can be seen as a parametric disturbance
in an autonomous system whose origin is exponentially stable. Consider the error
signal e and the speed of the agents s derived from system (6.1) with the control
input (6.3)

ė = 2DT
z B

T
v (6.16)

ṡ = −s−Ds̃D
T
v BDze, (6.17)

and define

αki = zTk vi, k ∈ {1, . . . , |E|}, i ∈ {1, . . . , |V|} (6.18)

βij = vTi vj , i, j ∈ {1, . . . , |V|}, i 6= j. (6.19)

We stack all the αki’s and βij ’s in the column vectors α ∈ R|E||V| and β ∈ R
|V|(|V|+1)

2
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respectively and define γ ∆
=
[
eT sT αT βT

]T
. We know that for any infinitesi-

mally and minimally rigid framework, there exists a neighborhood Uz about this
framework such that for all zk, zl ∈ Uz with k, l ∈ {1, . . . , |E|}, we can write zTk zl
by a smooth function gkl(e)[59]. Then using (6.16)-(6.19) we get

γ̇ = f(γ), (6.20)

which is an autonomous system whose origin is locally exponentially stable using
the results from Lemmas 6.1 and 6.2. Obviously, in such a case, the following
Jacobian evaluated at γ = 0

J =
∂f(γ)

∂γ

∣∣∣∣
γ=0

,

has all its eigenvalues in the left half complex plane. From the system (6.1) with
control law (6.13) we can extend (6.20) but with a parametric disturbance µ

because of the third term in (3.2), namely

γ̇ = f(γ, µ), (6.21)

where f(γ,0|E|×1) is the same as in (6.20) derived from the gradient controller.

Therefore, for a sufficiently small ||µ||, the Jacobian ∂f(γ,µ)
∂γ

∣∣∣
γ=0

is still a stable

matrix since the eigenvalues of a matrix are continuous functions of its entries.
Although system (6.21) is still stable under the presence of a small disturbance µ,
the equilibrium point is not the origin in general anymore but γ(t)→ γ̂(µ) as t goes
to infinity, where γ̂(µ)

∆
= γµ is a smooth function of µ with zero value if µ = 0|E|×1

[47]. This implies that in general each component of e, s, α and β converges to a
non-zero constant with the following two immediate consequences: the formation
shape will be distorted, i.e., e 6= 0; and the agents will not remain stationary, i.e.,
s 6= 0. The meaning of having non-zero components in general in α and β is that
the velocities of the agents have a fixed relation with the steady-state shape. If
the disturbance ||µ|| is sufficiently small, then ||γ̂(µ)|| < ρ for some small ρ ∈ R+

implying that the norm of the steady-state error signal ||ê(µ)|| < ρ, and if further ρ
is sufficiently small, then the stationary distorted shape is also infinitesimally and
minimally rigid. In addition since the speeds of the agents converge to a constant
(in general non-zero constant), only translations and/or rotations of the stationary
distorted shape can happen.

Theorem 6.4. Consider system (6.1) with control input (6.13) where the desired
shape for the formation is infinitesimally and minimally rigid and µ is considered as
a small parametric perturbation. Then, the formation will converge to a distorted
infinitesimally and minimally rigid shape, i.e., e 6= 0, and the agents will converge
to a steady-state collective motion that can be captured by constants angular and
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translational velocities bω and bṗ∗c , respectively, for the distorted infinitesimally and
minimally rigid formation.

Proof. Since system (6.21), derived from (6.1) and (6.13), is self-contained and
its origin is locally exponentially stable with µ = 0|E|×1, then a small parametric
perturbation µ in its Jacobian will not change the exponential stability property of
(6.21) but its equilibrium point. Therefore e(t) → eµ as t goes to infinity, where
eµ ∈ R|E| is non-zero. In addition if the norm of µ is sufficiently small, then the
stationary distorted shape will still be infinitesimally and minimally rigid. We also
have that the elements of s(t)→ sµ as t goes to infinity with sµ ∈ R|V| having all
its elements non-negative and in general non-zero, implying that the agents will
not stop in the steady-state. Since the steady-state shape of the formation locally
converges to an infinitesimally and minimally rigid one, from the error dynamics
(6.16) we have that

DT
z(t)B

T
v(t) = R (z(t)) v(t)→ 0m|V|×1, t→∞,

therefore v(t) → vµ(t) as t goes to infinity, where the non-constant vµ(t) ∈ R|V|

belongs to the null space of R (zµ(t)), zµ(t) ∈ Zµ and the set Zµ is defined as
in (2.3) but corresponding to the inter-distances of the distorted infinitesimally
and minimally rigid shape with e = eµ. Note that obviously, the evolution of
z(t) is a consequence of the evolution of agents’ velocities in v(t). The null space
of R (zµ) corresponds to the infinitesimal motions δpi for all i while keeping the
inter-distances in the distorted formation constant, namely

R(zµ)δp = R(zµ)vµ δt = 0m|V|×1,

or in order words
vi(t)→ vµi(t), t→∞, (6.22)

where the velocities vµi(t)’s for all the agents are the result of rotating and trans-
lating the steady-state distorted shape defined by Zµ. This steady-state collective
motion of the distorted formation can be represented by the rotational and transla-
tional velocities bω(t) ∈ Rm and bṗ∗c(t) ∈ Rm (possibly not constant) at the centroid
of the distorted rigid shape. Furthermore, by definition we have that ||vµi(t)|| = sµi .
Since the speed sµi for agent i is constant but not its velocity vµi(t), the acceleration
aµi(t) =

dvµi (t)

dt is perpendicular to vµi(t). The expression of aµi(t) can be derived
from (6.13) and is given by

aµi(t) = −vµi(t)−
|E|∑
k=1

bikzµk(t)eµk −
|E|∑
k=1

aikzµk(t), (6.23)
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where bik are the elements of the incidence matrix, and aik are the elements
of the matrix A1 as defined in (6.15). From (6.23) it is clear that the norm
||aµi(t)|| = Γi(γµ) is constant. In addition since aµi(t) is a continuous function, i.e.,
the acceleration vector cannot switch its direction, and it is perpendicular to vµi(t),
the only possibility for the distorted formation is to follow a motion described by
constant velocities bω and bṗ∗c at its centroid.

Remark 6.5. In particular, in 2D the distorted formation will follow a closed orbit
if Γi(γµ) 6= 0 for all i, or a constant drift if Γi(γµ) = 0 for all i. This is due to the
fact that in 2D, bω and bṗ∗c are always perpendicular or equivalently aµi(t) and
vµi(t) lie in the same plane. The resultant motion in 3D is the composition of a
drift plus a closed orbit, since bω and bṗ∗c are constant and they do not need to be
perpendicular to each other as it can be noted in Figure 4.1.

Remark 6.6. Although the disturbance µ acts on the acceleration of second-order
the agents, it turns out that the resultant collective motion has the same behavior
as for having the disturbance µ acting in the velocity for first-order agents as it has
been shown in Chapter 2.

6.3 Estimators-based gradient control

In this section we are going to apply the same strategy of employing local estimators
as in Chapter 3 in order to get rid of the undesired effects introduced by the
mismatches.

Let us consider the following distributed control law with estimator{
˙̂µ = û

u = −v −BDze− S1Dz(µ− µ̂)
,

where µ̂ ∈ R|E| is the estimator state and û is the estimator input to be designed.
Substituting the above control law to (6.1) gives us the following autonomous
system

ṗ = v (6.24)

v̇ = −v −BDze− S1Dz(µ− µ̂) (6.25)

ż = B
T
ṗ = B

T
v (6.26)

ė = 2DT
z ż = 2DT

z B
T
v (6.27)

˙̂µ = û. (6.28)
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Note that the estimating agents are again encoded in S1, in other words, for the
edge Ek the estimating agent is E tail

k .

Theorem 6.7. For the autonomous system (6.24)-(6.28) that forms a rigid formation,
consider a given desired formation shape and the following distributed control action
for the estimator µ̂

û = −DT
z S

T

1 v, (6.29)

where the estimating agents are chosen arbitrarily. Then the equilibrium points
(p∗, v∗, z∗, e∗, µ̂∗) of (6.24)-(6.28) are asymptotically stable. Furthermore, v∗ = 0

and the steady-state deformation of the shape satisfies ||e∗||2 6 2||µ − µ̂(0)||2 +

2||v(0)||2 + ||e(0)||2. For the particular cases of triangles and tetrahedrons, the
equilibrium e∗ = 0, i.e., µ̂∗ = µ.

