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Formation control of networked multi-agent systems has earned significant research interest
over the past two decades due to its potential applications in multi-disciplinary engineer-
ing problems, such as precision agriculture, space and planetary exploration, multi-target
surveillance, cooperative transportation, etc. In contrast to a single specialized agent, a
multi-agent system offers flexibility, scalability, reliability, robustness to faults and cost-
effectiveness in solving complex and challenging tasks.

Firstly, two novel formation control techniques are proposed for linear multi-agent sys-
tems with directed communication topology. (i) A distributed adaptive group formation
tracking protocol is proposed. In the proposed approach, the followers are distributed into
several subgroups and each subgroup can track a desired sub-formation surrounding the
respective leaders. When multiple leaders exist in a subgroup, the sub-formation attained
by that subgroup keeps tracking a convex combination of the states of the leaders. To-
wards the end, a case study on multi-target surveillance operation is taken up to show an
application of the proposed adaptive control technique. (ii) A two-layer fully distributed
formation-containment control scheme is designed, where the states of the leaders attain a
pre-specified time-varying/stationary formation and the states of the followers converge into
the convex hull spanned by the states of the leaders. To achieve formation-containment,
a set of fully distributed control protocols is developed utilizing the neighbouring state in-
formation, which enables the proposed scheme operate without using global information
about the entire interaction topology. Simulation and experimental results are provided to
demonstrate the feasibility and effectiveness of the proposed framework.

Secondly, a hierarchical control system is proposed for a novel Unmanned Aerial Vehi-
cle (UAV) platform based on a three rotor configuration, where the three propellers can
be tilted independently to obtain full force and torque vectoring authority. A robust feed-
back linearization controller is first developed to deal with this highly coupled and nonlinear
dynamics of the proposed tri-rotor UAV, which linearizes the dynamics globally using ge-
ometric transformations. A distributed formation control tracking protocol and an optimal
observer are then proposed to control a swarm of tri-rotor UAVs. The effectiveness of the
designed control strategy is illustrated in a realistic virtual reality simulation environment
based on real hardware parameters from a physical construction.

Finally, an automatic cruise control scheme is developed to maintain the string stability of a
heterogeneous and connected vehicle platoon moving with constant spacing policy. A feed-
back linearization tool is first applied to transform the nonlinear vehicle dynamics into a
linear heterogeneous state-space model and then a distributed adaptive control protocol has
been designed to keep equal inter-vehicular spacing between any consecutive vehicles while
maintaining a desired longitudinal velocity of the entire platoon. The proposed scheme uti-
lizes only the neighbouring state information. Simulation results demonstrated the effec-
tiveness of the proposed platoon control scheme. Moreover, the practical feasibility of the
scheme was validated by hardware experiments with real robots.
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Chapter 1

Introduction

1.1 Background and Motivation

Cooperative control of multi-agent systems (MASs) is the study by which a large number

of mostly homogeneous robots are coordinated to accomplish a desired mission in a collab-

orative manner [3–5]. MASs are usually distinguished by the following features: the robots

in a swarm are operated via distributed control techniques; communication is limited in the

sense that only neighbouring agents communicate among themselves; all robots in a swarm

follow the same set of rules and work in unison to achieve a common goal [6,7]; stability of

a swarm system does not collapse even if some of the agents leave the network, or if some

new agents join the network. Control strategies in MASs are primarily inspired from the

behaviour of natural swarms, for example, swarms of ants, bees, birds and fishes [6, 7].

MASs have gained immense popularity in both theory and practice due to its adaptability

to environmental changes, scalability, reliability, robustness to hardware and communica-

tion faults, high degree of parallelism and overall cost effectiveness compared to a single

sophisticated robot [8, 9]. MASs are being applied in variety of real-world problems, for

instance, in military applications (such as entrapment/escorting mission [6], target local-

ization and mapping [10, 11], security surveillance [12–15], etc.); search, rescue and re-

trieval operations especially in hazardous environments (e.g., in nuclear power plants, in

20



CHAPTER 1. INTRODUCTION 21

earthquake-devastated areas, in extreme weather conditions, etc.) [16,17]; in precision agri-

culture, smart farming and large-scale food production applications [18–21]; in space and

planetary exploration [22, 23]; in cooperative transportation [24, 25]; in flocking and target

localization [26]; etc. MASs have experienced rapid growth over the past two decades due to

in part the emergence of consensus-based MAS theory and advancements in the cooperative

control techniques [27–29].

Here, we present a precise and effective survey of the significant research work related

to theory and applications of MASs, different types of control frameworks used in MASs

and also, some popular cooperative control strategies such as formation tracking and con-

tainment. In [30], an image-based, partially distributed formation control framework has

been proposed for multi-robot systems involving additional UAVs equipped with multi-

ple on-board cameras used as control units. In [6], null-space based behavioural control

techniques are proposed to achieve entrapment/escorting mission involving multiple mobile

robots. In [31], constrained optimization method for multi-robot formation control in dy-

namic environments is presented where the robots adjust the parameters of the formation

to avoid collisions with static and moving obstacles. The paper [31] also demonstrates two

practical applications of the developed control technique in navigating a team of aerial vehi-

cles in formation and in cooperative transportation by a small team of mobile manipulators.

However, the robot swarm in the previous works is controlled via centralized control proto-

cols, which largely increases the communication costs during the real-time implementation.

In order to reduce the network bandwidth and the cost involved due to huge communica-

tion infrastructure required for centralized control strategy, decentralized control schemes

are now being widely used which depend only on the local information, that is, informa-

tion from the neighbours. In [32], a distributed observer based formation control framework

is developed to track the centroid of relative formations of a multi-robot system described

with first-order dynamics. Moreover, in this paper, the theory has been validated on a real

set-up with five mobile Khepera III robots. In [33], to tackle the issues like inconsistent

range measurement or mismatches in inter-robot distances, these factors are considered as

parameters in a gradient-based formation control law to achieve constant collective transla-

tion, rotation, or their combinations. The article [34] presents a distributed formation control

technique for a team of aerial or ground robots to be operated in a dynamic environment.
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The proposed methodology applies constrained optimization and multi-robot consensus to

obtain the required parameters of the desired formation avoiding static and dynamic ob-

stacles. In [35], a new type of leader-to-formation stability is introduced which addresses

the safety, robustness and performance issues related to variety of formation interconnec-

tion structures. This notion has also found important applications in obstacle avoidance of

leader-follower vehicle formations. In [36], a decentralized formation tracking control law

is developed to ensure global exponential and concurrent synchronization of Lagrangian

systems (e.g., robots, drones) in presence of dynamic networks having nonlinear and time-

varying elements. The proposed theory has also been extended to multi-robot systems with

non-identical dynamics and high degree of coupling. In [9], the authors have introduced

a distributed, robust and scalable control protocol for large-scale swarm systems to attain

complex formation shapes. The methodology [9] also invokes a probabilistic swarm guid-

ance developed using in-homogeneous Markov chain algorithm. The articles [37–39] have

explored modelling and formation control strategies for nonholonomic mobile robots in-

cluding obstacle avoidance.

So far, we have discussed mostly the research contributions laid in the area of formation

control of small-scale and large-scale swarm robotic systems. Similar to formation con-

trol, containment control is also an active research area where the followers are required to

converge into the convex hull formed by the leaders. We highlight an example to explain

the importance of containment control: Consider a group of mobile robots comprised of

leaders and followers engaged in a rescue and navigation mission, where the leader robots

have sensors to detect the obstacles but the followers does not. The leaders can navigate

the followers safely towards the destination by detecting the obstacles in the path while

the followers always stay inside a ‘moving’ safe zone generated by the leaders. In [40],

a distributed containment control protocol is proposed for agents having double integrator

dynamics in the presence of both static and dynamic leaders. In [41], the authors designed a

discontinuous and a continuous distributed containment control laws for MASs with general

linear dynamics and multiple leaders where the leaders may have separate control inputs.

Moreover, the results are extended to output-feedback case and also, applied for MASs with

matching uncertainties. The article [42] has addressed the problem of finite-time attitude

containment control for multiple rigid bodies, for example, robot manipulators, space craft,
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etc. In this work, the attitudes of the followers are constrained to stay within a limit decided

by the attitudes of the leaders (in the form of a convex hull).

Most of aforementioned works have dealt with homogeneous robot swarms. However, it is

investigated that many real-world tasks need heterogeneous robots to accomplish the task.

In the recent years, heterogeneous MAS [7] is gaining prominence compared to the homoge-

neous swarm since the former provides more powerful and versatile framework for solving

complex real-world problems which cannot be done by homogeneous robot agents. For

instance, in a cooperative search and target localization problem, a synergistic integration

of both aerial and ground vehicles is necessary to facilitate complementary capabilities and

features [12]. Heterogeneity in a swarm can be structural or behavioural. For example, in a

precision agriculture application, a proper coordination of both Unmanned Aerial Vehicles

(UAVs) and Unmanned Ground Vehicles (UGVs) are required. Whereas, in some other ap-

plication, a swarm of structurally homogeneous robots can be divided into different layers

according to the assigned tasks. For instance, in the formation containment problem, the

robots are categorized as leaders, followers and targets. In [43], a Lyapunov theory based

decentralized formation control strategy is given for heterogeneous MASs and a rescue and

surveillance operation involving a set of UAV and UGV agents is considered to show a

prospective application. A decentralized navigation method is proposed in [44] for a hetero-

geneous swarm in which a single leader navigates other robots that have different transla-

tional and rotational velocity and acceleration, sensing distance and angle while maintaining

global connectivity. In some applications, the robots in the swarm may also have different

behaviors, for example, the robot swarm may split into different clusters and all the clusters

can work together to achieve the collective goal. Variety of formation and containment con-

trol methodologies have been discussed in the research articles [45–48] from a theoretical

perspective, but the papers did not include experimental results to validate their theory.

Motivated by the aforementioned progress and challenge of MASs and especially by the

increasing need to develop state-of-art control techniques, in this thesis, we aim to develop

advanced formation control theory and apply them into real applications.
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1.2 Thesis Organization

This thesis is organized as follows:

Chapter 2: Preliminaries: Some related preliminaries including matrix theory, linear sys-

tem theory, Lyapunov stability theory and basic algebraic graph theory are introduced.

Chapter 3: Distributed Adaptive Group Formation Tracking for Multi-Agent Systems:

This chapter proposes a fully distributed control protocol that achieves time-varying group

formation tracking for linear multi-agent systems connected via directed graph. The group

formation tracking often leads to sub-formations especially when the leaders are placed

far apart or they have separate control inputs. In the proposed approach, the followers are

distributed into several subgroups and each subgroup attains the predefined sub-formation

along with encompassing the leaders. Each subgroup can be assigned multiple leaders, con-

trary to the single-leader case considered in most of the existing literature, which makes the

current problem non-trivial. When multiple leaders exist in a subgroup, the sub-formation

attained by that subgroup keeps tracking a convex combination of the states of the leaders.

A distributed adaptive control protocol has been introduced in this paper which uses only

relative state information and thus avoids direct computation of the graph Laplacian matrix.

Due to virtue of this, the proposed scheme remains effective even when some of the agents

get disconnected from the network due to sudden communication failure. An algorithm is

provided to outline the steps to design the control law to attain time-varying group formation

tracking with multiple leaders. Towards the end, a case study on multi-target surveillance

operation is taken up to show an important application of the proposed adaptive control

technique. The results in this chapter have been published in [15].

Chapter 4: Two-Layer Fully Distributed Formation-Containment Control Scheme for

Multi-Agent Systems: This chapter addresses the problem of designing a two-layer fully

distributed formation-containment control scheme for linear time-invariant multi-agent sys-

tems with directed communication topology, where the states of the leaders attain a pre-

specified time-varying/stationary formation and the states of the followers converge into

the convex hull spanned by the states of the leaders. To achieve formation-containment,
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a set of fully distributed control protocols is developed utilizing the neighbouring state in-

formation, which enables the proposed scheme operate without using global information

about the entire interaction topology. The conditions to achieve formation-containment are

suggested and a theoretical proof of the proposed scheme is also derived exploiting the Lya-

punov stability approach. An algorithm is written to provide systematic guidelines on how

to implement the control protocols in practice. It is argued that the consensus problem,

formation tracking problem, and containment control problem can all be viewed as special

cases of formation-containment. At the end, two case studies including simulations and

real hardware experiments have been explored in detail to demonstrate the usefulness and

effectiveness of the proposed scheme.

Chapter 5: Observer-Based Optimal Formation Control of Innovative Tri-Rotor UAVs

Using Robust Feedback Linearization: This chapter presents a novel unmanned aerial ve-

hicle platform based on a three rotor configuration, which can achieve the highest level of

manoeuvrability in all 6 dimensions (i.e. 3D position and 3D attitude). The three propellers

can be tilted independently to obtain full force and torque vectoring authority, such that this

new aerial robotic platform can overcome the limitations of a classic quadrotor UAV that

can not change its attitude while hovering at a stationary position. A robust feedback lin-

earization controller is developed to deal with this highly coupled and nonlinear dynamics

of the proposed tri-rotor UAV, which linearises the dynamics globally using geometric trans-

formations to produce a linear model that matches the Jacobi linearization of the nonlinear

dynamics at the operating point of interest. A distributed formation control tracking proto-

col is then proposed to control a swarm of tri-rotor UAVs. The 3D position and 3D attitude

of each vehicle can be controlled independently to follow a desired time-varying formation.