Proof. First we start proving that (6.29) is a distributed control law. This is clear
since the dynamics of µ̂k (the k’th element of µ̂) are given by

˙̂µk = zTk vE tail
k
, (6.30)

which implies that the estimating agent E tail
k for the edge Ek is only using the dot

product of the associated relative position zk and its own velocity. Note that using
the notation in (6.18), the above estimator input is given by αkE tail

k
. Consider the

following Lyapunov function candidate

V =
1

2
||ξ||2 +

1

2
||v||2 +

1

4
||e||2,

with ξ = µ− µ̂, which satisfies

dV

dt
= ξT ξ̇ + vT v̇ +

1

2
eT ė

= ξTDT
z S

T

1 v − ||v||2 − vTBDze− vTS1Dzξ

+ eTDT
z B

T
v

= −||v||2. (6.31)

From this equality we can conclude that ξ, v and e are bounded. Moreover, from
the definition of e, z is also bounded. Thus all the states of the autonomous system
(6.25)-(6.28) are bounded, so we can conclude the convergence of v(t) to zero in
view of (6.31). Furthermore, since the right-hand side of (6.25) is uniformly con-
tinuous, v̇(t) converges also to zero by Barbalat’s lemma. By invoking the LaSalle’s
invariance principle, from (6.25) the states e, ξ and z converge asymptotically to
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the largest invariance set given by

T ∆
= {e, z, ξ : S1Dzξ +BDze = 0m|V|×1}, (6.32)

in the compact set

Q ∆
= {ξ, v, e : ||ξ||2 + ||v||2 +

1

2
||e||2 6 ρ}, (6.33)

with 0 < ρ 6 2V (0). Since v = 0 for all points in this invariant set, it follows from
(6.26)-(6.28) that z, e and µ̂ are constant in this invariant set. In other words,
z(t) → z∗, e(t) → e∗ and ξ(t) → ξ∗ as t goes to infinity, where z∗, e∗ and µ̂∗ are
fixed points satisfying (6.32). Note that by comparing (6.24) and (6.26) we can
also conclude that p(t)→ p∗ as t goes to infinity. In general we have that e∗ and ξ∗

are not zero vectors, therefore z∗ /∈ Z. It is also clear that ||e∗||2 6 2ρ, therefore for
a sufficiently small ρ, the resultant (distorted) formation will also be infinitesimally
and minimally rigid.

Showing that e∗, ξ∗ = 0m|E|×1 for triangles and tetrahedrons follows immedi-
ately from the second part of the proof of Theorem 3.8 since the analysis about the
same equilibrium T .

Remark 6.8. Following the results presented in Section 3.3.1 it is also possible to
define a topology for the estimating agents such that we can focus the distortion of
the shape to selected edges in Theorem 3.8.

If we adopt the same approach as in Section 3.2, we can guarantee that the
mismatches can be fully compensated such that the final shape is the desired shape.
We recall the following update law for each estimator as used in Section 3.2 in order
to remove effectively both, the distortion and the steady-state collective motion:

ûk = κ(ek + µk − µ̂k), k ∈ {1, . . . , |E|}, (6.34)

where κ ∈ R+ is an estimator gain that needs to be determined. For the first-order
agents, it has been shown in [35] that there is a lower bound for choosing κ.

Consider now the following change of coordinates hk = ek + µk − µ̂k and
let h ∈ R|E| be the stacked vector of hk ’s for all k ∈ {1, . . . , |E|}. By defining
S2

∆
= B − S1 it can be checked that the following autonomous system derived from
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(6.25)-(6.28)

v̇ = −v − S2Dze− S1Dzh (6.35)

ė = 2DzB
T
v (6.36)

ḣ = 2DzB
T
v − κh (6.37)

ż = B
T
v, (6.38)

has an equilibrium at e∗, v∗ and h∗ equal to zero with z∗ ∈ Z. The linearization of
the autonomous system (6.35)-(6.38) about such an equilibrium point leads to


v̇

ė

ḣ

ż

 =


−I |V| −S2Dz∗ −S1Dz∗ 0

2Dz∗B
T

0 0 0

2Dz∗B
T

0 −κI|E| 0

B
T

0 0 0



v

e

h

z

 . (6.39)

From the Jacobian in (6.39) we know that the stability of the system only depends
on v, e and h and not on z. We consider the following assumption that will play
the same role as the one considered in the statement of Theorem 3.1 for first-order
dynamics.

Assumption 6.9. The matrix
[
−I|V| −S2Dz∗

2Dz∗B
T

0

]
is Hurwitz.

Theorem 6.10. If Assumption 6.9 holds then there exists a positive constant κ∗

such that the equilibrium of h = 0, v = 0 and e = 0 (with z∗ ∈ Z) of the au-
tonomous system (6.25)-(6.28) with the estimator input ûk be given by (6.34) is
locally exponentially stable for all κ > κ∗ > 0.

Proof. Taking the Jacobian for v, e and h in (6.39) along with Assumption 6.9 as
starting point, the main argument of the proof is identical to the one provided in
Theorem 3.1 and it is omitted here for the sake of brevity.

Remark 6.11. Since v(t) converges exponentially to zero, it follows immediately
that p(t) converges exponentially to a fixed point p∗.

The Assumption 6.9 is also related to the stability of (second-order) formation
control systems whose graph G defining the sensing topology is directed. In
fact, it is straightforward to check that the matrix in the Assumption 6.9 is the
Jacobian matrix for v and e in a distance-based formation control system (without
mismatches) with only directed edges in G. This relation shows how to choose the
estimating agents in order to fulfill Assumption 6.9.
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6.4 Distributed formation-motion control

In this section we are going to extend the findings in Chapter 4 about motion
control of rigid formations from the single-integrator agent to the double integrator
case. In particular we consider how to design the desired constant velocities bω∗

and bv∗c as in Figure 4.1 for an infinitesimally and minimally rigid formation, i.e.,
for e = 0. Following a similar strategy as in Section 4.1, we solve the motion control
of rigid formation problem for double-integrators agents by employing mismatches
as design parameters. More precisely, we assign again two motion parameters µk
and µ̃k to agents i and j in the edge Ek = (i, j) resulting in the following control
law

u = −c1v − c2BDze+A(µ, µ̃)z, (6.40)

where c1, c2 ∈ R+ are gains, µ ∈ R|E| and µ̃ ∈ R|E| are the stacked vectors for all
µk and µ̃k and A is defined by

aik
∆
=


µk if i = E tail

k

µ̃k if i = Ehead
k

0 otherwise.

(6.41)

The design of bω∗ and bv∗c is done via choosing appropriately the motion parame-
ters µ and µ̃, in the sense that we allow a desired steady-state collective motion
but remove any distortion of the steady-state shape. The design of the motion
parameters in A must take into account not only the desired acceleration but also
the damping component in (6.40), which is different from the single-integrator
case considered in Section 4.1.

Let the velocity error
ev = v −Av(µ, µ̃)z, (6.42)

where Av(µ, µ̃) is designed employing the motion parameters described in Section
4.1 directly related to the desired steady-state collective velocity. When the velocity
error ev is zero and we are at the desired shape z∗(t) ∈ Z with the desired velocities
in v∗(t), then from (6.42) we have that

v∗(t) = Avz
∗(t) (6.43)

v̇∗(t) = Av ż
∗(t) = AvB

T
v∗(t) = AvB

T
Avz

∗(t)

= Aaz
∗(t). (6.44)

Note that the desired parameters in Aa(µ, µ̃) correspond to the desired acceleration
of the agents at the desired shape Z. With this knowledge at hand we can design
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the needed motion parameters for A in the control law in (6.40) as

A(µ, µ̃) = c1Av(µ, µ̃) +Aa(µ, µ̃), (6.45)

since for ev = 0m|V|×1 and e = 0|E|×1 the control law (6.40) becomes

u = Aa(µ, µ̃)z∗(t). (6.46)

Note that A(µ, µ̃) can be computed directly from the motion parameters for the
desired velocity as in the first-order case. We show in the next theorem that the
desired collective-motion for the desired formation is stable for at least sufficiently
small speeds.

Theorem 6.12. There exist constants ρ, ρµ, ε, c1, c2 > 0 for system (6.1) with control
law (6.40) and A(µ, µ̃) as in (6.45) and with a given desired infinitesimally and
minimally rigid shape, such that if [

µ
µ̃ ] ∈M ∆

= {µ, µ̃ : ||[ µµ̃ ]|| 6 ρµ}, then the origin of
the error dynamical system ev = 0 and e = 0, with e = 0 corresponding to z∗(t) ∈ Z,
are exponentially stable in the compact set Q ∆

= {e, ev : εc1+c2
4 ||e||2 + 1

2 ||ev||
2 6 ρ}.

In particular, the steady-state shape is the same as the desired one and the steady-state
collective motion of the formation corresponds to v∗(t) = Avz

∗(t).

Proof. First we rewrite the control law (6.40) employing (6.42) and (6.45) as

u = −c1ev − c2BDze+Aaz. (6.47)

Consider the following Lyapunov function

V =
εc1 + c2

4
||e||2 +

1

2
||ev||2 + εeTv BDze, (6.48)

where V is positive definite in a neighborhood about e = 0 and ev = 0 for a some
sufficiently small ε ∈ R+ in the compact set Q with e = 0 corresponding to z ∈ Z.
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The time derivative of (6.48) is given by

dV

dt
=

1

2
(εc1 + c2)eT ė+ eTv ėv + εeTv BDz ė+ εeTDT

z B
T
ėv

+ εeTv BD(B
T
v)
e

= (εc1 + c2)eTDT
z B

T
(ev +Avz)− c1||ev||2 − c2eTv BDze

+ eTv AvB
T
Avz − eTv AvB

T
Avz − eTv AvB

T
ev

+ 2εeTv BDzD
T
z B

T
v − c1εeTDT

z B
T
ev − c2εeTDT

z B
T
BDze

+ εeTDT
z B

T
AvB

T
Avz − εeTDT

z B
T
AvB

T
Avz

− εeTDT
z B

T
AvB

T
ev + εeTv BD(B

T
v)
e

= (εc1 + c2)eT DT
z B

T
Avz︸ ︷︷ ︸

f1(e,µ,µ̃)

−c1||ev||2 − eTv AvB
T︸ ︷︷ ︸

f2(µ,µ̃)

ev

+ 2εeTv BDzD
T
z B

T︸ ︷︷ ︸
f3(z)

ev + 2εeTv BDzD
T
z B

T
Avz︸ ︷︷ ︸

f4(µ,µ̃,z,e)

− c2εeT DT
z B

T
BDz︸ ︷︷ ︸

f5(e)

e− εeT DT
z B

T
AvB

T︸ ︷︷ ︸
f6(µ,µ̃,z)

ev

+ εeTv BD(B
T
v)︸ ︷︷ ︸

f7(v)

e. (6.49)

Since fi, i ∈ {1, . . . , 7} are locally Lipschitz functions in the compact sets Q and
M and using Young’s inequality to every cross-term in (6.49), we can bound V̇ as
follows

dV

dt
6

(
c2

(
M1(µ, µ̃)− ελ5

)
+ εc1M1(µ, µ̃) +

3

2

)
||e||2

+

(
− c1 +M2(µ, µ̃)

+ ε2
(2λ3

ε
+M4(µ, µ̃, z) +M6(µ, µ̃, z) +M7

))
||ev||2, (6.50)

where M1 and M4 are related to the Lipschitz constant of f1 and f4 in the compact
set Q given µ and µ̃, M2 is the induced 2-norm of f2 given µ and µ̃, M6 is the
squared induced 2-norm of f4 in the compact set Q given µ and µ̃, and finally M7

is the maximum squared induced 2-norm for f7, λ3 is the maximum eigenvalue of
f3 and λ5 is the minimum eigenvalue of f5 in the compact set Q. First we note that
for a sufficiently small ρ, then λ5 > 0 by the same argument of having a desired
infinitesimally and minimally rigid formation as in Lemma 6.2. The time derivative
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(6.50) can be made negative as a result of the following steps:

• Choose a sufficiently small ρµ in M such that M1(µ, µ̃) − ελ5 < 0, i.e.,
downscale if necessary µ and µ̃ by the same factor.

• Compute M2 for the given µ, µ̃.

• Compute M4 and M6 for the given µ, µ̃ in the compact set Q.

• Choose c1 such that the second bracket in (6.50) is negative.

• Given c1 choose c2 > c∗2 (employed for the calculation of ε) such that the first
bracket in (6.50) is negative.

This guarantees the local exponential convergence of e(t) and ev(t) to their origins,
hence z(t)→ z∗(t) ∈ Z, v(t)→ Avz

∗(t) and the stacked acceleration of the agents
a(t)→ Aaz

∗(t) as t goes to infinity.

Remark 6.13. The limitation given by ρµ is exclusively related to the desired speed
of the agents (as it has been shown in Chapter 4) and it does not restrict in any
other way the desired collective motion for the formation. Therefore, once the
motion parameters are given, for asserting the exponential stability of the system,
one only has to downscale them if necessary.

Remark 6.14. For µ, µ̃ = 0|E| we have that M1,M2,M3,M4,M6 = 0. Then em-
ploying (6.48) and applying differently the Young’s inequalities in (6.49) one can
prove that for c1, c2 = 1 the dissipative Hamiltonian system (6.4) is exponentially
stable for a sufficiently small ε.

Remark 6.15. For desired constant drifts in triangular and tetrahedron formations,
it can be checked from Chapter 4 that M1 = 0. Therefore there is not restriction in
the speed for such particular cases. In particular, one can use the Lyapunov function
(6.48) with ε = 0. It turns out that the formation with the proposed motion-shape
controller is asymptotically stable for any c2 > 0 for c1 > ||Av(µ, µ̃)B

T ||2.

Remark 6.16. For a desired rotation about the centroid of an equilateral trian-
gle, it can be checked from Chapter 4 that in addition to M1 = 0 we have that
eTv f2(µ, µ̃)ev = 0 since f2 is skew symmetric. Therefore by using (6.48) with ε = 0

one can prove the asymptotic stability of the origin of ev and e for any c1, c2 > 0.

The result in Theorem 6.12 allows one to design the desired velocity for the
given formation with respect to Ob as in Figure 4.1. This result extends the
applications proposed in Chapter 4, e.g., for steering a infinitesimally and minimally
rigid formation with a constant heading in Og and for the tracking and enclosing
of a target for second-order agents.
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6.5 Concluding remarks

In this chapter we have analyzed the consequences of having a distance-based
controller for rigid formations in the presence of mismatches for second-order
agents, namely, a stationary distorted shape and an undesired collective motion
of the formation. It turns out that, both first-order and second-order agents share
precisely the same behaviour for the undesired collective motion. We have extended
the estimator based solution proposed in Chapter 3 to remove the effects of the
mismatches to second-order agents. We further extended the results from Chapters
4 and 5 using distributed motion parameters in order to control both the motion
and the shape of the rigid formation at the same time to the second-order agents
case.



Chapter 7

Formation control of a team of quadcopters

Measure with micrometer, mark with chalk, cut with axe and do not stop
kicking it until it fits.

Indiana Jones: Wait!
Klaus Kerner: What now, Jones?
Indiana Jones: What about Plato’s tenfold error?
Klaus Kerner: What about it?
Indiana Jones: Most of Plato’s numbers were way off target.
Klaus Kerner: Hm ...
Indiana Jones: Just a thought.
Klaus Kerner: He may be right. We should divide by ten! Try one bead.

The fate of Atlantis.

U
NMANNED vehicles, in particular the aerial ones also known as drones, are
vehicles without a human pilot aboard. The first recorded use of a flying
vehicle with some autonomous control occurred during the World War I in

1916, where the concept of a gyro-stabilized radio-control plane was successfully
demonstrated as a flying-bomb. The state of the art of the drones has drastically
changed since then, especially during the last decade due to the accessibility to
the general public to the systems that compose a drone. Nowadays open-source
projects such as Paparazzi [61] or Ardupilot [7] makes accessible to a person
without any piloting skills to have a single autonomous drone for multiple purposes
such as aerial photography, precision agriculture or area surveillance among others.
However, these applications are usually limited to a one single drone and not
to teams of drones, either there are not simple real-time solutions or they are
not easy scalable and fully distributed. In this chapter we are going to develop
easy implementable controllers to a quadcopter for applying the derived results in
Chapter 6 in order to have a fully distributed team of quadcopters. The theoretical
results of this chapter are validated in the faithful flight simulator X-Plane1[63].

1The weather in Groningen does not help too much for having a radio-control flying club around.
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Figure 7.1: Flying quadcopter BeBop from Parrot company.

7.1 The quadcopter

A quadcopter is a multirotor helicopter that is lifted and propelled by four rotors.
Quadcopters are classified as rotorcraft, as opposed to fixed-wing aircraft, because
their lift is generated by a set of rotors. We consider that the quadcopter has a two
pairs of identical fixed pitched propellers: two clockwise and two counter-clockwise.
By changing the speed of each rotor it is possible to specifically generate a desired
total thrust and therefore motion in 3D, and to create a desired total torque or
turning force along the ZQ axis. We will consider a typical quadcopter of one
kilogram of mass and a diameter of about one meter as the one in Figure 7.1.

The first step for controlling a vehicle is always to model it. Since we are
interested in controlling a formation of quadcopters with respect to the Earth we
need first to define the corresponding frames of coordinates and their relations.
Secondly we will set a good enough model for the considered quadcopter, by a good
model we mean that for a vehicle with the mentioned characteristics many of the
aerodynamics can be safely omitted for the demanded manoeuvrings2. Thirdly
we will develop a set of controllers for flying autonomously a quadcopter such
that they are compatbile with the findings of this thesis in order to have a flying
coordinated team.

7.1.1 Frames of coordinates

We have shown throughout this thesis that if the quadcopters have equipped
sensors such that they give the relative position of the vehicle with respect to their
neighbors, then there is no need of more information in order to form a formation
and designing a motion with respect to the shape Ob. However, this technology
is still not accessible, reliable or affordable for the general public but it can be
substituted by allowing communication among neighboring quadcopters if the
vehicles have access to a Global Position System (GPS). Furthermore, in order to

2Off the record: While the classical concept of an airplane is a wing with an attached motor, the
radio control plane is a motor with an optional attached wing.
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design motions of the formation with respect to the Earth, at least one leader will
need to know about a global reference.

We set the origin of the Earth-centered Earth-fixed frame OE at the center of
the planet, the ZE axis is aligned with the rotational axis of the planet and the XE

axis is pointing to the zero-longitude meridian. Therefore OE is rotating together
with the planet. We define the Navigation frame ON to the axes defining a tangent
plane on the Earth’s surface at the geodetic longitude l and latitude φg coordinates
with respect to OE . The axis XN and YN points to the geographic North and
East respectively. We define the Quad frame OQ with the axis ZQ pointing down.
The attitude or alignment of the OQ with respect to ON is given by the following
sequence of rotations:

1. Right-handed rotation about the ZN , positive yaw angle ψ.

2. Right-handed rotation about the YN , positive pitch angle θ.

3. Right-handed rotation about the XN , positive roll angle φ.

Therefore we can consider the following rotational matrix relating both navigation
and quadcopter frames

Q
NR =

 cθcψ cθsψ −sθ
−cφsφ+ sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcφ+ cφsθsψ cφcθ

 , (7.1)

where we have denoted by s and c the sine and the cosine functions respectively.