The effectiveness of the designed control strategy is illustrated in a realistic virtual reality

simulation environment based on real hardware parameters from a physical construction.

The results in this chapter have been published in [13].

Chapter 6: Cooperative Control of Heterogeneous Connected Vehicle Platoons: Au-

tomatic cruise control of a platoon of multiple connected vehicles in an automated high-

way system has drawn significant attention of the control practitioners over the past two

decades due to its ability to reduce traffic congestion problems, improve traffic throughput

and enhance safety of highway traffic. This chapter proposes a two-layer distributed control
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scheme to maintain the string stability of a heterogeneous and connected vehicle platoon

moving in one dimension with constant spacing policy assuming constant velocity of the

lead vehicle. A feedback linearization tool is applied first to transform the nonlinear vehi-

cle dynamics into a linear heterogeneous state-space model and then a distributed adaptive

control protocol has been designed to keep equal inter-vehicular spacing between any con-

secutive vehicles while maintaining a desired longitudinal velocity of the entire platoon. The

proposed scheme utilizes only the neighbouring state information (i.e. relative distance, ve-

locity and acceleration) and the leader is not required to communicate with each and every

one of the following vehicles directly since the interaction topology of the vehicle platoon

is designed to have a spanning tree rooted at the leader. Simulation results demonstrated

the effectiveness of the proposed platoon control scheme. Moreover, the practical feasibility

of the scheme was validated by hardware experiments with real robots. The results in this

chapter have been published in [49].

Chapter 7: Conclusions and Future Works: In the final chapter the contributions of this

thesis are summarised and possible directions of future research are discussed.



Chapter 2

Preliminaries

This chapter is intended to be used as a quick reference for the understanding and derivation

of the main results in the subsequent chapters. Some mathematical results needed to develop

the main ideas of this thesis including matrix theory, linear system theory and graph theory

are presented.

2.1 Matrix Theory

Definition 2.1.1 ( [50]). The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is defined as

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

 ,

and it has following properties:

1). A⊗ (B+C) = A⊗B+A⊗C,

2). (kA)⊗B = A⊗ (kB) = k(A⊗B),

3). (A⊗B)(C⊗D) = (AC)⊗ (BD),

4). (A⊗B)−1 = A−1⊗B−1,

27



CHAPTER 2. PRELIMINARIES 28

5). (A⊗B)T = AT⊗BT,

6). if A and B are both positive definite (positive semi-definite), so is A⊗B.

Note that A, B, C and D are the matrices with compatible dimensions for multiplication.

Definition 2.1.2 ( [50]). A square matrix A ∈ Rn×n is called a nonsingular M-matrix if all

its off-diagonal elements are non-positive and all eigenvalues of A have positive real parts.

Lemma 2.1.1 ( [51]). Let L ∈ Rn×n be an M-matrix with det[L] 6= 0. Then, there exists a

positive definite matrix G = diag{g1, . . . ,gN} such that GL+LT G > 0.

Lemma 2.1.2 ( [52]). Suppose a∈R≥0, b∈R≥0, p∈R>0 and q∈R>0 such that 1
p +

1
q = 1,

then ab≤ ap

p + bq

q . Moreover, ab = ap

p + bq

q if and only if ap = bq.

2.2 Linear System Theory

Consider the following linear time-invariant system

{
ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2.1)

where A ∈Rn×n, B ∈Rn×m, C ∈Rq×n, D ∈Rq×m and x(t) ∈Rn, u(t) ∈Rm and y(t) ∈Rq is

the state, control input and control output, respectively.

Definition 2.2.1 ( [53]). For any initial state x(0), if there exists control input u(t) such that

the state x(t) of system (2.1) can converge to the origin in a finite time, then system (2.1) is

called controllable or (A,B) is controllable.

Lemma 2.2.1 ( [53]). If rank
[
B,AB, . . . ,An−1B

]
= n, then (A,B)is controllable.

Lemma 2.2.2 ( [53]). (PBH test for controllability) (A,B) is controllable if and only if rank

[sI−A,B] = n for all s ∈ C.

Definition 2.2.2 ( [53]). If for any t1 > 0, the initial state x(0) can be determined from the

time history of the input u(t) and the output y(t) in the interval of [0, t1]. Then the pair (C,A)

is said to be observable.
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Lemma 2.2.3 ( [53]). If rank
[
CT ,ATCT , . . . ,(An−1)TCT ]= n, then (C,A)is observable.

Lemma 2.2.4 ( [53]). (PBH test for observability) (C,A) is observable if and only if rank[
(sI−A)T ,CT ]T = n for all s ∈ C.

Definition 2.2.3 ( [53]). If matrix A is Hurwitz, then system (2.1) is asymptotically stable.

Definition 2.2.4 ( [53]). If there exists a matrix K ∈Rm×n such that A+BK is Hurwitz, then

system (2.1) is stabilizable or (A,B) is stabilizable.

Lemma 2.2.5 ( [53]). System (2.1) is stabilizable if and only if rank [sI−A,B] = n for all

s ∈ C+, where C+ = {s|s ∈ C,Re(s)≥ 0} represents the closed right complex space.

Definition 2.2.5 ( [53]). If there exists a matrix K ∈Rn×q such that A+KC is Hurwitz, then

system (2.1) is detectable or (A,B) is detectable.

Lemma 2.2.6 ( [53]). System (2.1) is stabilizable if and only if rank
[
(sI−A)T ,CT ]T = n

for all s ∈ C+.

2.3 Lyapunov Stability Theory

In this section, some basic stability analysis theorems are introduced.

Consider a nonlinear system

ẋ = f (x, t), (2.2)

where x ∈U ⊂ Rn is the state of the system, U ⊂ Rn is a domain with x = 0 as an interior

point, and f : U ⊂ Rn× [0,+∞)→ Rn is a continuous function with f (0, t) = 0.

Definition 2.3.1 (Lyapunov stability, [54]). For the system (2.2), the equilibrium point x = 0

is said to be Lyapunov stable if for any given constant R ∈ R>0, there exists a constant r to

ensure that ‖x(t)‖< R, ∀t > 0 if ‖x(0)‖< r. Otherwise, the equilibrium point is unstable.

Definition 2.3.2 (Asymptotic stability, [54]). For the system (2.2), the equilibrium point

x = 0 is asymptotically stable if it is Lyapunov stable and furthermore limt→∞ x(t) = 0.
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Definition 2.3.3 (Global asymptotic stability, [54]). If the asymptotic stability defined in

Definition 2.3.2 holds for any initial state in Rn, the equilibrium point is said to be globally

asymptotically stable.

Definition 2.3.4 (Positive definite function, [54]). A function V (x) ∈U ⊂ Rn is said to be

locally positive definite if V (x) > 0 for x ∈U except at x = 0 where V (x) = 0. If U = Rn,

i.e., the above property holds for the entire state space, V (x) is said to be globally positive

definite.

Definition 2.3.5 (Lyapunov function, [54]). If in U ∈ Rn containing the equilibrium point

x = 0, the function V (x) is positive definite and has continuous partial derivatives, and if its

time derivative along any state trajectory of system (2.2) is non-positive, i.e.,

V̇ (x)≤ 0,

then V (x) is a Lyapunov function.

Definition 2.3.6 (Radially unbounded function, [54]). A positive definite function V (x) :

Rn −→ R is said to be radially unbounded if V (x)−→ ∞ as ‖x‖ −→ ∞.

Theorem 2.3.1 (Lyapunov theorem for global stability, [54]). For the system (2.2) with

U ∈ Rn, if there exists a function V (x) : Rn −→ R with first order derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite

• V (x) is radially unbounded

then the equilibrium point x = 0 is globally asymptotically stable.

Definition 2.3.7 (Positively invariant set, [55]). A set M is a positively invariant set with

respect to (2.2) if

x(0) ∈M⇒ x(t) ∈M, ∀ t ≥ 0.

Theorem 2.3.2 (LaSalle’s invariance principle, [55] ). Let ω ⊂U be a compact set that is

positively invariant with respect to (2.2). Let V : U → R be a continuously differentiable

function such that V̇ (x) ≤ 0 in U. Let O be the set of all points in U where V̇ = 0. Let M

be the largest invariant set in O. Then every solution starting in O approaches M as t→ ∞.
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2.4 Graph Theory

Let G = (V ,E ,A) be a weighted and directed graph for which V = {1,2, . . . ,N} is a

nonempty set of nodes, E ⊂ V ×V is the set of edges and A =
[
ai j
]
∈ RN×N is the ad-

jacency matrix corresponding to the graph. An edge denoted by (i, j) indicates that infor-

mation flows from node i to node j and, in this case, node i is considered as a neighbour

of node j. ai j is the weight of edge ( j, i) and ai j 6= 0 if ( j, i) ∈ E . In-degree matrix as-

sociated with G is defined as D = diag{di} ∈ RN×N with di = ∑
N
j=1 ai j and the Laplacian

matrix L ∈ RN×N of G is given by L = D−A . If node i observes the leader, an edge (0, i)

is said to exist with weighting gain gi > 0 as a pinned node. We denote the pinning matrix

as G = diag{gi} ∈ RN×N . Within a directed graph, a spanning tree exists if the graph has a

‘root’ node having directed path to each of the remaining nodes. A directed graph without

any cycle is termed as ‘directed acyclic graph’.

Lemma 2.4.1 ( [56]). If G contains a spanning tree, then zero is a simple eigenvalue of L

with associated right eigenvector 1N , and all the other N− 1 eigenvalues have nonnegative

real parts.



Chapter 3

Distributed Adaptive Group Formation

Tracking for Multi-Agent Systems

3.1 Introduction

Over the past two decades, cooperative as well as distributed control of MASs have drawn

significant attention of the researchers from multiple disciplines of engineering and math-

ematics because of its wide applications in multi-robot cooperation [57–59], distributed

sensor networks [60,61], renewable energy storage systems [28], etc. This research domain

primarily includes three topics – consensus control [27, 29, 62], containment control [41]

and formation control [63]. Among them, formation control of MASs is a potential field of

research that has witnessed an immense growth in the last fifteen years [64]. Time-invariant

formation control of a swarm of quad-rotors has been reported in [65], while formation con-

trol of MASs on a time-varying trajectory is still an important issue which requires further

attention.

Time-varying formation control of MASs involves rate of change of the formation states,

which causes major challenges to design distributed control schemes. A ‘bearing-based

formation control’ of a swarm of single integrator agents was introduced in [66] using

the leader-first follower structure. Fixed-time formation control of an assembly of moving

32
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robots considering the time-delay constraint was analyzed in [67]. Dynamic formation con-

trol for second-order MASs using graph Laplacian approach was studied in [68]. In [69], an

affine formation maneuver control technique was proposed to configure a particular geomet-

ric pattern by the agents while achieving the desired maneuvers. Subsequently, time-varying

formation control with application to unmanned aerial vehicles is investigated in [13,70,71].

However, in [13, 70, 71], the proposed control protocols utilize the smallest nonzero eigen-

value of the graph Laplacian matrix which indicates that the control schemes are not fully

distributed [72]. To circumvent direct computation of the eigenvalues of the graph Laplacian

matrix, distributed control protocols are now being widely used which depend only on the

local information, that is, information from the neighbours. In this context, the work of [73]

should be highlighted which proposes a fully distributed control protocol for MASs with

an undirected graph. However, it has been found that MASs on undirected graphs suffer

from lack of robustness and reliability especially when communication failure occurs and

some of the agents get disconnected resulting in a change in the graph topology [72]. On the

contrary, MASs connected via directed graphs are more reliable and offer some robustness

to topology changes. In [74], a fully distributed control scheme was introduced to solve the

output regulation problem for linear and heterogeneous MASs on a directed communication

graph.

Formation control of MASs with a single leader has been studied extensively in [13,66–71],

while a formation tracking problem with multiple leaders is a relatively unexplored area

which needs more effort. Formation and tracking control of MASs having multiple targets

(considered as leaders) are non-trivial and relatively more complex than single-leader op-

erations [72]. Very often, in order to accomplish distributed tasks, a MAS may need to

be decomposed into several subgroups, where each subgroup may contain multiple lead-

ers. In the literature, the topic ‘group formation tracking’ deals with formation tracking of

MASs containing multiple subgroups. In contrast to ‘complete formation’ which deals with

only a single group, ‘group formation’ is more complicated and challenging since the latter

involves interactions within each subgroup as well as among the subgroups and also, mul-

tiple ‘sub-formations’. However, in many recent chapters, for instance in [13, 66–71], only

formation tracking control problems are considered which urges more attention towards
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Figure 3.1: Group formation tracking control scheme proposed for multi-agent systems.

solving the group formation tracking problems. Applications like search and rescue oper-

ations, multi-target surveillances, etc., extensively rely on group formation tracking con-

cepts involving multiple leaders where the leaders may also have some exogenous inputs.