In this chapter we will consider a fixed ON close to the team quadcopters.
In fact since the Earth’s radius is about 6371 km, then for our purposes we can
consider that the Earth is flat about a kilometer around of ON . We consider that
each quadcopter is able to measure via a localization device, its altitude h with
respect to the Earth’s surface and the geodetic longitude l and latitude φg. The
transformation coordinates between the geodetic system and OE is straightforward
and given by

Ep =

 (N + h) cosφg cos l

(N + h) cosφg sin l(
N(1− e2) + h

)
sinφg

 , (7.2)

where we have used the following constants defined by the World Geodetic System
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Figure 7.2: The frame of coordinates ECEF whose origin is at the center of the
Earth and it rotates together with the planet. The Navigation coordinates, defined
by the axes forming a plane tangent to the Earth’s surface at the geodetic longitude
l and latitude φg, are in green color and its X and Y axes point to the geographic
North and East respectively. For simplicity the Earth has been represented as a
perfect sphere in this drawing. The alignment of the Body frame with respect to
the Navigation frame is given by the three attitude angles (in blue) φ, θ and ψ. The
quadcopter almost behave as a kinematic point in 3D, in order to induce a rotation
about the Z axis of the body, the propellers spin in different directions.
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(WSG)-84 model [3]

a
∆
= 6, 378, 137.0m

b
∆
= 6, 356, 752m

e =

√
a2 + b2

a

N =
a√

1− e2 sin2 φg

,

therefore the Cartesian coordinates of the quad with respect toON can be computed
as

NpQuad = E
NR(EpQuad − EpNAV), (7.3)

where the rotational matrix E
NR aligns the ON frame to the OE frame and is given

by

E
NR =

− sinφ∗g cos l∗ − sinφ∗g sin l∗ cosφ∗g
− sin l∗ cos l∗ 0

− cosφ∗g cos l∗ − cosφ∗g sin l∗ − sinφ∗g

 ,
where l∗ and φ∗g are the geodetic longitude and latitude respectively of the fixed
ON .

Note that in order to form a formation, the quadcopters by Lemma 4.1 do not
need the matrix E

NR or the position EpNAV. The only necessary information that
neighbors need to share is EpQuad in order to compute the corresponding relative
position. On the other hand, if we want to apply the result from Theorem 4.9, then
at least one quadcopter will need the information about ON as Og.

7.1.2 Physical model

In this section we proceed to obtain a physical model of the quadcopter. In particular
we will set a space-state model where the control inputs are the reference signals for
the angular speed of the four propellers and the states are the position NpQuad, the
velocity N ṗQuad, the attitude angles ψ, θ and φ and their corresponding velocities.

Let us start with the following kinematic relationφ̇θ̇
ψ̇

 =

1 tθsφ tθcφ

0 cφ −sφ
0 sφ/cθ cφ/cθ

PQ
R

 , (7.4)

where t is the tangent function and P,Q and R are the standard symbols for the
three angular velocities measured at the quadcopter frame OQ. In practice P,Q
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and R are measured by a gyroscope on board. We will further make the following
assumption

Assumption 7.1. The plane formed by the axes XQ and YQ is almost parallel to
the one formed by the axes XN and YN .

In other words, we assume that φ and θ are sufficiently small angles such thatφ̇θ̇
ψ̇

 ≈
PQ
R

 . (7.5)

We continue with writing the angular dynamics at the frame OQ. It is well known
that such dynamics correspond to the rigid body dynamics or Euler’s equations

Jω̇ = M − (ω × (Jω)) , (7.6)

where J is the inertia tensor of the quadcopter, ω =
[
P Q R

]T
and M =[

l m n
]T

is the applied momentum by the propellers. Based on the symmetry of
the quadcopter we can consider the following inertia tensor

JQ ≈

Jxx 0 0

0 Jyy 0

0 0 Jzz

 , (7.7)

where Jzz � Jxx = Jyy, and under Assumption 7.1 we can further write
Jxxφ̈ ≈ (Jyy − Jzz)θ̇ψ̇ + l

Jyy θ̈ ≈ (Jzz − Jxx)φ̇ψ̇ +m

Jzzψ̈ ≈ n.
(7.8)

Let us now write the translational dynamics of the quadcopter at the body frame
OQ 

Qp̈x = QṗyR− QṗzQ− g sin θ +
QXA+QXT

m

Qp̈y = QṗzP − QṗxR+ g sinφ cos θ +
QYA+QYT

m

Qp̈z = QṗxQ− QṗyP + g cosφ cos θ +
QZA+QZT

m ,

(7.9)

where m is the mass of the quadcopter, g is the acceleration due to gravity,
XA, YA, ZA are the aerodynamic forces present in the quadcopter and XT , YT , ZT
are the forces due to the propellers. In addition to Assumption 7.1 we also consider
the following
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Assumption 7.2. There is almost not wind around ON and the translational
velocity Qṗ is sufficiently small such that the aerodynamic forces are negligible.

Under Assumption 7.2 we have that XA, YA, ZA are zero. Since the only thrust
is given by the propellers oriented along ZQ we can then write that QXT and QYT
are zero and QZT = −T , i.e., the total thrust. In combination with Assumption 7.1
from (7.1) and (7.9) we have that

N p̈z ≈ g − T/m
φ ≈ m

T

(
N p̈x sinψ − N p̈y cosψ

)
θ ≈ m

T

(
N p̈x cosψ + N p̈y sinψ

)
.

(7.10)

The approximations in (7.10) show that the vertical and horizontal motions of the
quadcopter can be decoupled. Therefore, once the quadcopter is stabilized at a
desired altitude Np∗z with a thrust T ∗ overcoming the gravity g, in order to travel
with respect to ON with desired accelerations N p̈∗x and N p̈∗y we need to set the roll
and pitch to φ∗ and θ∗ respectively derived from (7.10), whose dynamics are given
by (7.8). In the next subsection we will show how to relate the force and moment
inputs T, l,m and n in (7.10) and (7.8) with the angular speed of the propellers,
which is the actual control inputs of our vehicle.

Remark 7.3. Once we have a team of quadcopters with the mission of accomplish-
ing a 2D formation at a prescribed altitude, the desired accelerations N p̈∗x and N p̈∗y
in (7.10) will be given by the results in Chapter 6, for example the control signal in
(6.40).

7.1.3 Motors and propellers models

The propellers of the quadcopter are attached to a spinning motor in order to
induce a thrust force. In aerodynamics the force originated from the propeller i
can be modeled by

Fi =
1

2
ρC V 2

i , (7.11)

where ρ is the air density, Vi is the speed of the propeller into the airflow and C
is an aerodynamic coefficient depending on many factors such as the Reynolds
number, angle of attack or pitch of the propeller, size, etc. For more details in this
matter we refer the reader to the excellent book [5]. Once a particular propeller
has been chosen for the quadcopter, in the steady-state conditions we can consider
all these factors constant (up to calibration) in (7.11), leading to

Fi = kF ω
2
i , (7.12)
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where ωi is the angular speed of the propeller i. While the induce moments l and
m are due mostly due to the force difference in the XQ and YQ axes respectively,
the induced moment n around the ZQ axis is due to yawing moment originated by
the spinning of the four propellers, similar to (7.11) we can consider that

ni = kM ω2
i , (7.13)

where kM is the corresponding yawing moment coefficient that is constant (up to
calibration) when the quadcopter is at a steady-state condition.

We will consider brushless motors for spinning the propellers. These motors
within their nominal state have a transitory time much faster than the dynamics
given in (7.8) and (7.10) for our considered quadcopter. Therefore, we will assume
that the setting point ω∗i for the motor i will be the actual ωi of the propeller, and
the total thrust T and moments l,m and n at the frame OQ can be calculated as

T

l

m

n

 =


−kF −kF −kF −kF

0 −dkF 0 dkF
dkF 0 −dkF 0

−kM kM −kM kM



ω2

1

ω2
2

ω2
3

ω2
4

 , (7.14)

where d is the distance from OQ to a propeller and for the moment n we have
consider the clockwise and counterclockwise rotations of the four propellers. As we
will see in the following section, the controllers of the quadcopter will demand to
generate a particular T, l,m and n signals. For such a task we will need the motors
to satisfy 

ω2
1

ω2
2

ω2
3

ω2
4

 =


−kF −kF −kF −kF

0 −dkF 0 dkF
dkF 0 −dkF 0

−kM kM −kM kM


−1 

T

l

m

n

 , (7.15)

where it can be checked that the requested inverse certainly exists.

7.2 Controllers

In this section we will present a series of controllers in order to control the attitude,
the altitude and the velocity N ṗ of the quadcopter. The first two controllers will
give us the tools for applying directly the formation-motion control algorithms from
Chapter 6 to the quadcopter. The velocity tracking controller has been developed
in order to still apply the results from Chapters 3, 4 and 5, since the output of the
algorithm for single-integrators can be employed as a desired velocity signal to be
tracked.
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7.2.1 Attitude controller

In order to control the attitude we define first the following error signals

eφ
∆
= φ− φ∗ (7.16)

eθ
∆
= θ − θ∗ (7.17)

eψ
∆
= ψ − ψ∗, (7.18)

where φ∗, θ∗ and ψ∗ are the desired attitude angles, for instance, generated by the
system (7.10). We propose then the following controllers for the system (7.8)

l = −kpφeφ − (Jyy − Jzz)θ̇ψ̇ − kdφ φ̇ (7.19)

m = −kpθeθ − (Jzz − Jxx)φ̇ψ̇ − kdθ θ̇ (7.20)

n = −kpψeψ − kdψ ψ̇, (7.21)

where k{pφ,pθ,pψ,dφ,dθ,dψ} ∈ R+ are control gains. We then provide the correspond-
ing stability result.