In [47,75–77], group consensus control problems specialized to first-order and second-order

MASs have been addressed, but the techniques in general cannot be applied directly to solve

time-varying group formation tracking (TGFT) problems for higher-order MASs. Thus the

problem of distributed TGFT where each subgroup may have multiple leaders (or targets)

deserves further research.

The aforementioned issues motivate us to investigate the TGFT problems for linear MASs

on directed graph containing multiple leaders. The primary objective is to spread the agents

into several subgroups and to achieve sub-formation for each individual subgroups along

with reference tracking (as illustrated in Fig. 3.1). It is shown that consensus control, for-

mation control and cluster control can all be viewed as particular scenarios of the TGFT

problem addressed in this chapter. The contributions of this chapter can be summarized as

follow:

1) The TGFT problem for MASs with directed communication graph is explored, where

each subgroup is able to reach a desired sub-formation surrounding the respective lead-

ers. In contrast with the existing literature, in this chapter, each subgroup can be assigned

multiple leaders and the leaders may be subjected to bounded exogenous (either refer-

ence or disturbance) input independent of the other agents and their interactions;

2) The TGFT control protocol proposed in this chapter does not require the information
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about the entire graph, unlike most of the existing formation control strategies. The pro-

posed control law uses only the relative state information and thereby avoids explicit

computation of the eigenvalues of the graph Laplacian matrix. Due to this, the con-

trol architecture becomes fully distributed, re-configurable and scalable for large-scale

networked systems.

The rest of the chapter proceeds as follows. Section 3.2 discusses the problem statement. In

Section 3.3, TGFT problem is solved via a Lyapunov approach using a nonlinear, adaptive

and distributed control law. A case study on multi-target surveillance problem is given

in Section 3.4 to highlight a potential application of the proposed scheme. Section 3.5

concludes the chapter mentioning several future research directions.

3.2 Problem Formulation

Consider that a MAS is comprised of N agents including M followers and N−M leaders.

Let F = {1,2, . . . ,M} and E = {M+1,M+2, . . . ,N} be the sets of the followers and leaders

respectively. For any i, j ∈ {1,2, . . . ,N}, the weight of an interaction edge wi j is defined as

wi j =


0 when i = j or ( j, i) /∈ E ,

b j when j ∈ E and ( j, i) ∈ E ,

ai j when both i, j ∈ F and ( j, i) ∈ E

(3.1)

where b j ∈ R>0 and ai j ∈ R are known constants for all i and j, and E is the set of edges

defined in Section 2.4.

The homogeneous leader and follower agents are described by the state-space equations

ẋi(t) = Axi(t)+Bui(t) ∀i ∈ {1,2, . . . ,N}, (3.2)

where xi(t) ∈ Rn and ui(t) ∈ Rm are respectively the state and control input vectors of the

ith agent ∀t ≥ 0. A ∈ Rn×n and B ∈ Rn×m are constant matrices where rank(B) = m, m≤ n

and (A,B) is stabilizable.

Assumption 3.2.1. Let uk(t) ∀k ∈ E represent the exogenous input for the kth leader which

is independent of all the other agents and the network topology. We assume ‖uk(t)‖ ≤ σ for

all t ≥ 0 for a given σ ∈ R≥0.
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Then the Laplacian matrix L corresponding to the graph G can be partitioned as L =[
L1 L2

0(N−M)×M 0(N−M)×(N−M)

]
where L1 ∈ RM×M and L2 ∈ RM×(N−M).

Let hF(t)=
[
hT

1 (t),h
T
2 (t), . . . ,h

T
M(t)

]T generate the desired continuous differential formation

where hi(t) ∈ Rn for all t ≥ 0 and all i ∈ {1, . . . ,M} is a preset vector known to the ith

follower.

Suppose the MAS (3.2) is decomposed into p subgroups (p≥ 1) and accordingly, the node

set V consists of V1, . . . ,Vp satisfying Vk 6= /0, V =
⋃p

k=1 Vk and Vk
⋂

Vl = /0 for any

k, l ∈ {1,2, . . . , p} and k 6= l. Let ī ∈ {1,2, . . . , p} denote the subscript of a subgroup and

Gī represents the part of the entire graph G which corresponds to the subgroup Vī. nī and

n̂ī denote respectively the numbers of followers and leaders in the subgroup Vī. Note, in a

MAS, a leader agent must not have any neighbour, while a follower agent should have at

least one neighbour. A follower is said to be ‘well-informed’ if it is connected to all the

leaders and ‘uninformed’ if it is not connected to any of the leaders.

For any subgroup ī ∈ {1,2, . . . , p}, the desired time-varying sub-formation is characterized

by the vector h̄ī(t) =
[
hT

ςī+1(t),h
T
ςī+2(t), . . . ,h

T
ςī+nī

(t)
]T where ςī = ∑

ī−1
k=0 nk with n0 = 0 and

each element in h̄ī(t) is piece-wise continuously differentiable. It can be readily verified that

hF(t) =
[
h̄T

1 (t), h̄
T
2 (t), . . . , h̄

T
p (t)

]T reflects the formation vector for the entire MAS (3.2).

x̄ī =
[
xT

ςī+1(t),x
T
ςī+2(t), . . . ,x

T
ςī+nī

(t)
]T and x̂ī =

[
xT

ς̂ī+1(t),x
T
ς̂ī+2(t), . . . ,x

T
ς̂ī+n̂ī

(t)
]T represent

the state vector of the followers and the leaders respectively of the īth subgroup, where

ς̂ī = M+∑
ī−1
k=0 n̂k with n̂0 = 0.

A MAS is said to achieve time-varying group formation tracking (TGFT) with multiple

leaders if for any given bounded initial states

lim
t→∞

x̄ī(t)− h̄ī(t)−1nī

ς̂ī+n̂ī

∑
k=ς̂ī+1

αkxk(t)

= 0 (3.3)

for all ī ∈ {1,2, . . . , p}, where αk is a positive constant that satisfies ∑
ς̂ī+n̂ī
k=ς̂ī+1 αk = 1.

The problem statement considered here is to develop a fully distributed control technique for

a MAS given in (3.2) to achieve sub-formations when the followers are divided into several

subgroups and each subgroup is assigned one or multiple leaders to track.
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3.3 Group Formation Controller Design

Motivated by [78], a TGFT control protocol is constructed belowui = (ci +ρi)Kξi + γi−µ f (ξi)

ċi = ξ
T
i Γξi

∀i ∈ F (3.4)

where ξi = ∑
M
j=1 wi j

[
(xi−hi)− (x j−h j)

]
+∑

N
k=M+1 wik

[
(xi−hi)− xk

]
denotes the group

formation tracking error; ci(t) with ci(0)> 0 represents the coupling weight assigned to the

ith agent; µ> 0, K ∈Rm×n and Γ∈Rn×n are all constant controller parameters to be selected

appropriately; ρi and γi are continuously differentiable functions of ξi and hi respectively;

and f (·) is a nonlinear function to be determined later.

Let xF =
[
xT

1 , . . . ,x
T
M
]T , xE =

[
xT

M+1, . . . ,x
T
N
]T , uE =

[
uT

M+1, . . . ,u
T
N
]T , γ =

[
γT

1 ,γ
T
2 , . . . ,γ

T
M
]T

and F(ξ) =
[

f T (ξ1), f T (ξ2), . . . , f T (ξM)
]T denote a few shorthand. The closed-loop sys-

tem dynamics of the MAS (3.2) embedded with the TGFT control protocol (3.4) can be

expressed in a structured form as
ẋF =

[
IM⊗A+(C+ρ)L1⊗BK

]
xF +

[
(C+ρ)L2⊗BK

]
xE +(IM⊗B)γ

−
[
(C+ρ)L1⊗BK

]
hF −µ(IM⊗B)F(ξ),

ẋE =(IN−M⊗A)xE +(IN−M⊗B)uE ,

(3.5)

where C = diag{c1, . . . ,cM} and ρ = diag{ρ1, . . . ,ρM}.

Assumption 3.3.1. For each subgroup, at least one leader should exist which provides a

reference trajectory to the followers. Any follower in a given subgroup is assumed to be

either well-informed or uninformed. If a follower belongs to the uninformed category, then

it is connected to at least one well-informed follower via a directed path to it.

Assumption 3.3.2. The subsets V1,V2, . . . ,Vp of the node set V do not form any cycle

among them.

Based on Assumption 3.3.2, L1 has a particular structure as shown below [47]

L1 =


L11 0 · · · 0

L21 L22 · · · 0
...

... . . . ...

Lp1 Lp2 · · · Lpp

 , (3.6)
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where Līī is the Laplacian matrix corresponding to Gī, and Lī j̄ and L j̄ī together express the

mutual interaction between the īth and j̄th subgroups where ī, j̄ ∈ {1, . . . , p} and ī 6= j̄.

Assumption 3.3.3. Every row-sum of Lī j̄ is zero when j̄ < ī for ī, j̄ ∈ {1, . . . , p}.

Remark 3.3.1. If two subgroups are connected via positive edges (i.e., edges having positive

weights), then the subgroups interact in a ‘cooperative’ relation. On the contrary, if they are

connected via negative edges, then the subgroups respond to each other in a ‘competitive’

relation. Both these modes exist together in a MAS and ensure that all the subgroups work

in unison to achieve individual sub-formations along with tracking the respective leaders.

Lemma 3.3.1. If Assumptions 3.3.1-3.3.3 are satisfied, then−L−1
1 L2 has the following form

−L−1
1 L2 =


e1 0 · · · 0

0 e2 · · · 0
...

... . . . ...

0 0 · · · ep

 , (3.7)

where eī = 1nī
[bς̂ī+1,bς̂ī+2, . . . ,bς̂ī+n̂ī

]/∑
ς̂ī+n̂ī
k=ς̂ī+1 bk.

Proof. We start with only one leader associated with each subgroup. For the īth subgroup,

let the vector êī ∈Rnī have ∑
ς̂ī+n̂ī
j=ς̂ī+1 w(ςī+i), j as its ith element if the ith agent of this subgroup

observes the leader, and all the other entries are 0. If Assumptions 3.3.1-3.3.3 hold, then Līī

is non-singular ∀ī ∈ {1, . . . , p} and we can express êī = Līī1nī
, which readily implies

L−1
īī êī = 1nī

. (3.8)

Let ē j ∈ Rn̂ī ( j ∈ {ς̂ī + 1, . . . , ς̂ī + n̂ī}) with 1 as its ( j− ς̂ī)th component and 0 elsewhere.

Post-multiplying both the sides of (3.8) by ēT
j b j/∑

ς̂ī+n̂ī
k=ς̂ī+1 bk, we get

L−1
īī êīē

T
j (b j/

ς̂ī+n̂ī

∑
k=ς̂ī+1

bk) = 1nī
ēT

j (b j/

ς̂ī+n̂ī

∑
k=ς̂ī+1

bk). (3.9)

It can be found that
ς̂ī+n̂ī

∑
j=ς̂ī+1

1nī
ēT

j (b j/

ς̂ī+n̂ī

∑
k=ς̂ī+1

bk)


=(1/

ς̂ī+n̂ī

∑
k=ς̂ī+1

bk)(1nī
⊗ [bς̂ī+1,bς̂ī+2, . . . ,bς̂ī+n̂ī

])

=eī.

(3.10)
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From (3.9) and (3.10), we have

Līīeī =

ς̂ī+n̂ī

∑
j=ς̂ī+1

êīē
T
j (b j/

ς̂ī+n̂ī

∑
k=ς̂ī+1

bk). (3.11)

Then we have

L1


e1 0 · · · 0

0 e2 · · · 0
...

... . . . ...

0 0 · · · ep



=


L11e1 0 · · · 0

0 L22e2 · · · 0
...

... . . . ...

0 0 · · · Lppep


=−L2.

(3.12)

Since L1 is non-singular, the conclusion is straightforward from (3.12).

Since B is assumed to have full rank m, there exists the pseudo inverse B̃ ∈ Rm×n such that

B̃B = Im . We can also choose another matrix B̄ ∈R(n−m)×n depending on the left null space

of B such that B̄B = 0 and
[
B̃T , B̄T ]T is non-singular.

Theorem 3.3.1 is the main contribution of this chapter which establishes the conditions to

be satisfied by the MAS (3.2) to achieve TGFT applying the fully distributed and nonlinear

control protocol proposed in (3.4), provided the agents and the network hold certain prop-

erties. Moreover, the leaders are subjected to exogenous (either reference or disturbance)

inputs independent of the dynamics of the agents and the network topology.

Theorem 3.3.1. Suppose Assumptions 3.2.1-3.3.3 hold and for a given σ ≥ 0, the positive

constant µ satisfies

µ > σ. (3.13)

If the following formation feasibility condition

B̄Ahi− B̄ḣi = 0 (3.14)

is satisfied for a given set of hi(t) ∈Rn for all t ≥ 0 and for all i ∈ F , then TGFT is achieved

by the MAS (3.2) on applying the fully distributed and nonlinear control protocol given in
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(3.4) with K =−R−1BT P, Γ = PBR−1BT P, γi = B̃ḣi− B̃Ahi and ρi = ξT
i Pξi, where P > 0 is

the solution of the algebraic Riccati equation (ARE)

AT P+PA+Q−PBR−1BT P = 0 (3.15)

for given Q > 0 and R > 0. The nonlinear function f (·) used in (3.4) is specified as

f (ξi(t)) =


BT Pξi(t)
‖BT Pξi(t)‖

when
∥∥BT Pξi(t)

∥∥ 6= 0;

0 when
∥∥BT Pξi(t)

∥∥= 0;
(3.16)

for all i ∈ F .

Proof. Since via Assumption 3.3.1, each subgroup contains a directed spanning tree, it can

be proved that all the eigenvalues of Līī have positive real part for all ī ∈ {1, . . . , p} [72].

Applying Lemma 2.1.1, there exists a real diagonal matrix Ξī > 0 such that

ΞīLīī +LT
īī Ξī > 0 ∀ī ∈ {1,2, . . . , p}. (3.17)

Define block diagonal matrices Ξ = diag{Ξ1, . . . ,Ξp} and ∆ = diag{δ1In1 , . . . ,δpInp} where

δī > 0 are required to be chosen such that ∆ΞL1 +LT
1 ∆Ξ > 0 holds. Now, we will show that

there always exists a set of δ = {δ1, . . . ,δp} such that the relation ∆ΞL1 +LT
1 ∆Ξ > 0 holds.

Let Θī = ΞīLīī +LT
īī Ξī and

Φī =


δ1Θ1 δ2LT

21Ξ2 ··· δīL
T
ī1Ξī

δ2Ξ2L21 δ2Θ2 ··· δīL
T
ī2Ξī

...
... . . . ...

δīΞīLī1 δīΞīLī2 ··· δīΘī

 ∀ī ∈ {1, . . . , p}.

For ī = 2, applying Schur Complement Lemma [79], we obtain Φ2 > 0 if and only if there

exist δ1 > 0 and δ2 > 0 such that δ1Θ1 > 0 and

δ1Θ1−δ2LT
21Ξ2Θ

−1
2 Ξ2L21 > 0. (3.18)

Since Θ1 > 0 and Θ2 > 0 via (3.17), we can always find a δ2 sufficiently smaller that δ1

such that (3.18) holds. The same arguments can be pursued to prove [47] that there always

exist δ1 > δ2 > · · ·> δp such that Φp = ∆ΞL1 +LT
1 ∆Ξ > 0 invoking (3.17).

Let the global formation tracking error be ξF = [ξT
1 , . . . ,ξ

T
M]T . Define zi = xi−hi ∀i ∈ F and

zF = [zT
1 , . . . ,z

T
M]T . Now ξF can be written in a compact form as

ξF = (L1⊗ In)zF +(L2⊗ In)xE . (3.19)
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Substituting (3.5) into the derivative of (3.19), the expressions for ξ̇F and ċi are obtained as
ξ̇F =

[
IM⊗A+L1(C+ρ)⊗BK

]
ξF +(L1⊗A)hF − (L1⊗ In)ḣF

+(L1⊗B)γ+(L2⊗B)uE −µ(L1⊗B)F(ξ),

ċi =ξ
T
i Γξi.

(3.20)

Consider the following Lyapunov function candidate

V1 =
M

∑
i=1

1
2

ϕi(2ci +ρi)ρi +
1
2

M

∑
i=1

ϕi(ci−β)2 (3.21)

where ∆Ξ = diag{ϕ1, . . . ,ϕM} is a positive definite matrix with ϕi ∈ R>0 ∀i ∈ F such that

∆ΞL1 +LT
1 ∆Ξ > 0, and β is a positive constant to be determined later. As ci(0) > 0 for all

i ∈ F , it follows from ċi(t)≥ 0 that ci(t)> 0 for all t > 0. Therefore, V1 is positive definite

and V1 = 0 when ξi = 0 ∀i ∈ F .

Now, the time derivative of V1 along any trajectory of (3.20) is given by

V̇1 =
M

∑
i=1

[ϕi(ci +ρi)ρ̇i +ϕiρiċi]+
M

∑
i=1

ϕi(ci−β)ċi

=
M

∑
i=1

2ϕi(ci +ρi)ξ
T
i Pξ̇i +

M

∑
i=1

ϕi(ρi + ci−β)ċi.

(3.22)

Note that
M

∑
i=1

ϕi(ρi + ci−β)ċi = ξF
T [(C+ρ−βI)∆Ξ⊗Γ]ξF (3.23)

and

M

∑
i=1

2ϕi(ci +ρi)ξ
T
i Pξ̇i = 2ξF

T [(C+ρ)∆Ξ⊗P]ξ̇F

= ξF
T [(C+ρ)∆Ξ⊗ (PA+AT P)− (C+ρ)(∆ΞL1 +LT

1 ∆Ξ)(C+ρ)⊗Γ]ξF

+2ξ
T
F [(C+ρ)∆ΞL1⊗PA]hF −2ξ

T
F [(C+ρ)∆ΞL1⊗P]ḣF

+2ξ
T
F [(C+ρ)∆ΞL1⊗PB]γ+2ξ

T
F [(C+ρ)∆ΞL2⊗PB]uE

−2µξ
T
F [(C+ρ)∆ΞL1⊗PB]F(ξ)

≤ ξF
T [(C+ρ)∆Ξ⊗ (PA+AT P)−λ

min
1 (C+ρ)2⊗Γ]ξF

+2ξ
T
F [(C+ρ)∆ΞL1⊗PA]hF −2ξ

T
F [(C+ρ)∆ΞL1⊗P]ḣF

+2ξ
T
F [(C+ρ)∆ΞL1⊗PB]γ+2ξ

T
F [(C+ρ)∆ΞL2⊗PB]uE

−2µξ
T
F [(C+ρ)∆ΞL1⊗PB]F(ξ), (3.24)
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where λmin
1 represents the smallest positive eigenvalue of ∆ΞL1 +LT

1 ∆Ξ.

If condition (3.14) holds, then we have

B̄Ahi− B̄ḣi + B̄Bγi = 0, (3.25)

since B̄B = 0. On letting γi = B̃ḣi− B̃Ahi ∀i ∈ F , it follows that

B̃Ahi− B̃ḣi + B̃Bγi = 0. (3.26)

From (3.25) and (3.26) and using the fact that
[
B̃T , B̄T ]T is non-singular, it implies

Ahi− ḣi +Bγi = 0 ∀i ∈ F, (3.27)

which can be rewritten in a compact form

[IM⊗A]hF − (IM⊗ In)ḣF +(IM⊗B)γ = 0. (3.28)

Pre-multiplying both sides of (3.28) by (C+ρ)∆ΞL1⊗P, we obtain[
(C+ρ)∆ΞL1⊗PA

]
hF −

[
(C+ρ)∆ΞL1⊗P

]
ḣF +

[
(C+ρ)∆ΞL1⊗PB

]
γ = 0. (3.29)

Substituting (3.23) and (3.24) into (3.22), we get

V̇1 ≤ ξ
T
F [(C+ρ)∆Ξ⊗ [PA+AT P+Γ]− (λmin

1 (C+ρ)2 +β∆Ξ)⊗Γ]ξF

+2ξ
T
F [(C+ρ)∆ΞL2⊗PB]uE −2µξ

T
F [(C+ρ)∆ΞL1⊗PB]F(ξ).

(3.30)

From (3.16), it is straightforward to show that

ξ
T
i PB f (ξi) =

∥∥BT Pξi
∥∥∀i ∈ F (3.31)

and

ξ
T
i PB f (ξ j)≤

∥∥BT Pξi
∥∥∥∥ f (ξ j)

∥∥ ∀i 6= j

≤
∥∥BT Pξi

∥∥ (3.32)

by applying the Cauchy-Schwarz inequality [55]. Subsequently, we have the following

relation

−2µξF [(C+ρ)∆ΞL1⊗PB]F(ξ)

=−2µ
M

∑
i=1

(ci +ρi)ϕiξ
T
i PB

M

∑
j=1

wi j[ f (ξi)− f (ξ j)]

−2µ
M

∑
i=1

(ci +ρi)ϕi

N

∑
k=M+1

wikξ
T
i PB f (ξi)

≤−2µ
M

∑
i=1

(ci +ρi)ϕi

N

∑
k=M+1

wik
∥∥BT Pξi

∥∥. (3.33)
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Since Assumption 3.2.1 holds, it follows that

2ξF [(C+ρ)∆ΞL2⊗PB]uE

= 2
M

∑
i=1

(ci +ρi)ϕi

N

∑
k=M+1

wikξ
T
i PBuk

≤ 2
M

∑
i=1

(ci +ρi)ϕi

N

∑
k=M+1

wik‖BT Pξi‖‖uk‖

≤ 2σ

M

∑
i=1

(ci +ρi)ϕi

N

∑
k=M+1

wik‖BT Pξi‖. (3.34)

From Lemma 2.1.2, we have

−ξ
T
F
[
[λ

min
1 (C+ρ)2 +β∆Ξ]⊗Γ

]
ξF ≤−2ξF

T [
√

λmin
1 β∆Ξ(C+ρ)⊗Γ]ξF . (3.35)

Selecting β≥ maxi∈F ϕi
λmin

1
and µ > σ, the inequality given in (3.30) implies

V̇1 ≤ ξF
T [(C+ρ)∆Ξ⊗ [PA+AT P−Γ]

]
ξF (3.36)

invoking (3.33), (3.34) and (3.35). Now, (3.36) can be simplified to

V̇1 ≤ ζF
T [IM⊗ (PA+AT P−PBR−1BT P)

]
ζF (3.37)

by applying the change of variable ζF = (
√
(C+ρ)∆Ξ⊗ I)ξF . This implies V̇1 ≤ 0, since

from (3.15), PA+AT P−PBR−1BT P = −Q < 0 for given Q > 0 and R > 0. Also, from

(3.37), V̇1 = 0 only when ζF = 0. This implies asymptotic stability of (3.20) in closed-loop

invoking LaSalle’s invariance principle [55]. Therefore, limt→∞ ζF(t) = 0 and hence

lim
t→∞

ξF(t) = 0, (3.38)

since ζF and ξF are related via non-singular transformation.

From (3.19) and (3.38), one gets

lim
t→∞

[
xF(t)−hF(t)− (−L−1

1 L2⊗ In)xE(t)
]
= 0. (3.39)

Applying Lemma 3.3.1, (3.39) can be rewritten as

lim
t→∞

[
xF(t)−hF(t)−

(


e1 0 · · · 0

0 e2 · · · 0
...

... . . . ...

0 0 · · · ep

⊗ In

)
xE(t)

]
= 0. (3.40)
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Rearranging (3.40) we have

lim
t→∞




x̄1(t)− h̄1(t)− (e1⊗ In)x̂1
...

x̄p(t)− h̄p(t)− (ep⊗ In)x̂p


= 0, (3.41)

that is, for any ī ∈ {1,2, . . . , p},

lim
t→∞

x̄ī(t)− h̄ī(t)−1nī

ς̂ī+n̂ī

∑
k=ς̂ī+1

 bk

∑
ς̂ī+n̂ī
j=ς̂ī+1 b j

xk(t)


= 0. (3.42)

Hence, it can be concluded that the predefined time-varying sub-formation h̄ī is achieved

by all the subgroups and the followers in each subgroup track a convex combination of the

states of the respective leaders. This completes the proof.

Remark 3.3.2. As the formation feasibility condition given in (3.14) imposes some con-

straints on the dynamics of the agents and the communication topology, not all types of

time-varying formations may be achieved by the followers. In order to design the TGFT

protocol, the formation feasibility condition needs to be satisfied a priori, which signifies

that a desired formation must be compatible with the dynamics of the agents. Note that

the function f (ξi) in (3.4) is nonsmooth, implying that the formation tracking controller

(3.4) is discontinuous. Since the right hand of (3.4) is measurable and locally essentially

bounded, the well-posedness and the existence of the solution to (3.20) can be understood

in the Filippov sense [80].

Remark 3.3.3. In contrast to the results reported in [77], where only ‘group formation sta-

bilization’ problems are addressed, the nonlinear, adaptive control protocol designed in this

chapter can be used to deal with ‘group formation tracking’ problems as well. Also, di-

rect computation of the smallest positive eigenvalue of the Laplacian matrix is avoided in

the proposed scheme, which uses only relative state information with respect to the neigh-

bours. In virtue of this, the proposed control scheme becomes scalable and re-configurable

for large-scale networked systems.

Remark 3.3.4. When n̂ī = 1 ∀ī ∈ {1,2, . . . , p}, Theorem 1 specializes to cluster control

problems as discussed in [47, 75, 76]. If p = 1, it is straightforward to assert that the TGFT

problem reduces to the formation tracking problem with multiple leaders as done in [81]. In
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the case where p = 1 and M = N− 1, Theorem 1 can be applied to deal with the standard

formation tracking problem [13]. It can further be noted that the TGFT problem solved in

this chapter reduces to the consensus problem, as discussed in [74] and [78], when hi = 0

∀i ∈ {1, . . . ,M}, p = 1 and M = N−1. Therefore, consensus problem, formation problem,

and cluster problem can all be viewed as special cases of the TGFT problem addressed in

this chapter.