Theorem 7.4. The origin of the attitude error signals eφ, eθ and eψ from the closed-
loop system (7.8) with control laws (7.19)-(7.21) is globally asymptotically stable for
any k{pφ,pθ,pψ,dφ,dθ,dψ} > 0.

Proof. Consider the following Lyapunov function

V =
kpφ
2
e2
φ +

kpθ
2
e2
θ +

kpψ
2
e2
ψ +

Jxx
2
φ̇2 +

Jyy
2
θ̇2 +

Jzz
2
ψ̇2, (7.22)

whose time derivative satisfies by including (7.19)-(7.21)

dV

dt
= kpφeφφ̇+ kpθeθ θ̇ + kpψeψψ̇ + Jxxφ̇φ̈+ Jyy θ̇θ̈ + Jzzψ̇ψ̈

= kpφeφφ̇+ kpθeθ θ̇ + kpψeψψ̇

+
(

(Jyy − Jzz)θ̇ψ̇ + l
)
φ̇+

(
(Jzz − Jxx)φ̇ψ̇ +m

)
θ̇ + nψ̇

= −kdφ φ̇2 − kdθ θ̇2 − kdψ ψ̇2, (7.23)

which is clearly non-increasing in the compact set

Q ∆
=
{
eφ, eθ, eψ, φ̇, θ̇, ψ̇ :

kpφ
2
e2
φ+

kpθ
2
e2
θ+

kpψ
2
e2
ψ+

Jxx
2
φ̇2+

Jyy
2
θ̇2+

Jzz
2
ψ̇2 6 V (0)

}
,

(7.24)
and by invoking LaSalle’s invariance principle, we can conclude the asymptotic
stability of the signals eφ, eθ, eψ, φ̇, θ̇ and ψ̇ to the origin.
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Note that the Theorem 7.4 guarantees an upper bound given by (7.24) for the
attitude angles, and this uppder bound can be shaped by the gains kpφ,θ,ψ while
the rate of convergence can be shaped by the gains kdφ,θ,ψ . In other words, it helps
to keep Assumptions 7.1 and 7.2 satisfied.

7.2.2 Altitude controller

In order to control the altitude of the quadcopter, from (7.10) we have to deal
with the gravity g. For now we will consider that g is unknown and we will relax
Assumption 7.2 by including non-linear drag forces. Therefore we want to design a
control input u ∈ R for the following system derived from (7.9){

ż = vz

v̇z = −CDvz|vz|+ g + u,
(7.25)

where z is the altitude with respect to ON (recalling that negative means up),
CD(t) ∈ R+ is a positive state-dependent time-varying drag coefficient and the
control input is related to the quadcopter by u = T

m . Let us define the following
error signals

ez = z − z∗ (7.26)

eξg = ξg − g, (7.27)

where z∗ is the desired altitude and ξg ∈ R is the state of an estimator for compen-
sating the gravity with dynamics

ξ̇g = uξg . (7.28)

We propose the altitude controller with estimator

u = −ξg − kp ez − kd vz (7.29)

uξg = vz, (7.30)

where kp, kd ∈ R+ are positive gains, and we obtain the following closed-loop
system 

ėz = vz

v̇z = −CDvz|vz|+ g − ξg − kp ez − kd vz
ėξg = vz.

(7.31)

Theorem 7.5. The origin of the closed-loop system (7.31) is globally asymptotically
stable for any kp, kd > 0.
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Proof. Consider the following candidate Lyapunov function

V =
kp
2
e2
z +

1

2
v2
z +

1

2
e2
ξg , (7.32)

whose time derivative satisfies

dV

dt
= kp ez ż + vz v̇z + exig ξ̇g

= −Cfv2
z |vz|+ (kp ez + g − ξg − kp ez − kd vz)vz + eξgvz

= −Cfv2
z |vz| − kd v2

z , (7.33)

which is clearly non-increasing in the compact set

Q ∆
=
{
ez, vz, eξg : kp e

2
z + v2

z + e2
ξg 6 2V (0)

}
, (7.34)

and by invoking LaSalle’s invariance principle we can conclude that the origin of
the closed-loop system (7.31) is globally asymptotically stable.

We first note that kd is related to the rate of convergence and that kp is related
with the maximum possible values of the signals ez, vz and eξg . The estimator ξg
in Theorem 7.5 acts as an integral controller but with the advantage that its value
converges to the actual gravity. Nowadays the value of gravity can be obtained from
very accurate models [2] and therefore one can use a feedforward compensation in
(7.29). In such a case, one can employ the estimator ξg for calibrating kF in (7.12)
since u = T

m in (7.25) and the generation of T is in open-loop.

Remark 7.6. For steering the quadcopter to a 3D position with respect to ON , for
the X and Y coordinates we can still employ the same controller as in Theorem
7.5 but without needing an estimator since gravity only is present in the Z axis.

7.2.3 Velocity controller

Since we have already decoupled the horizontal and the vertical motion of the
quadcopter in (7.10), we will consider to control the North and East velocities in
N ṗ of the quadcopter and again we introduce drag forces, namely

v̇ = −CDv||v||+ uv, (7.35)

where v ∈ R2 is the stacked vector of the North and East velocities in ON , CD ∈ R+

is a positive constant drag coefficient and u ∈ R2 is the control input. Note that
this control signal uv will be employed for N p̈x and N p̈y in (7.10). Let us define
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the following error signals

ev = v − v∗ (7.36)

eξCD = ξCD − CD, (7.37)

where v∗ ∈ R2 is the desired velocity and ξCD ∈ R is the state of an estimator for
estimating the drag coefficient with dynamics

ξ̇CD = uξCD . (7.38)

Consider the control law with estimator

uv = ξCDv||v|| − kvev (7.39)

ξ̇CD = −||v||eTv v, (7.40)

that leads to the following closed-loop system{
ėv = −CDv||v||+ ξCDv||v|| − kvev
ėξCD = −||v||eTv v.

(7.41)

Theorem 7.7. The origin of the closed-loop system (7.41) is globally asymptotically
stable for any kv > 0.

Proof. Consider the following candidate Lyapunov function

V =
1

2
||ev||2 +

1

2
e2
ξCD

, (7.42)

whose time derivative satisfies

dV

dt
= eTv ėv + eξCD ėξCD

= eξCD ||v||e
T
v v − kv||ev||2 − eξCD ||v||e

T
v v

= −kv||ev||2, (7.43)

which is clearly non-increasing in the compact set

Q ∆
=
{
ev, eξCD : ||ev||2 + e2

ξCD
6 2V (0)

}
, (7.44)

and by invoking LaSalle’s invariance principle we can conclude that the origins of
ev and eξCD are globally asymptotically stable.
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Remark 7.8. Although the Theorem 7.7 provides global stability for the velocity,
we cannot forget that our whole system is based on the Assumption 7.2, i.e.,
sufficiently small linear speeds.

Remark 7.9. The controller in Theorem 7.7 can be extended to track a vertical
velocity by incorporating the gravity g to (7.35). In such a case several options are
available such as having only one estimator or two compensating drag and gravity
separately.

Figure 7.3 shows the Guidance Navigation and Control (GNC) scheme for one
quadrotor based on the presented results. In order to assert the stability of the
whole system in Figure 7.3, it is common to assume that the Quadrotor control
block in Figure 7.3 is faster than the Formation control block. Moreover, we also
assume that the estimation of the states in the Navigation block converge to the
true values even faster than the Quadrotor control. This estimation is done by the
Inertial Navigation System (INS) [27] and it is out of the scope of this thesis.

The approach of considering different time scales for the GNC system is not novel
at all and is widely employed in many experimental setups [41, 56]. Fortunately,
the analytical results in this thesis provide means for controlling the converge
rate (time scales) of the different blocks in Figure 7.3 by the tuning gains in the
Formation algorithms and in the Quadrotor controllers.

7.2.4 Experimental results

In this section we briefly validate the Theorems 7.4 and 7.5 for both controlling a
3D position of the quadcopter with respect to fixed point on the ground and for
calibrating kF in (7.11) by estimating correctly the gravity g.

We fix the origin of ON at latitude 47.255037 degrees, longitude 11.345481

degrees and 576.5 meters over the mean sea level3. We have set the weather
conditions to the equivalent of a calm sunny day, i.e., almost no wind, 20 Celsius
degrees, etc. The quadcopter have decoupled the altitude and the position control
respectively. For the altitude we use the controller (7.29)-(7.30) and for the
position the controller (7.29) but omitting the estimator ξg. The output from
these controllers (desired accelerations) feed the attitude controller (7.19)-(7.21).
For the attitude controller we have chosen gains kpφ = kpθ = 0.75, kpψ = 0.13,
kdφ = kdθ = 0.0075, kdψ = 0.0013. For the altitude controller we have chosen gains
kp = 1 and kd = 1 and for the XY controller the gains kp = 0.1 and kd = 1.

Figure 7.4a) shows the trajectory of the quadcopter starting from the origin of
ON to the desired spot Np∗ = (5,−2.5, 20) meters. The evolution of the position
can be checked in Figures 7.4b) and 7.4c). Note how the quantization of the raw
GPS signal is noticeable. The Figure 7.4e) shows how the estimation of the gravity

3This position corresponds to the Innsbruck’s airport in Austria
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Figure 7.3: Guidance, Navigation and Control system of the quadrotor. The
formation control block corresponds to the guidance system that generates the
desired inertial acceleration signals for the quadrotor. One can choose among the
first or second order algorithms from the Chapters 4, 5 and 6. Note that the second
order algorithms do not need the extra block for controlling the velocity of the
quadrotor. The quadrotor control block corresponds to the control of the altitude
and attitude of the vehicle. If one desires to do 3D formation control, then N p̈∗z
must be provided by the Formation control block and the altitude controller is
omitted. Finally, the Inertial Navigation System (INS) estimates the actual state of
the quadrotor which is necessary for the formation and quadrotor controls blocks.
The interpositions with respect to the neighbors of the quadrotor could be obtained
by communication from the neighbors’ INS or directly from on-board sensors as
shown in [57].

coincides with its actual value, indicating that the calibration of kF in (7.12) has
been well done.

We will show the validation of Theorem 7.7 in the following section.

7.3 Formation control results

In order to do not overextend this chapter we will consider only three representative
cases for a team of quadcopters. We will consider the team of four quadcopters
placed at the Innsbruck’s airport.

The first experiment will consider a team of four quadcopters with the mission of
forming a regular square shape. However, we will consider that one the quadcopters
has its range sensor biased with respect to the other three. As a result the final
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Figure 7.4: Experiment validating Theorems 7.4 and 7.5.
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formation will be distorted and a steady-state motion will occur as stated in
Theorem 6.4. We then apply the findings in Theorem 6.7 in order to estimate the
undesired bias and to eliminate the undesired effects in the steady-state of the
formation.

The second experiment, as in the Chapter 4, will consider the scenario of having
four quadcopters flying in a squared formation with a prescribed orientation. This
experiment will employ directly the results from the controller for second order
dynamics discussed in Chapter 6 for feeding the attitude controller (7.19)-(7.21).

In the third experiment we will consider the scenario of having a team of three
quadcopters intercepting and enclosing a free forth quadcopter flying with an
unknown constant velocity. In this case, we will employ the results for first order
dynamics from Chapter 4 for feeding the velocity tracking controller (7.39)-(7.40).

7.3.1 Square formation with biased range sensors

We first validate the results from Theorem 6.4. We consider a team of four quad-
copter having as a prescribed shape a regular square with side-lenght of 50 meters.
The weather conditions have been set with no wind. The sensing topology for the
team of quadcopters is given by the following incidence matrix

B =


1 0 −1 1 0

−1 1 0 0 0

0 −1 1 0 1

0 0 0 −1 −1

 , (7.45)

and we set the vector of desired inter-distances to

d =
[
50 50

√
2 50 50 50

]T
meters. (7.46)

We induce a bias of 0.5 meters in the range sensor of quadcopter 1 with respect to
the quadopter 2 in the edge E1. It is shown in Figure 7.5 that the quadcopters will
converge to a steady-state distorted square and all of them follow a closed orbit as
steady-state collective motion.

We now consider the following mismatches in the formation

µ =
[
−0.4 0.3 0.1 −0.6 0.7

]
. (7.47)

In order to compensate them we implement the estimator in Theorem 6.10, and
we set the controller gains to c1 = 0.02, c2 = 0.02 and κ = 0.001 and the initial
conditions µ̂ = 0. We show in Figure 7.6 the trajectories of the quads until they
eventually stop with the desired shape once they estimated the mismatches, i.e.,
µ̂ = µ. We also show how the quadcopter 3 tracks the desired acceleration in Figure
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Figure 7.5: Flying formation of four quadcopters. In blue one of the vehicles has a
biased sensor with respect to its neighbor. As a result, the formation will follow a
steady-state collective motion and the target shape will be distorted.

7.6d). The discrepancy is due to non-modeled effects in the controller such as
aerodynamic drag or centripetal forces. It is also obvious from the experiment that
the centroid of the quadcopters is not static. In order to avoid a messy transitory, it
would be advisable to start the estimators once the quadcopters are close to the
prescribed target instead of from the very beginning.

7.3.2 Flying in formation with controlled heading

The mission’s goal is to form a square shape with side-length of 50 meters at the
same time they travel to the West with a velocity of 6 meters per second. We
will consider wind from the North with an average speed of 1 meter per second.
The sensing/communication topology is given by the incidence matrix (7.45) and
the vector of desired inter-distances is set as in (7.46). We will consider that the
heading of the formation is done by controlling Nz1 by the quadcopter number 1,
so we have

Bor =


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (7.48)

and combining the results from Theorems 4.9 and 6.12 we employ the following
distributed control law, which will give the desired accelerations in ON , for the
quadcopters

u = c1(−R(z)T e−Boreo)− c2v + c2Aẑ, (7.49)

where we have set c1 = 0.01 and c2 = 0.2, and the motion-parameters are

µ =
[
−6 0 0 0 6

]T
, µ̃ =

[
−6 0 0 0 6

]T
. (7.50)
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Figure 7.6: Flying squared formation of quadcopters estimating their mismatches.
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Note that for the case of having only a desired translational velocity we have that
Aa(µ, µ̃) is zero since the desired steady-state for the acceleration is zero.

We have again decoupled the vertical and the horizontal motion with 25 meters
over the ground ON as the desired altitude. We start the mission by achieving the
desired altitude within the first 15 secs and then we activate the control law (7.49).
The trajectories of the four quadcopters is shown in Figure 7.7a). We can observe
in Figures 7.7b) and 7.7c) that the formation shape with the desired orientation
is precisely achieved. In Figure 7.7e) we can see how the desired accelerations in
ON given by (7.49) for the quadcopter number 2 are tracked by employing the
controller in Theorem 7.4. However two undesired effects occur. The first one,
due to the wind, highlights that if all the quadcopters suffer the same translational
disturbance, since the desired rigid shape is invariant to such disturbance we do
not have any mean for counter-reacting it. The effect is that all the agents are
travelling with a constant velocity of close to 1 meter per second to the South as we
can observe in Figure 7.7d). The second undesired effect is due to the simplified
model of the quadcopter and because the actual acceleration is achieved in open-
loop. Since we have not taken into account effects such as aerodynamic drag, an
stationary error occurs in the desired velocity. As it is shown in Figure 7.7d) we
achieve a steady-state West velocity of about 5.5 meters per seconds instead of the
desired 6 meters per second.

7.3.3 Tracking and enclosing a target

In this experiment we consider a team of three quadcopters initially placed at one
of the parking spots of the Innsbruck’s airport. The weather is a bit windy with
an average of about 2 meter per second from the South. At the same time a forth
quadcopter (the free target) is placed on the Airport’s runway and starts to travel
with a constant velocity of 1 meter per second to the West by employing the control
law in Theorem 7.7. The team of three quadcopters has the mission of intercepting,
tracking and orbiting the free target. We have again decoupled the vertical and the
horizontal motion with 25 meters over the ground ON as the desired altitude.

The desired 2D shape is the same as given in Figure 4.3 with a = 50 meters.
We encode the sensing/communication topology of the system with the following
matrix

Bd =


0 0 0 0 0

−1 1 0 −1 0

0 −1 1 0 −1

0 0 0 1 1

 .
We set the motion parameters to

µ =
[
0 0 0 −2aγ

√
2 2aγ

]T
µ̃ =

[
0 aγ 0 −aγ

√
2 0

]T
,
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Figure 7.7: Flying squared formation of quadcopters with controlled heading.
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where γ = 0.0698 rads/s sets the desired angular speed for the orbit motion around
the target by the pursuers as it was explained in Chapter 4.4.1. The pursuers
employ the following control law{

u = −cBdDẑe+A(µ, µ̃)z + v̂

˙̂v = −κBdDẑe,

where u is employed as the desired signal for the velocity controller in Theorem
7.7. At the beginning of the mission we set c = 0.002 and κ = 0.004 and once
the pursuers are close to the target, e.g., ||e|| < 100, we boost the gains to ten
times more in order to speed up the convergence. This is done in order to do not
reach high values for the commanded velocity to the quadcopters, i.e., to satisfy
Assumption 7.2.

We start the mission by achieving the desired altitude within the first 15 secs and
then the pursuers go to intercept the free target. The trajectories of the quadcopters
is shown in Figure 7.8a). The three pursuers achieve the desired shape with the
desired angular speed around the target and estimating the target’s velocity as it
is shown in the Figures 7.8b), 7.8c) and 7.8d). The periodic discrepancy in the
steady-state is due to the wind, which is blowing from a specific direction but
the pursuers are orbiting about the target, therefore their controllers are facing
a periodic disturbance. In Figure 7.8d) we can also check how the free target
maintains the desired constant velocity by employing the control law (7.39)-(7.40).
Finally we show how the velocity tracking controller of the pursuers is able to
follow the desired signals in 7.8e).

7.4 Concluding remarks

In this Chapter we have developed a collection of simple acceleration, velocity and
position tracking controllers for quadcopters. We have shown the compatibility of
the estimator gradient-based and guidance controllers for second-order formations
presented in Chapter 6 with the developed tracking controllers in a faithful flight
simulator.
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Figure 7.8: Three quadcopters intercept, track and orbit around a free target.



Chapter 8

Conclusions

Jones: You know, a lot of my discoveries seem like tall tales, even to me. At
least there’s some evidence now.

The fate of Atlantis.

W
E summarize in a list the main contributions of this thesis and we finally
emphasize possible topics for carrying forward the presented work.

8.1 Contributions

This thesis has studied different problems in the field of distributed formation
control. Hereby, we give the account of contributions and conclusions in each
chapter.