Following Theorem 3.3.1, a systematic procedure to construct the control law ui is given in

Algorithm 1.

Algorithm 1 Procedure to design the control law for TGFT problem involving multiple
leaders

1: for each agent i ∈ {1, . . . ,M} do
2: suppose the MAS (3.2) satisfies Assumptions 3.2.1-3.3.3;
3: select the desired formation reference hi(t) ∈ Rn ∀t ≥ 0;
4: if formation feasibility condition (3.14) is satisfied then
5: choose a positive constant µ > σ for a given σ≥ 0;
6: find P > 0 by solving the ARE (3.15) for given Q > 0 and R > 0;
7: compute the controller gain matrices K and Γ, and the smooth function ρi using

P > 0;
8: choose the matrices B̃ and B̄ such that B̃B = Im and B̄B = 0. Then find γi using

ḣi, hi and the matrices B̃ and B̄;
9: design the nonlinear function f (·) based on (3.16);

10: construct the adaptive and nonlinear control protocol ui given in (3.4);
11: else
12: back to Step 3;
13: end if
14: end for

3.4 Application: Multi-Target Surveillance of Nonholonomic

Mobile Robots

In this section, the proposed TGFT control protocol has been utilized to solve a multi-target

surveillance problem for a group of nonholonomic mobile robots.
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3.4.1 Robot Dynamics

Let us consider a scenario where twelve nonholonomic mobile robots are engaged in a multi-

target surveillance operation in a 2D plane. Each of the robots is assumed to possess the

same dynamics and structure, and they are described by the following first-order differential

equations in terms of the global coordinates as

ẋxi = vi cosθi,

ẋyi = vi sinθi,

θ̇i = ωi ∀i ∈ {1, . . . ,12},

where xxi and xyi together represent the position of the ith robot in the X −Y plane (i.e., in

Cartesian coordinates); vi and ωi denote respectively the linear and angular velocities; and

θi represents the heading angle measured in an anticlockwise sense from the positive X axis.

To avoid saturation of the electric motors, the linear velocity of each mobile robot is con-

strained to

vi ≤ vmax,

where vmax = 10m/s is the velocity limit.

For each mobile robot, we introduce a new control input qi such that

v̇i = qi.

Define vxi = vi cosθi and vyi = vi sinθi as the components of the linear velocity along the X

and Y directions respectively. Then, we have ẋxi = vxi and ẋyi = vyi. The dynamics can be

expressed in terms of qi and ωi asv̇xi

v̇yi

=

cosθi −vi sinθi

sinθi vi cosθi

qi

ωi

 .
Assuming vi 6= 0, the control input is designed asqi

ωi

=

 cosθi sinθi

− sinθi
vi
−cosθi

vi

uxi

uyi

 .
Now, applying feedback linearization, we obtain the linearized state-space model for each

mobile robot (including the followers and leaders) which conforms to (3.2) with ui = [uT
xi,u

T
yi]

T
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Figure 3.2: Interaction topology (a) before 60s and (b) after 60s.

and xi = [xT
xi,v

T
xi,x

T
yi,v

T
yi]

T and the matrices A and B are given by

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , B =


0 0

1 0

0 0

0 1

 .

3.4.2 Group Formation and Tracking

In this case study, it is assumed that there are four targets (labelled as 13,14,15,16) moving

in the same direction during first 60 seconds. After that, due to bounded external distur-

bances the targets start moving away from each other. In order to achieve this operation,

u13 = [−0.5,2]T , u14 = [−0.5,2]T , u15 = [1,1]T and u16 = [2,−0.5]T are applied to the tar-

gets during 60 - 61.5 seconds. Note that these external disturbances are unknown to the

followers. In the first stage (0− 60s), the follower robots are expected to build a circular

formation surrounding all four targets (considered as leaders). After 60s, the followers are

divided into three subgroups to form individual sub-formations around each target for bet-

ter monitoring as the targets start moving away in arbitrary directions due to the effect of
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Case I 

Case II 

Figure 3.3: Formation and sub-formation diagrams for the multi-robot system in X −Y
plane.

 

(a)

 

(b)

 

(c)

Figure 3.4: Time evolvement of the positions of the follower robots belonging to (a) Sub-
group 1, (b) Subgroup 2, and (c) Subgroup 3.

external disturbance.

Case I (Complete formation, 0-60s): The graph shown in Fig. 3.2(a) illustrates the inter-

connection of the robots engaged in the surveillance operation. The time-varying circular

formation for the follower robots is specified by

hi(t) =


r sin(wt + 2(i−1)π

12 )

wr cos(wt + 2(i−1)π
12 )

r cos(wt + 2(i−1)π
12 )

−wr sin(wt + 2(i−1)π
12 )

 ∀i ∈ {1,2, . . . ,12} ,

where r = 20m and w = 0.1rad/s.

Let us choose B̃ =

0 1 0 0

0 0 0 1

 and B̄ =

1 0 0 0

0 0 1 0

, such that B̃B = I2 and B̄B = 0.
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Note that this choice of B̄ and hi(t) satisfies the formation feasibility condition (3.14) given

in Theorem 3.3.1.

We choose Q =

[0.05 0 0 0
0 0.01 0 0
0 0 0.2 0
0 0 0 0.01

]
and R =

1 0

0 1

, and on solving the ARE (3.15), we get

P =


0.1512 0.2236 0 0

0.2236 0.6762 0 0

0 0 0.4253 0.4472

0 0 0.4472 0.9510

> 0.

The controller gain matrices are then calculated as

K =

−0.2236 −0.6762 0 0

0 0 −0.4472 −0.9510


and

Γ =


0.0500 0.1512 0 0

0.1512 0.4572 0 0

0 0 0.2000 0.4253

0 0 0.4253 0.9044

 .

µ = 1 is selected for a given σ = 0.5 and the nonlinear functions f (ξi) are also constructed

according to (3.10) to form the TGFT control protocol (3.4). The function ρi is computed as

ρi = ξ
T
i


0.1512 0.2236 0 0

0.2236 0.6762 0 0

0 0 0.4253 0.4472

0 0 0.4472 0.9510

ξi,

and γi is obtained as

γi =

−0.2sin(0.1t + 2(i−1)π
12 )

−0.2cos(0.1t + 2(i−1)π
12 )

 ∀i ∈ {1,2, . . . ,12}.

Fig. 3.3 shows that the follower robots ∀i ∈ {1,2, . . . ,12} gradually attain the circular for-

mation specified by hi(t) starting from arbitrary initial positions. Moreover, the formation

continues to revolve around the targets.
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Figure 3.5: Variation of the coupling gains ci with respect to time.

Case II (Sub-formations, 60-100s): These twelve mobile robots are divided into three sub-

groups, namely, V1 = {1,2,3,4}, V2 = {5,6,7,8} and V3 = {9,10,11,12} depending on

the relative positions of the targets. V1 has been assigned two targets (13 and 14), while

each of V2 and V3 has one target. Fig. 3.2(b) shows the modified interaction topology cor-

responding to Case II. The desired time-varying sub-formations for all three subgroups are

specified by

hi(t) =




20sin(0.1t +2(i−1)π/4)

2cos(0.1t +2(i−1)π/4)

20cos(0.1t +2(i−1)π/4)

−2sin(0.1t +2(i−1)π/4)

 i ∈ V1,


15sin(0.2t +2(i−1)π/4)

3cos(0.2t +2(i−1)π/4)

15cos(0.2t +2(i−1)π/4)

−3sin(0.2t +2(i−1)π/4)

 i ∈ V2,


10sin(0.3t +2(i−1)π/4)

3cos(0.3t +2(i−1)π/4)

10cos(0.3t +2(i−1)π/4)

−3sin(0.3t +2(i−1)π/4)

 i ∈ V3.

For the same B̃, B̄ and other controller parameters as taken in Case I, it can be readily verified

that the sub-formations specified by hi(t) above, for all i ∈ V1, V2 and V3, satisfy the group

formation feasibility constraint (3.14) and hence, each subgroup will achieve the individual

sub-formations according to Theorem 3.3.1. The functions γi for all i ∈ {1, . . . ,12} are
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Figure 3.6: Time-variation of 2-norms of the group formation tracking errors ξi.

mentioned below as

γi =



−0.2sin(0.1t + 2(i−1)π
4 )

−0.2cos(0.1t + 2(i−1)π
4 )

 i ∈ V1,−0.6sin(0.2t + 2(i−1)π
4 )

−0.6cos(0.2t + 2(i−1)π
4 )

 i ∈ V2,−0.9sin(0.3t + 2(i−1)π
4 )

−0.9cos(0.3t + 2(i−1)π
4 )

 i ∈ V3.

The time evolution of the spatial positions of the robots (both the followers and the targets)

are plotted in Fig. 3.3 which reveals that for t ≤ 60s, the follower robots (1,2, . . . ,12) to-

gether give rise to a dodecagon-shaped formation and keep rotating around the four targets.

Fig. 3.5 depicts the time-variations of the coupling weights ci(t) ∀i ∈ {1,2, . . . ,12} which

shows that the coupling weights remain bounded ∀t ≥ 0 and they converge to finite positive

values. Fig. 3.6 illustrates that the 2-norm of the group formation tracking error ξi(t) for

each follower decays sharply to zero which confirms the followers are able to track a convex

combination of the positions of the targets. After t > 60s, we observe that three subgroups

are formed and they eventually attain the predefined time-varying circular sub-formations

surrounding the respective targets. Fig 3.5 shows that for t > 60s, the coupling weights

adapt to a new set of finite values to counteract the changeover from complete formation

to sub-formation. Thus, TGFT involving multiple targets is achieved by the TGFT control

protocol introduced in this chapter. Henceforth, it can be concluded that the multi-target

surveillance operation is accomplished by the designed control law.
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3.5 Conclusion

A distributed, adaptive and nonlinear control protocol has been introduced in this chapter

to achieve TGFT for linear MASs having directed communication topology. The control

objectives also include sub-formation and tracking, that is, the followers are divided into

several subgroups depending on the positions of the leaders and each subgroup reaches in-

dividual sub-formations while tracking the positions of the respective leaders attached to

that subgroup. In contrast to existing literature, the present chapter addresses the group for-

mation tracking problem where each subgroup can have multiple leaders and the leaders

may have separate control inputs. The proposed scheme finds a lot of applications in swarm

robotics especially in multi-target surveillance operations where the targets (considered as

leaders) may be placed far apart and sometimes, the targets may keep on changing their po-

sitions due to external disturbance. In order to tackle such constraints, in this chapter, each

target considers a bounded exogenous input (reference or disturbance) in its dynamic model

instead of being characterized as an autonomous system. The proposed control technique is

fully distributed as it requires only the relative state information and does not need to calcu-

late the eigenvalues of the graph Laplacian. The advantage of using an appropriate blending

of adaptive and nonlinear control techniques is to render the proposed control scheme robust

to network topology changes because in the future, this work may be extended to deal with

parameter variations and model uncertainties of the agents. Moreover, the TGFT problem

should be also extended tor heterogeneous MASs.



Chapter 4

Two-Layer Fully Distributed

Formation-Containment Control Scheme

for Multi-Agent Systems

4.1 Introduction

Recently, with the development of algebraic graph theory, many consensus-based control

strategies have been applied to solve formation control problems [82]. Formation tracking

control of first-order MASs is analyzed in [83]. In [84], a distributed formation control

strategy is applied to a group of second-order MASs based on local neighbour-to-neighbour

information exchange. A finite-time formation control protocol for second-order MASs is

proposed in [85], where a time-invariant formation tracking is achieved within finite time.

It is worth emphasizing that in some practical applications the dynamics of the agents can

only be described by high-order models. [86] discusses the formation stability problems for

general high-order swarm systems, and the result is extended to deal with formation tracking

for multiple high-order autonomous agents by using a two-level consensus approach given

in [87]. Experimental results on static formation of quadrotor swarm systems based on

consensus approach are reported in [65], while time-varying formation control of MASs is

still an active area of research which requires further attentions.

53
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Figure 4.1: A visual illustration of the formation containment activity involving six leader
robots, two follower robots and a target (the quadrotor): (a) The leader robots have already
achieved a hexagonal formation and keep tracking the target while the followers have en-
tered into the sensing range of two right-most leaders; (b) The leaders detect the followers,
start communicating with them and finally, make them converged into the convex hull (in-
dicated by Green dotted lines) spanned by the positions of the leaders.

Another significant research topic in the cooperative control of MASs is the containment

control, which deals with multiple leaders and where the states of the followers are required

to converge into a convex hull spanned by those of the leaders. In [88], containment control

problems for both continuous-time and discrete-time MASs with general linear dynamics

under directed communication topologies are investigated. Containment control is applied

to a group of mobile autonomous agents with single-integrator kinematics under both fixed

and switching communication networks in [89]. Besides, theoretical results for containment

control of autonomous vehicles with double-integrator dynamics are validated through ex-

periments in [40]. Mei et al. [90] have studied the distributed containment control problem

for networked Lagrangian systems with multiple dynamic leaders in presence of parametric

uncertainties. However, it is assumed in [90] that the leaders do not communicate among

themselves , which is not usual in real-time applications.