• In Chapter 3 we have addressed the problem of having inconsistent measure-
ments or mismatches in the prescribed inter-distances of neighboring agents
in the gradient-based distance-based formation control setting. Such incon-
sistencies induce undesired effects on the formation, namely an unknown
distortion in the steady-state shape and an undesired collective motion. As-
suming that such inconsistencies are modelled by an unknown constant bias
and a superposition of finite sinusoids with known frequency but unknown
amplitude and phase, we provide a distributed algorithm, based on the in-
ternal model principle, that estimate such inconsistencies. Therefore we
provide an online calibration method for the agents and we can get rid off
such undesired effects. The estimators are distributed in the sense that they
are executed locally in a set of agents that are called estimating agents. This
estimator-based algorithm is based on the ground of two sufficient condi-
tions, a gain in the estimator has to satisfy a lower bound and the estimating
agents have to be chosen in a particular and systematic way. The addition
of the estimator still preserves the exponential convergence of the original
gradient-based formation controllers and does not need extra sensing. If the
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deformation of the shape is not a big issue, we have provided an alternative
distributed estimator-based algorithm that does not need a condition on any
gain or how the estimating agents are chosen. However, with this alternative
algorithm we have shown that the deformation of the steady-state shape
depends on the topology of the estimating agents and therefore it can be
controlled. Moreover, there is not distortion at all for the particular cases of
triangular and tetrahedra formations. Finally, actual experiments with mobile
robots illustrate the effectiveness of the presented algorithms.

• In Chapter 4 we have studied the problem of achieving simultaneously a
desired shape with a desired motion in a formation. By exploiting the effect of
having a steady-state collective motion under the presence of mismatches, we
add a set of motion parameters to the prescribed distances of the autonomous
agents but asserting the control of the prescribed shape of the formation.
We analyze how to compute in a systematic way these distributed motion
parameters in order to design a desired motion which is composed of the
following superposition: a constant translational velocity and a constant
rotational motion about the centroid of the formation. The desired velocity is
designed with respect to a frame of coordinates fixed to the desired shape,
i.e., is independent of a global frame of coordinates. One can design different
trajectories with respect to a global frame of coordinates just combining
different speeds for the translational and the rotational motion. These speeds
are just regulated by rescaling the motion parameters by a constant. We have
further shown the exponential stability of the system under these motion
parameters. In the particular case of designing just a translational motion, it
is possible for only one agent of the formation to control the orientation of the
shape with respect to a global frame of coordinates, therefore a single leader
can steer the whole formation while travelling with a controlled constant
speed, and furthermore, preserving the order of the agents with respect to
the direction of motion. These results enhance the popular leader-follower
approach, where the followers need estimators in order to know the velocity
of the leader. The results presented in this chapter are obviously free of such
complexity. Another interesting application comes from taking advantage
of the rotational motion. Indeed we can address the problem of enclosing
and tracking a target travelling with an unknown velocity. We can assign
distributed motion parameters to a team of pursuers in order to have the
center of rotation at the target, whereas we can use the leader-follower
approach in order to make the rest of the agents to estimate and compensate
the unknown velocity of the target. We have finally shown actual experiments
with mobile robots illustrating the findings of this chapter.

• In Chapter 5 we have studied the control of the scale of a rigid formation. We
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first extend the recent findings in [88] about bearing rigidity theory, where
a free-scaled shape is achieved by controlling the desired unit vectors in
a similar way as it is done in the position-based approach. The extension
consists in presenting an algorithm that allows the formation to achieve a
distance-rigid shape by controlling the relative unit vectors among neighbors
and at the same time by controlling only one edge a pair of agents decides the
scale of the shape. We then have extended the usage of the distributed motion
parameters from Chapter 4. Based again on the bearing rigidity theory, the
distributed parameters can be employed not only for a controlled translation
and/or spinning of the desired shape of the formation, but to control the
scaling rate of the shape. We call these distributed parameters changing
parameters. This is a desirable feature since the exponential convergence of
the gradient-based controllers entails saturation problems to actual actuators,
i.e., one should avoid step-inputs among different scales if the robots are far
away from the desired scale. These distributed changing parameters allow to
control precisely a time-variant scaling rate, e.g., a periodic sinusoidal one,
of a scale-free shape based on distance rigidity. One of the main advantages
of these morphing parameters is that they are totally compatible with the
findings in Chapter 4, i.e., we can change the size of the scale of a formation
while we steer it. We have finally shown actual experiments with mobile
robots illustrating the findings of this chapter and their compatibility with the
results from Chapter 4.

• In Chapter 6 we have analyzed the effects of having inconsistent measure-
ments in the gradient-based formation controller for agents that are driven
by second order dynamics, e.g., the Newtonian classical mechanics. We have
shown that the second order dynamics case shares exactly the same ill be-
havior as the first order one, i.e., having an unknown distorted steady-state
shape and a group collective motion composed of a constant translational
and rotational velocity. We then have proceeded to develop distributed esti-
mator algorithms in the same way as in Chapter 3 in order to estimate the
inconsistencies and remove their undesired effects. As in the first order case,
we have also extended and analyzed the exponential stability of the strategy
of having distributed parameters in order to induce a desired motion to a
multi agent system ruled by second order dynamics.

• In Chapter 7 we showed the applications of the results from Chapter 6 to
a team of quadcopters flying outdoors. These popular aerial-vehicles are
governed by second order dynamics and because of their mechanical con-
struction its control can be quickly addressed. After modelling the dynamics
of the quadcopter we have presented a series of tracking controllers for the
position, velocity and acceleration in Earth coordinates, including a series of
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estimators in order to estimate gravity of drag coefficients. We have carried
out all the formation control experiments by employing a faithful flying simu-
lator. Firstly we have shown the effectiveness of the acceleration controller
by implementing the gradient-based controller to a team of four quadcopters.
Secondly we have validated the reported undesired behavior in Chapter 6
when biases are present in the on board sensors of the quadcopters measuring
the neighboring inter-positions. Thirdly we have validated the results from
Chapter 6 for flying with a constant heading and velocity employing the
acceleration tracking controller in the quadcopters. Finally we have validated
the results of Chapter 4 for intercepting and tracking a target in combination
of the usage of the velocity tracking controller for the quadcopters.

8.2 Further research

The main topic of this research is focused on formation control, mostly in its
distance-based approach. Although in this thesis we have analyzed and proposed
solutions for the practical implementation of the formation control algorithms,
still several common practical issues need to be addressed in the future work.
For example, a challenging problem is to consider time delays in the exchange of
information. Since we were working with undirected topologies, the delay might be
an issue among neighboring agents when we consider very large distances among
them as in space missions. It is of interest to study what possible undesired effects
in the formation may arise in the presence of delays. Another scenario is to consider
time-triggered events for the acquisition of information by the agents. It seems
reasonable to conjecture that the agents might not need to constantly measure local
information such as inter-distances when they are far away from the prescribed
behaviour. Another interesting problem in scenarios where the accuracy is a priority,
is to study the effects in the formation by having quantized information. Indeed to
study all these above mentioned problems at the same time will highly increase the
complexity of the analysis, however, they deserve consideration as they have great
practical relevance.

In order to be more specific by taking this thesis as a starting point for future
works, we propose the following topics ordered by chapters.

• Chapter 3: Since the inconsistencies in the measurements of the agents are
a source of undesired effects in gradient-based formation control, it is of
interest to consider other measurement inconsistencies in order to address
other sources of noises. The gains in the estimators of Theorems 3.1 and 3.8
require full information in order to be computed. It is desirable to extend
the estimator-based algorithm for not requiring such pre-computed gain by
allowing the agents to compute their own gains based on local information.
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It is also interesting to analyze whether there exists a lower bound of the
estimator’s gains in Theorems 3.1 and 3.8, since we have shown that the
given lower bound is a sufficient but not a necessary condition.

• Chapter 4: If a new agent joins a moving formation, it requires at least local
communication with its neighbors in order to compute its motion parameters.
It is desirable to develop an estimator algorithm for new agents in order
to estimate their own motion-parameters without any communication at
all. As in Chapter 3, in order to guarantee the local exponential stability, a
gain requiring global information in Theorem 4.6 has to be computed. It is
desirable to analyze whether the agents instead of employing such a gain,
can employ a gain based only on local information.

• Chapter 5: In the case of designing a periodic scaling, all the changing
parameters share the same sinusoidal signal. The first practical issue is that
we require these signals to be synchronized, i.e., they have the same phase.
It is desirable to implement an estimator, inspired by the internal model
principle, in order to overcome such requirement.

• Chapter 6: It seems that the undesired effects of having mismatches among
neighboring agents are not so dependent on the dynamics of the agents. An
interesting problem is to generalize these effects to arbitrarily higher-order
dynamics or more complicated ones with non-holonomic constraints.