Based on the formation control and containment control, the notion of formation-containment

is proposed in the recent years, which requires the states of leaders to develop certain forma-

tion while the states of followers converge into the convex hull spanned by the states of the
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leaders. One of the potential applications of formation-containment control is ‘search and

rescue problem’ of mobile robots in hazardous and extreme environments, where the leader

robots with detection devices are able to achieve a predefined formation depending on the

surrounding environment and the follower robots then move into a safe region formed by the

leaders. An example is shown in Fig. 4.1. The articles [91–93] have laid major contribution

in the area of formation-containment control of Euler-Lagrange systems: in [91], a cooper-

ative and adaptive formation-containment control framework has been introduced for net-

worked Euler-Lagrange systems without using relative velocity information; in [92], the de-

velopment of [91] has been extended to consider the effect of input saturation; while in [93],

the formation-containment control problem of Euler-Lagrange systems is solved in an event-

triggered framework. Formation-containment control of first-order and second-order MASs

are investigated in [94] and [95], respectively. LQR-based formation-containment of high-

order MASs is developed in [96]. The output formation-containment problem of coupled

heterogeneous linear systems with undirected graph and directed graph are addressed in [97]

and [63] respectively. In [78], the authors have proposed fully distributed consensus pro-

tocols to achieve leader-follower consensus in directed graphs under external disturbances.

In practice, bidirectional communication is not robust and reliable when unexpected com-

munication failure occurs. To counteract sudden communication channel disruptions during

real-time implementation, it is required to study formation-containment control with di-

rected interaction topology. In some of the applications, a MAS should not only accomplish

the given formation-containment task, but also track the desired trajectories provided by a

virtual leader, which may have nonzero control input. A virtual leader may be considered

as a pseudo agent which generates the formation reference signal for the leader agents. To

the best of authors’ knowledge, fully distributed formation-containment control problem for

linear MASs with a virtual leader having its own control input independent of the agents

and the network topology are not yet explored much.

Motivated by the issues stated above, the distributed formation-containment problem for

LTI MASs with directed communication topologies is investigated in this chapter. First, the

entire MAS is decomposed into the leaders’ layer and the followers’ layer, and fully dis-

tributed protocols are designed based on neighbouring state information, which make the
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proposed control design fully distributed and independent of global information about com-

munication topologies. Then, conditions to achieve formation-containment are presented,

where a feasible formation set is also given. An algorithm to design the adaptive control

law is proposed which involves a particular algebraic Riccati equation (ARE). It is shown

that the consensus problem, formation tracking problem, and containment control problem

can all be viewed as special cases of formation-containment problem solved in this chapter.

Finally, numerical examples are provided to demonstrate the effectiveness of the proposed

theory.

Compared to the existing results on formation-containment control of MASs, the proposed

results of this chapter offer several advantages as mentioned below:

• In the present approach, we have considered a separate control input for the virtual

leader (i.e. the formation reference) independent of the other agents and their inter-

actions, in contrast to the existing results which consider the virtual agent to be an

autonomous system only. Due to this improvisation, the time-varying formation of

the leaders can also track any given bounded reference signal;

• Another advantage of the proposed scheme is that it does not need to compute the

Laplacian matrix of the communication topology, unlike most of the existing coop-

erative control strategies. The proposed method uses only the relative state informa-

tion and thereby avoids explicit computation of the Laplacian matrix and hence, the

scheme is scalable for large-scale networked systems;

• The dynamics of the leaders and followers are not restricted to first/second-order

models often considered in the literature for simplicity. Therefore, the actual sys-

tem dynamics of the agents can be handled in the present approach. Furthermore,

the communication topology of the MASs can be both directed as well as undirected

which enables the proposed scheme to be flexible, reconfigurable and robust to net-

work topology changes.

Rest of the chapter is organized as follows. Section 4.2 discusses the problem formula-

tion. Section 4.3 contains the main contribution of the chapter, which derives a two-layer
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fully distributed formation-containment control protocol for networked MASs with time-

varying formation reference. Two detailed case studies are considered in Section 4.4 to

show the effectiveness of the proposed methodology. One of them deals with the formation-

containment of a team of networked satellites, and the other one shows experimental valida-

tion using nonholonomic mobile robots. Section 4.5 concludes the chapter mentioning the

future research directions.

4.2 Problem Formulation

Consider a MAS of N agents, which consists of M followers and rest N−M leaders. Let

F = {1,2, . . . ,M} and E = {M + 1,M + 2, . . . ,N} be the sets of the followers and leaders

respectively. The dynamics of each agent is described by

ẋi = Axi +Bui ∀i ∈ {1,2, . . . ,N}, (4.1)

where xi = xi(t)∈Rn is the state of the ith agent and ui = ui(t)∈Rm is the associated control

input for all t ∈ R≥0. A ∈ Rn×n and B ∈ Rn×m are constant matrices with rank(B) = m

and (A,B) being stabilizable. The desired trajectory of a formation (i.e., the formation

reference) is generated by a separate agent, called the virtual leader. It is also considered as

the (N +1)th leader with the dynamics

ẋN+1 = (A+BK1)xN+1 +BuN+1, (4.2)

where xN+1 = xN+1(t) ∈ Rn and uN+1 = uN+1(t) ∈ Rm are its state and control input, re-

spectively, for all t ∈ R≥0 and K1 ∈ Rm×n is a constant matrix to be chosen by the designer

to meet the requirement of the task.

Assumption 4.2.1. The bounded control input uN+1(t) is unknown to all leaders and fol-

lowers, and there exists a positive constant σ such that ‖uN+1(t)‖ ≤ σ ∀t.

Being inspired from the developments of [96] and [97], a two-layer framework is adopted

to handle the distributed formation-containment problem, which consists of the leaders’

formation layer and the followers’ containment layer. In the first layer, the leaders are

supposed to achieve a predetermined time-varying formation and move together following
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a desired reference. In the second layer, all the followers are expected to converge into a

convex hull spanned by the leaders. The two-layer formation-containment is said to be met

if and only if the control objectives in both the layers are achieved. The communication

topology among each agent is denoted by G which satisfies the following assumption.

Assumption 4.2.2. Suppose the neighbours of a leader are only leaders or the virtual leader,

and the neighbours of a follower are either leaders or followers.

Under Assumption 4.2.2, the Laplacian matrix L associated with the graph G can be parti-

tioned as

L =


L1 L2 0M×1

0(N−M)×M L3 L4

01×M 01×(N−M) 01×1

 (4.3)

where L1 ∈ RM×M, L2 ∈ RM×(N−M), L3 ∈ R(N−M)×(N−M) and L4 ∈ R(N−M)×1. Desired

formation of the leaders is specified by the vector hE =
[
hT

M+1,h
T
M+2, . . . ,h

T
N
]T where hi ∈Rn

for all i ∈ E. hi can be time-varying as well and in that case, hi(t) ∈ Rn for all t ∈ R≥0.

Desired formation hi is pre-specified to the ith leader. For simplicity of presentation, explicit

dependence of hi on time t ∈ R≥0 is omitted.

Definition 4.2.1. The leaders are said to achieve time-varying formation tracking with the

virtual leader if for any given bounded initial states and any j ∈ E,

lim
t→∞

(
x j(t)−h j(t)− xN+1(t)

)
= 0. (4.4)

Definition 4.2.2. The followers are said to achieve containment if for any given bounded

initial states and any k ∈ F , there exist nonnegative constants αk j satisfying ∑
N
j=M+1 αk j = 1

such that

lim
t→∞

(
xk(t)−

N

∑
j=M+1

αk jx j(t)

)
= 0. (4.5)

Definition 4.2.3. The MAS (4.1) is said to achieve formation-containment if for any given

bounded initial states, any k ∈ F and j ∈ E, there exist nonnegative constants αk j satisfying

∑
N
j=M+1 αk j = 1 such that (4.4) and (4.5) hold simultaneously.

Remark 4.2.1. According to Definitions 4.2.1–4.2.3, it can be argued that if M = 0, the two-

layer formation-containment problem reduces to ‘formation tracking’ problem. If M = 0
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and hE ≡ 0, the formation-containment problem specializes to ‘consensus seeking’ prob-

lem. Moreover, if hE ≡ 0 and leaders have no neighbours, then we can conclude that the

formation-containment problem specializes to ‘containment’ problem. Therefore, the con-

sensus seeking, formation tracking and containment control can all be viewed as special

cases of formation-containment control problem.

In this chapter, we introduce a fully distributed time-varying formation-containment control

(FCC) protocol given below:ui = K1xi +(ci +ρi)K2ξi−µ f (ξi),

ċi = ξ
T
i Γξi,

∀i ∈ E; (4.6)

ui = K1xi +(ĉi + ρ̂i)K2ςi−η f (ςi),

˙̂ci = ς
T
i Γςi,

∀i ∈ F ; (4.7)

where

ξi =
N

∑
j=M+1

ai j
[
(xi−hi)− (x j−h j)

]
+ai,N+1

[
(xi−hi)− xN+1

]
and ςi =

N

∑
j=1

ai j(xi− x j).

(4.8)

Above, ci(t) and ĉi(t) denote the time-varying coupling weights associated with the ith agent

with ci(0)≥ 0 and ĉi(0)≥ 0; K1 ∈Rm×n, K2 ∈Rm×n and Γ ∈Rn×n are constant matrices to

be chosen; η and µ are positive constants to be selected; ρ̂i and ρi are smooth functions of

ςi and ξi respectively; and f (.) represents a nonlinear function to be determined later.

If two-layer formation-containment is achieved, the leaders will first attain the desired for-

mation (time-varying/stationary) and keep tracking the reference trajectory generated by the

virtual leader, and after that, the followers will converge into the convex hull spanned by the

leaders. This chapter primarily focuses on the following issues: (i) under which conditions

the formation-containment can be achieved, and (ii) the steps to design a fully distributed

(i.e., distributed and adaptive) control protocol to achieve two-layer formation-containment.

4.3 Formation-Containment Control Protocol Design

In this section, the problem of designing a fully distributed formation-containment control

(FCC) protocol for LTI MASs, represented by (4.1), is investigated.
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Assumption 4.3.1. The interaction topology among the leaders has a spanning tree with the

virtual leader being the root node.

Assumption 4.3.2. For each follower, there exists at least one leader that has a directed path

to it.

The following lemma taken from [42] can be proved under Assumptions 4.3.1 and 4.3.2.

Lemma 4.3.1. [42] If the directed interaction topology G satisfies Assumptions 4.3.1 and

4.3.2, then all the eigenvalues of L1 and L3 have positive real parts, each entry of −L−1
1 L2 is

nonnegative, and each row of −L−1
1 L2 has a sum equal to one.

Let xF =
[
xT

1 ,x
T
2 , . . . ,x

T
M
]T , xE =

[
xT

M+1,x
T
M+2, . . . ,x

T
N
]T , F(ς)=

[
f T (ς1), f T (ς2), . . . , f T (ςM)

]T
and F(ξ) =

[
f T (ξM+1), f T (ξM+2), . . . , f T (ξN)

]T . Note that xF and xE are variables of time

t ∈ R≥0. With the fully distributed formation-containment control (FCC) protocol given by

(4.7) and (4.6), the closed-loop dynamics of the MAS (4.1) can be written in a compact form

as
ẋE =

[
IN−M⊗ (A+BK1)+(C+ρ)L3⊗BK2

]
xE +

[
(C+ρ)L4⊗BK2

]
xN+1

−
[
(C+ρ)L3⊗BK2

]
hE −µ(IN−M⊗B)F(ξ)

ċi =ξ
T
i Γξi;

(4.9)

ẋF =
[
IM⊗ (A+BK1)+(Ĉ+ ρ̂)L1⊗BK2

]
xF +

[
(Ĉ+ ρ̂)L2⊗BK2

]
xE −η(IM⊗B)F(ς)

˙̂ci =ς
T
i Γςi;

(4.10)

where ρ = diag{ρM+1, . . . ,ρN}, C = diag{cM+1, . . . ,cN}, Ĉ = diag{ĉ1, . . . , ĉM}, and ρ̂ =

diag{ρ̂1, . . . , ρ̂M},.