• A combination of the results of Chapters 3 and 4 would be desirable, i.e., a
combined algorithm that achieves changing-motion-control of the formation
and at the same compensates possible inconsistent measurements.
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Appendix A

Mobile robots setup

The chosen platform is the wheeled robot Epuck [58]. The experimental setup
consists of a team of three or four robots in a 2D area of about 2.6 × 2 meters.
We have each robot tagged by a data-matrix on top as shown in Figure A.1. In
order to apply the results from the presented theorems to the Epucks, we need to
apply feedback linearization about a reference point to obtain the single-integrator
dynamics. The chosen reference point is the intersection of the two solid bars of the
data-matrix. There is a velocity tracking controller embedded in the robot ready
for following the guidance velocity signals from the formation control algorithms.
We emulate the localization sensors on board for obtaining the relative positions
and distances between the robots by a camera on top of the scene. The real-time
frames are processed in a PC, which estimates the relative positions and distances
and transmits the corresponding information to the robots with a fixed frequency
of 20Hz via Bluetooth. If a robot does not receive any information, it will roughly
estimate the relative positions with respect to its neighbors based on its actual
velocity and recent information. Since the proposed algorithms are fully distributed,
each robot executes on board its control action based on the local information. The

Figure A.1: Epuck robot with a data-matrix on top. The code in each data-matrix
corresponds to the vertex node of the robot in the sensing graph G.
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whole image of the testing area is covered by 1280× 720 pixels, where the distance
between two consecutive horizontal or vertical pixels is about 2.0mm without
taking into account aberrations of the camera when we are close to the borders of
the image. The raw footage of the experiments reported in this thesis can be found
in the playlist Robotics at http://www.youtube.com/c/HectorGarciadeMarina .
In these videos you can also find the links to the employed source code.

http://www.youtube.com/c/HectorGarciadeMarina


Appendix B

Flight simulator X-Plane and employed
quadcopter

B.1 X-Plane

The chosen platform for simulating the quadcopters is the faithful simulator X-
Plane 9 [63]. This simulator has been certified by the American Federal Aviation
Administration (FAA) for being used in actual pilots training. We run one instance
of X-Plane per quadcopter. We have written an external software in order to read
the state variables of the quadcopters from all the instances of X-Plane. These
variables are then processed online in order to emulate in a realistic way, e.g.
adding noises, the following on-board sensors:

• Localization system GPS. It provides reliable data about latitude and longitude
in degrees up to six decimals, i.e. about half-meter of accuracy in the position.
It also provides altitude over the mean sea level with an accuracy of about
half-meter. It also provides velocities with respect to a navigation frame with
an accuracy of about 0.5 meters per second. Updated with a frequency of
5Hz.

• 3-axis gyroscopes in order to measure the body angular velocities. Updated
with a frequency of 60Hz.

• 3-axis accelerometers in order to measure the body accelerations. Updated
with a frequency of 60Hz.

• 3-axis magnetometer in order to measure the Earth’s magnetic field in body
coordinates. Updated with a frequency of 60Hz.

The attitude angles are then estimated with a frequency of 60Hz by employing
the algorithm presented by the author of this thesis in [33] which fuses GPS,
gyroscopes, accelerometers and magnetometers readings.

The estimator-based and formation-motion-scaling controllers presented in
this thesis are then computed in this external software in a distributed way, i.e.
each quadcopter is an independent instance and computes its own control inputs
using its available local data. Each quadcopter instance then sends back to X-
Plane the inputs to its motors. The raw footage of the experiments reported in
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Figure B.1: Quadcopter employed in the flight simulator X-Plane 9

this thesis can be found in the playlist Robotics at https://www.youtube.com/c/
HectorGarciadeMarina along with links to the employed source code.

B.2 Technical details of the quadcopter

The employed quadcopter in X-Plane is a modified version of the one done by Jean
Louis Naudin (http://diydrones.com/profile/JeanLouisNaudin) with the fol-
lowing main characteristics:

• Mass: 1.2Kg and inertia moment J =

0.0075 0.0000 0.0000

0.0000 0.0075 0.0000

0.0000 0.0000 0.013

Kgm2.

• Diameter of 0.70 meters.

• Four electric brushless DC motors 2000Kv with propellers 7× 5.

https://www.youtube.com/c/HectorGarciadeMarina
https://www.youtube.com/c/HectorGarciadeMarina
http://diydrones.com/profile/JeanLouisNaudin
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Summary

This thesis addresses several theoretical and practical problems related to formation-
control of rigid frameworks.

First we focus on dealing with the robustness issues of having inconsistent
measurements, e.g. biases in the agents’ range sensors, in the gradient-based
formation-control of rigid frameworks. We propose a control strategy that elim-
inates such inconsistencies and at the same time we preserve the advantages of
the distributed gradient control. This idea is based on placing local estimators at a
subset of agents that estimate and compensate such inconsistencies. In other words
this method allows the agents to calibrate their sensors locally among themselves at
the same time that formation-control is running. We further extend the structure of
the estimators in order to deal with broader inconsistencies. Indeed by employing
the internal model principle, the estimators can handle inconsistent measurements
based on a constant bias plus a finite series of sinusoids where only their frequency
is known.

Second, we propose a distributed method for steering a rigid formation in a
rotation and/or translation manner with respect to a frame of coordinates attached
to the formation itself. By assigning motion parameters to the prescribed inter-
distances of the agents one can achieve simultaneously the desired steady-state
formation shape and the group motion. We further extend this result in order to
solve two practical problems: the design of a constant translation of the formation
with a controlled orientation with respect to a global frame of coordinates; and the
tracking and enclosing of a target problem where one assigns a desired formation
shape to specify how the target is enclosed and tracked by the pursuers.

Third, the simple structure of the above mentioned motion parameters opens
the possibility of controlling the morphing of the formation shape. We propose a
method based on distributed morphing parameters in order to control the scaling
rate of a given scale-free shape. This result is compatible with steering the forma-
tion with the motion parameters, therefore the desired scaling can be achieved
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simultaneously to the desired motion.
Forth, we carried out the stability analysis and effects of inconsistent measure-

ments in a gradient-based formation-control of second-order agents’ dynamics.
We show that the first-order and the second-order have exactly the same non-
desired consequences. We finally extend further the presented estimator-based
algorithms and the motion-control by distributed motion parameters approach to
the second-order dynamics case.

Finally, throughout the thesis we show practical experiments with actual mobile
robots covering the developed algorithms for first-order dynamics and we have
developed a series of tracking controllers for quadcopters in order to validate the
estimator-based and motion-morphing-control algorithms for the second-order
dynamics case.



Samenvatting

In dit proefschrift worden verschillende theorieën en praktische problemen aange-
kaart, gerelateerd aan formatievorming van rigide structuren.

Als eerste richten we ons op het aanpakken van de robuustheid onder invloed
van onnauwkeurige metingen in formatievorming van rigide structuren met be-
hulp van de gradiëntmethode. Een voorbeeld hiervan is de situatie waarbij de
afstandssensoren van de agenten in de formatie structurele fouten maken. Wij
stellen een besturingsstrategie voor die onnauwkeurigheden compenseert en tege-
lijkertijd het voordeel behoudt van aansturing met behulp van een gedistribueerde
gradiëntmethode. Aan de basis van dit idee ligt het plaatsen van lokale schatters
bij een deelverzameling van de agenten die de onnauwkeurigheden inschatten en
hiervoor compenseren. Met andere woorden, deze methode stelt de agenten in
staat om hun sensoren lokaal en onderling te kalibreren tijdens het vormen van de
formatie. We breiden de structuur van de schatters verder uit om meerdere soorten
onnauwkeurigheden te kunnen compenseren. Met behulp van het principe van
het inwendig model kunnen de schatters omgaan met onnauwkeurige metingen
die bestaan uit een constante afwijking plus een eindige reeks sinusöıden waarvan
enkel de frequentie bekend is.

Als tweede dragen we een gedistribueerde methode aan voor het aansturen van
rotatie en/of translatie in een rigide formatie ten opzichte van een lokaal referentie-
stelsel. Door het toewijzen van zogenaamde ‘volg’-parameters aan voorgeschreven
afstanden tussen de agenten kan men tegelijkertijd bereiken dat de agenten zowel
een voorgeschreven formatie aannemen als een algemene groepsbeweging onder-
gaan. We gebruiken deze resultaten om twee praktische problemen op te lossen:
het ontwerpen van een constante translatie van de formatie met een gecontroleerde
oriëntatie ten opzichte van het globale referentiestelsel; en het ontwerpen van een
gewenste formatie voor een groep achtervolgers om een doelwit te omsluiten en te
blijven volgen.

Door de simpele structuur van de hierboven genoemde ‘volg’-parameters is het
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ook mogelijk om de grootte van de formatie aan te sturen. Wij stellen een methode
voor die gebaseerd is op gedistribueerde transformatie-parameters met als doel
om de grootte aan te sturen van schaal-vrije formaties. Gecombineerd met de
‘volg’-parameters is het mogelijk om tegelijkertijd zowel de gewenste beweging als
de gewenste grootte van de formatie aan te sturen.

Als vierde hebben we de stabiliteit geanalyseerd van formatievorming met
behulp van de gradiëntmethode van agenten met tweede-orde dynamica onder
invloed van onnauwkeurige metingen. We laten zien dat de meetfouten in de
eerste-orde en tweede-orde systemen precies dezelfde ongewenste consequen-
ties hebben. Uiteindelijk passen we de gedistribueerde ‘volg’-parameters ook toe
op de algoritmes gebaseerd op schatters en volgsystemen voor de tweede-orde
dynamische systemen.

Door het hele proefschrift heen laten we middels praktische experimenten met
mobiele robots zien hoe de ontwikkelde algoritmes werken in het geval van eerste-
orde dynamica. Daarnaast hebben we een reeks volgsystemen ontwikkeld voor
quadrocopters om de algoritmes gebaseerd op schatters en de ‘volg’-transformatie-
algoritmes te valideren voor tweede-orde dynamische systemen.
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