Let the global formation tracking error vector of the leaders be ξ = [ξT
M+1, . . . ,ξ

T
N ]

T where

ξi for all i ∈ {M + 1, . . . ,N} are as defined in (4.8). Let zi = xi− hi for all i ∈ E and zE =[
zT

M+1, . . . ,z
T
N
]T . Now, ξ can be written in the Kronecker product form as

ξ = (L3⊗ In)zE +(L4⊗ In)xN+1. (4.11)

Note that zE , xN+1 and ξ are all time-dependent vectors for all t ∈R≥0. If formation tracking

is achieved asymptotically by the leaders, then we have limt→∞ ξ(t) = 0 which implies from
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(4.11)

lim
t→∞

[
xE(t)−hE(t)+L−1

3 L4⊗ xN+1(t)
]
= 0. (4.12)

From Assumption 4.3.1 it follows that L−1
3 L4 =−1N−M [42], then (4.12) reduces to

lim
t→∞

[xE(t)−hE(t)−1N−M⊗ xN+1(t)] = 0. (4.13)

Subsequently, the global containment error of the followers is denoted by ς = [ςT
1 , . . . ,ς

T
M]T

which can be expressed in a compact form as:

ς = (L2⊗ In)xE +(L1⊗ In)xF . (4.14)

Note that xE , xF and ς are all time-dependent vectors. If the containment phase is reached

asymptotically by the followers, then we can write lim
t→∞

ς(t) = 0. This implies from (4.14)

lim
t→∞

[
xF(t)− (−L−1

1 L2⊗ In)xE(t)
]
= 0. (4.15)

Therefore, the MAS (4.1) achieves the formation-containment by applying the fully dis-

tributed FCC protocol (4.7) and (4.6), if for any given bounded initial states,
lim
t→∞

ς(t) = 0 and

lim
t→∞

ξ(t) = 0.
(4.16)

The following theorem is the main contribution of this chapter which establishes the con-

ditions to be satisfied by the MASs (4.1) to achieve formation-containment applying the

fully distributed FCC protocol proposed in (4.7) and (4.6), provided the agents and the net-

work hold certain properties. Moreover, the virtual leader has its own control input uN+1

independent of the dynamics of the agents and the network topology.

Theorem 4.3.1. Suppose, Assumptions 4.2.1-4.3.2 hold and for a given σ≥ 0, the constants

η and µ satisfy the relation

η≥ µ≥ σ. (4.17)

If the following formation feasibility condition

(A+BK1)(hi−h j)− (ḣi− ḣ j) = 0 ∀i, j ∈ E, (4.18)

is satisfied for a given choice of K1 ∈ Rm×n and hi ∈ Rn, then the two-layer formation-

containment is achieved with the fully distributed FCC protocol given in (4.7) and (4.6)
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with K2 = −R−1BT P, Γ = PBR−1BT P, ρ̂i = ςT
i Pςi and ρi = ξT

i Pξi, where P > 0 is the

solution of the algebraic Riccati equation:

(A+BK1)
T P+P(A+BK1)+Q−PBR−1BT P = 0 (4.19)

for given Q > 0 and R > 0. The nonlinear function f (.) used in (4.7) and (4.6) is designed

as:

f (χ) =


BT Pχ

‖BT Pχ‖
when

∥∥BT Pχ
∥∥ 6= 0,

0 when
∥∥BT Pχ

∥∥= 0;

(4.20)

where χ ∈ Rn represents either ςi or ξi for all i ∈ {1,2, . . . ,N}.

Proof. The proof has been divided into two parts: Part I establishes the formation tracking

by the leaders; while Part II deals with containment of the followers.

(Part I: Formation tracking) We first derive the closed-loop dynamics of the leaders ap-

proaching formation tracking with the help of the proposed distributed and adaptive control

law (4.6). Substituting (4.6) into (4.1) and then, substituting further the resulting expression

into the derivative of (4.11), we obtain
ξ̇ =
[
IN−M⊗ (A+BK1)+(C+ρ)L3⊗BK2

]
ξ+[L3⊗ (A+BK1)]hE − (L3⊗ In)ḣE

−µ(L3⊗B)F(ξ)− (L31N−M⊗B)uN+1 and

ċi =ξ
T
i Γξi.

(4.21)

Achieving formation tracking by the leaders is posed as an asymptotic stability problem of

the closed-loop dynamics (4.21) involving ξ̇ and ċi. In order to prove asymptotic stability

of (4.21) using Lyapunov stability approach, we consider the following Lyapunov function

candidate

V1 =
1
2

N

∑
i=M+1

gi(2ci +ρi)ρi +
1
2

N

∑
i=M+1

gi(ci−α)2 (4.22)

where gi > 0 for all i, ci(t) > 0 for all t ≥ 0 and for all i since Γ > 0, ρi > 0 for all i since

P > 0, and α > 0. Therefore, V1 > 0. Since the sub-Laplacian matrix L3 corresponding to

the interaction topology of the leaders is a non-singular M-matrix (exploiting the property

given in Lemma 4.3.1), there exists a diagonal positive definite matrix G ∈ R(N−M)×(N−M)

such that

GL3 +LT
3 G > 0 (4.23)
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holds via Lemma 2.1.1. As the scalar parameters gi can take any positive values as decided

by the designer, we may choose G = diag{gM+1,gM+2, . . . ,gN} such that (4.23) is satisfied.

The time derivative of V1 along any trajectories of (4.21) is obtained as:

V̇1 =
N

∑
i=M+1

[gi(ci +ρi)ρ̇i +giρiċi]+
N

∑
i=M+1

gi(ci−α)ċi

=
N

∑
i=M+1

2gi(ci +ρi)ξ
T
i Pξ̇i +

N

∑
i=M+1

gi(ρi + ci−α)ċi. (4.24)

We will first convert the summation terms present in (4.24) into the Kronecker product form

aiming to finally express V̇1 in a quadratic form with respect to ξ. Note that

N

∑
i=M+1

gi(ρi + ci−α)ċi = ξ
T [(C+ρ−αI)G⊗Γ]ξ, (4.25)

and

N

∑
i=M+1

2gi(ci +ρi)ξ
T
i Pξ̇i

= 2ξ
T [(C+ρ)G⊗P] ξ̇

= ξ
T
[
(C+ρ)G⊗

[
P(A+BK1)+(A+BK1)

T P
]
− (C+ρ)(GL3 +LT

3 G)(C+ρ)⊗Γ

]
ξ

+2ξ
T [(C+ρ)GL3⊗P(A+BK1)]hE −2ξ

T [(C+ρ)GL3⊗P] ḣE

−2µξ [(C+ρ)GL3⊗PB]F(ξ)−2ξ [(C+ρ)GL3⊗PB] (1N−M⊗uN+1)

≤ ξ
T
[
(C+ρ)G⊗ [P(A+BK1)+(A+BK1)

T P]−λ
min
0 (C+ρ)2⊗Γ

]
ξ

+2ξ
T [(C+ρ)GL3⊗P(A+BK1)]hE −2ξ

T [(C+ρ)GL3⊗P] ḣE

−2µξ
T [(C+ρ)GL3⊗PB]F(ξ)−2ξ [(C+ρ)GL3⊗PB] (1N−M⊗uN+1)

(4.26)

where λmin
0 represents the smallest positive eigenvalue of

[
GL3 +LT

3 G
]
. We will now sim-

plify each of the terms appearing in expressions (4.25) and (4.26). From (4.20), it is straight-

forward to show that

ξ
T
i PB f (ξi) =

∥∥BT Pξi
∥∥ ∀i ∈ {M+1,M+2, . . . ,N}. (4.27)

Applying Cauchy-Schwarz inequality [55] on (4.27), we obtain

ξ
T
i PB f (ξ j)≤

∥∥BT Pξi
∥∥∥∥ f (ξ j)

∥∥
=
∥∥BT Pξi

∥∥ ∀i 6= j.
(4.28)
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We now simplify the following term containing F(ξ)

−2µξ
T [(C+ρ)GL3⊗PB]F(ξ)

=−2µ
N

∑
i=M+1

(ci +ρi)giξ
T
i PB

N

∑
j=M+1

ai j[ f (ξi)− f (ξ j)]−2µ
N

∑
i=M+1

(ci +ρi)giai,N+1ξ
T
i PB f (ξi)

=−2µ
N

∑
i=M+1

(ci +ρi)gi

N

∑
j=M+1

ai j
[
ξ

T
i PB f (ξi)−ξ

T
i PB f (ξ j)

]
−2µ

N

∑
i=M+1

(ci +ρi)giai,N+1ξ
T
i PB f (ξi)

≤−2µ
N

∑
i=M+1

(ci +ρi)giai,N+1
∥∥BT Pξi

∥∥
(4.29)

since
[
ξT

i PB f (ξi)−ξT
i PB f (ξ j)

]
≤ 0 ∀i from (4.27) and (4.28), and rest of the parameters

ci, ρi, gi, µ are all positive. Subsequently, we simplify another component, as shown below,

involving the virtual leader’s input uN+1

−2ξ [(C+ρ)GL3⊗PB] (1N−M⊗uN+1)

=−2
N

∑
i=M+1

(ci +ρi)giai,N+1ξ
T
i PBuN+1

≤ 2
N

∑
i=M+1

(ci +ρi)giai,N+1
∥∥BT Pξi

∥∥‖uN+1‖

≤ 2σ

N

∑
i=M+1

(ci +ρi)giai,N+1
∥∥BT Pξi

∥∥ [due to Assumption 4.2.2].

(4.30)

Applying the simplified conditions (4.29) and (4.30) into (4.26) and selecting µ ≥ σ, the

expression for V̇1 reduces to

V̇1 ≤ ξ
T [(C+ρ)G⊗ [P(A+BK1)+(A+BK1)

T P+Γ]− (λmin
0 (C+ρ)2 +αG)⊗Γ]ξ

+2ξ
T [(C+ρ)GL3⊗P(A+BK1)]hE −2ξ

T [(C+ρ)GL3⊗P]ḣE

−2(µ−σ)
N

∑
i=M+1

(ci +ρi)giai,N+1
∥∥BT Pξi

∥∥
≤ ξ

T [(C+ρ)G⊗ [P(A+BK1)+(A+BK1)
T P+Γ]− (λmin

0 (C+ρ)2 +αG)⊗Γ]ξ

+2ξ
T [(C+ρ)GL3⊗P(A+BK1)]hE −2ξ

T [(C+ρ)GL3⊗P]ḣE .

(4.31)

Now, the formation feasibility condition (4.18) can be expressed in a compact form

[L3⊗ (A+BK1)]hE − (L3⊗ In)ḣE = 0, (4.32)
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and upon pre-multiplying both sides of (4.32) by (C+ρ)G⊗P, we get

[(C+ρ)GL3⊗P(A+BK1)]hE − [(C+ρ)GL3⊗P]ḣE = 0. (4.33)

Plugging (4.33) into (4.31), the expression for V̇1 gets further reduced to

V̇1 ≤ξ
T [(C+ρ)G⊗ [P(A+BK1)+(A+BK1)

T P+Γ]− (λmin
0 (C+ρ)2 +αG)⊗Γ]ξ.

(4.34)

Now, using a common matrix property X2+Y 2 ≥ 2XY where X > 0 and Y > 0 [52], we find

−ξ
T
[
(λmin

0 (C+ρ)2 +αG)⊗Γ

]
ξ≤−2ξ

T
[√

λmin
0 αG(C+ρ)⊗Γ

]
ξ (4.35)

assuming X =
√

λmin
0 (C+ρ) > 0 and Y =

√
αG > 0. Selecting α ≥ maxi∈E gi

λmin
0

, µ ≥ σ and

substituting (4.35) into (4.34), the expression of V̇1 becomes

V̇1 ≤ ξ
T [(C+ρ)G⊗

(
P(A+BK1)+(A+BK1)

T P−Γ

)]
ξ. (4.36)

Let us introduce a change of variable ζ =
(√

(C+ρ)G⊗ I
)

ξ in (4.36) and it yields

V̇1 ≤ ζ
T [IN−M⊗

(
P(A+BK1)+(A+BK1)

T P−PBR−1BT P
)]

ζ. (4.37)

This implies V̇1 ≤ 0 using the ARE given in (4.19), and V1 = 0 only when ζ = 0. Therefore,

by applying the LaSalle’s invariance principle [55], the closed-loop dynamics (4.21) can be

guaranteed to be asymptotically stable. It implies

lim
t→∞

ζ(t) = 0 (4.38)

which in turn implies

lim
t→∞

ξ(t) = 0, (4.39)

since ζ and ξ are related via non-singular transformation. (4.39) confirms that the leaders

achieve the pre-specified formation given by hE at t→∞ under the influence of the proposed

formation tracking control law (4.6) while keep tracking the reference (xN+1) provided by

the virtual leader.

(Part II: Containment) Once the leaders achieve formation tracking under the application

of the proposed formation tracking protocol (4.6), it is now the turn of the followers to
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undergo the containment phase. We will start with deriving the closed-loop containment

error dynamics (ς̇) of the followers. Inserting the containment control law (4.7) into (4.10)

and invoking (4.11)-(4.14), we obtain the dynamics of ς̇ and ˙̂ci as mentioned below:
ς̇ =[(C+ρ)L2L3⊗BK2] [xE(t)−hE(t)−1N−M⊗ xN+1(t)]

+
[
IM⊗ (A+BK1)+(Ĉ+ ρ̂)L1⊗BK2

]
ς−η(L1⊗B)F(ς)−µ(L2⊗B)F(ξ) and

˙̂ci =ς
T
i Γςi.

(4.40)

Similar to Part I, achieving containment by the followers has been cast as an asymptotic sta-

bility problem of the containment error dynamics (4.40). Following the Lyapunov approach

adopted in Part I to establish asymptotic stability, in Part II also, we consider a similar Lya-

punov function candidate

V2 =
1
2

M

∑
i=1

ϕi(2ĉi + ρ̂i)ρ̂i +
1
2

M

∑
i=1

ϕi(ĉi−β)2 (4.41)

which consists of ϕi > 0 for all i ∈ {1, . . . ,M}, ĉi(t) > 0 for all t ≥ 0 and for all i since

Γ > 0, ρ̂i > 0 for all i since P > 0, and β > 0. Thus, V2 > 0. Since the sub-Laplacian matrix

L1 corresponding to the leaders’ interaction graph is a non-singular M-matrix according to

Lemma 4.3.1, there exists a diagonal positive definite matrix Ξ ∈ RM×M such that

ΞL1 +LT
1 Ξ > 0 (4.42)

holds via Lemma 2.1.1. As the scalar parameters ϕi can take any positive values, we may

propose Ξ = diag{ϕ1,ϕ2, . . . ,ϕM} > 0 such that (4.42) is satisfied. The next step is to find

V̇2 along the trajectory of (4.40) as shown below:

V̇2 =
M

∑
i=1

[
ϕi(ĉi + ρ̂i) ˙̂ρi +ϕiρ̂i ˙̂ci

]
+

M

∑
i=1

ϕi(ĉi−β) ˙̂ci

=
M

∑
i=1

2ϕi(ĉi + ρ̂i)ς
T
i Pς̇i +

M

∑
i=1

ϕi(ρ̂i + ĉi−β) ˙̂ci.

(4.43)

Similar to Part I, V̇2 needs to be expressed in a quadratic form with respect to ς. In order to do

so, we expand the summation-terms present in (4.43) and rearrange them in the Kronecker

product form:
M

∑
i=1

ϕi(ρ̂i + ĉi−β) ˙̂ci = ς
T [(Ĉ+ ρ̂−βI)Ξ⊗Γ

]
ς (4.44)
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and

M

∑
i=1

2ϕi(ĉi + ρ̂i)ς
T
i Pς̇i

= 2ς
T [(Ĉ+ ρ̂)Ξ⊗P

]
ς̇

= ς
T
[
(Ĉ+ ρ̂)Ξ⊗

(
P(A+BK1)+(A+BK1)

T P
)
− (Ĉ+ ρ̂)(ΞL1 +LT

1 Ξ)(Ĉ+ ρ̂)⊗Γ

]
ς

+2ς
T ((C+ρ)ΞL2L3⊗PBK2)(xE −hE −1N−M⊗ xN+1)−2ης

T [(Ĉ+ ρ̂)ΞL1⊗PB
]

F(ς)

−2µς
T [(Ĉ+ ρ̂)ΞL2⊗PB

]
F(ξ)

≤ ς
T
[
(Ĉ+ ρ̂)Ξ⊗

(
P(A+BK1)+(A+BK1)

T P
)
−λ

min
1 (Ĉ+ ρ̂)

2⊗Γ

]
ς

+2 ς
T ((C+ρ)ΞL2L3⊗PBK2)(xE −hE −1N−M⊗ xN+1)−2ης

T [(Ĉ+ ρ̂)ΞL1⊗PB
]

F(ς)

−2µς
T [(Ĉ+ ρ̂)ΞL2⊗PB

]
F(ξ),

(4.45)

where λmin
1 represents the smallest positive eigenvalue of

[
ΞL1 +LT

1 Ξ
]
. We will now sim-

plify the components of (4.45) which are not in the quadratic form with respect to ς. The

terms involving the nonlinear function F(ς) can be linked with an upper bound using (4.28)

−2ης
T [(Ĉ+ ρ̂)ΞL1⊗PB]F(ς)≤−2η

M

∑
i=1

(ĉi + ρ̂i)ϕi
∥∥BT Pςi

∥∥ N

∑
k=M+1

aik and (4.46)

−2µς
T [(Ĉ+ ρ̂)ΞL2⊗PB]F(ξ)≤ 2µ

M

∑
i=1

(ĉi + ρ̂i)ϕi
∥∥BT Pςi

∥∥ N

∑
k=M+1

aik. (4.47)

Since the leaders have already achieved the formation specified by hE (in Part I), the follow-

ing relation holds:

xE −hE −1N−M⊗ xN+1 = 0 (4.48)

which is equivalent to

(IN−M⊗ In)(xE −hE −1N−M⊗ xN+1) = 0. (4.49)

Pre-multiplying both sides of (4.49) by (C+ρ)ΞL2L3⊗PBK2, we get

[(C+ρ)ΞL2L3⊗PBK2] (xE −hE −1N−M⊗ xN+1) = 0. (4.50)

Substituting (4.46), (4.47) and (4.50) into (4.45), we derive a simplified expression of V̇2 as

noted below:
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V̇2 ≤ ς
T
[
(Ĉ+ ρ̂)Ξ⊗

(
P(A+BK1)+(A+BK1)

T P+Γ

)
−
(

λ
min
1 (Ĉ+ ρ̂)

2
+βΞ

)
⊗Γ

]
ς

−2(η−µ)
M

∑
i=1

(ĉi + ρ̂i)ϕi
∥∥BT Pςi

∥∥ N

∑
k=M+1

aik. (4.51)

Now, applying the property X2 +Y 2 ≥ 2XY of positive definite matrices [52], we have the

following relation

−ς
T [(λmin

1 (Ĉ+ ρ̂)
2
+βΞ)⊗Γ

]
ς≤−2ς

T
[√

λmin
1 βΞ(Ĉ+ ρ̂)⊗Γ

]
ς. (4.52)

(4.51) can now be simplified by using (4.52) and selecting β≥ maxi∈F ϕi
λmin

1
and η≥ µ

V̇2 ≤ ς
T [(Ĉ+ ρ̂)Ξ⊗

(
P(A+BK1)+(A+BK1)

T P−Γ

)]
ς. (4.53)

Define a change of variable ϒ =

(√
(Ĉ+ ρ̂)Ξ⊗ I

)
ς and plugging it into (4.53), we have

V̇2 ≤ ϒ
T [IM⊗

(
P(A+BK1)+(A+BK1)

T P−PBR−1BT P
)]

ϒ (4.54)

which implies V̇2 ≤ 0 using the ARE given in (4.19) and V̇2 = 0 only when ϒ = 0. Now,

invoking LaSalle’s invariance principle [55], it can ensured that the containment error dy-

namics (4.40) is asymptotically stable which ultimately implies

lim
t→∞

ς(t) = 0. (4.55)

The above analysis proves that the containment error goes to zero as t → ∞, which ensures

that the followers will asymptotically converge into the convex hull spanned by the leaders.

Combining Parts I and II it can be concluded that the MAS (4.1) satisfying Assumptions

4.2.1-4.3.2 accomplishes two-layer formation-containment tracking applying the proposed

fully-distributed FCC protocol (4.6) and (4.7). This completes the proof.

Below, we provide a set of guidelines for the control practitioners to implement the pro-

posed fully distributed two-layer formation-containment control (FCC) scheme in practical

applications.

While analysing the two-layer formation-containment problem and deriving the FCC proto-

col in Theorem 4.3.1, we observe a number of significant aspects which we will describe in

the following remarks.
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Algorithm 2 Procedure to design a fully distributed control scheme for two-layer formation-
containment problem

1: for each agent i ∈ {1, . . . ,N} do
2: design a two-layer communication graph that satisfies Assumptions 4.2.1-4.3.2;
3: fix the desired formation reference hE for leaders;
4: choose an appropriate feedback gain K1 to widen the set of feasible formation;
5: if formation feasibility condition (4.18) is satisfied then
6: compute controller parameters K2 =−R−1BT P and Γ = PBR−1BT P by solving

ARE (4.19) for given Q > 0 and R > 0;
7: design the smooth functions ρ̂i and ρi as described in Theorem 4.3.1;
8: choose positive constants η and µ according to (4.17) for a given σ > 0;
9: construct the nonlinear function f (.) according to (4.20);

10: construct the fully-distributed formation-containment control (FCC) protocol
given in (4.6) and (4.7);

11: else
12: back to Step 4;
13: end if
14: end for

Remark 4.3.1. The formation feasibility condition (4.18) imposed in Theorem 4.3.1 is a

common restriction in the consensus-based formation control literature [13, 46, 96]. This

criteria needs to be checked a priori to confirm whether a desired formation shape, specified

by hE , is possible to be achieved by the leaders. In this regard, the gain matrix K1 plays

a major role in selecting the formation reference hE as K1 is the only parameter in the

formation feasibility criteria (4.18) that can be freely adjusted. If it fails then the formation

shape needs to be changed. In case of static formation, it is easier to find K1 for given (A,B)

of the leaders, but it may not be straightforward in case of a time-varying formation to find

an appropriate K1 matrix to satisfy (4.18). In particular, it depends on the experience of

a designer. However, in many practical applications, for example, in robotic applications

employing nonholonomic mobile robots, the nonlinear dynamics of a robot can be feedback

linearized into single or double integrator dynamics and then, it becomes much easier to

find an appropriate K1 matrix that can satisfy the formation feasibility criteria (4.18) for a

particular choice of hE . In this paper, we have considered two case studies to address the

issue of finding K1 for a given leader’s dynamics and a desired formation shape.

Remark 4.3.2. The nonlinear function f (·), defined in (4.20), is included in the proposed

FCC protocols (4.6) and (4.7) to handle the time-varying dynamics of the virtual leader. In

contrast to most of the existing results in the formation-containment literature, the present
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work does not presume the virtual leader to be an autonomous system; it may have a sepa-

rate control (either reference or disturbance) input (uN+1). But, the nonlinear function f (·)

makes the FCC action discontinuous, which may produce ‘chattering effect’ due to frequent

‘zero-crossing’ and causes severe performance degradation. In order to avoid the chattering

phenomenon in practical applications, the boundary layer technique proposed in [41] can

be exploited which redefines the nonlinear function f (·) to make the control action continu-

ous by removing the zero-crossing criteria. Although in this method, the formation tracking

or containment errors cannot be made exactly zero but can be made infinitesimally small,

which is sufficient to achieve satisfactory performance and most importantly, this technique

minimizes the chattering effect.

Remark 4.3.3. In contrast to the developments reported in [96], where only formation-

containment stabilization problem is addressed, the proposed distributed and adaptive con-

trol protocol can be used to deal with formation tracking and containment problems. More-

over, explicit computation of the smallest positive eigenvalue of the graph Laplacian matrix

is avoided by using the distributed adaptive control scheme, where the the agents use only

relative state information of the neighbours and hence, global information about the entire

graph is not required. This feature renders the proposed FCC scheme reconfigurable in case

of communication topology changes and scalable for large-scale networked systems. Note

further that the proposed two-layer formation-containment problem reduces to the standard

‘consensus problem’ when hi = 0 ∀i ∈ {M+1, . . . ,N}, uN+1(t) = 0, and M = 0, such that

the results discussed in [78] can be viewed as a special case of the result of this chapter.

In the proposed formation-containment control scheme as derived in Theorem 4.3.1, the

states of the followers converge into the convex hull spanned by the states of the leaders.

However, it doesn’t explicitly mention that whether the positions of the followers in a convex

hull can also be controlled. In this context, the following theorem expands Theorem 4.3.1

to show an explicit relationship among the states of followers xi(t), i ∈ F , the time-varying

formation of the leaders hi(t), i ∈ E, and the trajectory of the virtual leader xN+1(t).

Theorem 4.3.2. Suppose the assumptions of Theorem 1 hold and the MAS (4.1) achieves

formation-containment by applying the fully distributed FCC protocol (4.6) and (4.7). The
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states of followers satisfy the following relationship

lim
t→∞

(
xi(t)−

N

∑
j=M+1

li jh j(t)− xN+1(t)

)
= 0 ∀i ∈ F (4.56)

where li j denotes the entries of −L−1
1 L2.

Proof. If the assumptions of Theorem 1 are satisfied, the formation-containment of MAS

given in (4.1) is accomplished by applying the adaptive control laws (4.7) and (4.6). From

the proof of Theorem 1, it can be readily observed that if (4.39) and (4.55) hold simultane-

ously, then from (4.13) and (4.15) we have

lim
t→∞

[
xF(t)− (−L−1

1 L2⊗ In)(hE(t)+1N−M⊗ xN+1(t))
]
= 0. (4.57)

It follows from Lemma 4.3.1 that

−L−1
1 L21N−M = 1M. (4.58)

Substituting (4.58) into (4.57), we obtain

lim
t→∞

[
xF(t)− (−L−1

1 L2⊗ In)hE(t)−1M⊗ xN+1(t))
]
= 0, (4.59)

which is equivalent to (4.56) ∀i ∈ F . This completes the proof.

Theorem 4.3.2 reveals that the states of the followers are jointly determined by the com-

munication graph, the time-varying formation of the leaders, and the formation reference.

According to (4.56), it can be shown that the states of the followers will also give rise to a

time-varying formation determined by the convex combination of the formation hE of the

leaders with respect to the formation reference xN+1. Therefore, the states of the followers

not only converge into the convex hull spanned by the leaders, but also maintain a time-

varying formation inside the convex hull.

4.4 Case Studies

4.4.1 Formation-Containment of Networked Satellites

In this section, a numerical example is given to illustrate the effectiveness of the proposed

formation-containment control (FCC) scheme developed in the previous section. Consider
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Figure 4.2: A two-layer multi-agent systems with directed communication topology.

a group of twelve networked satellites and the two-layer communication topology among

twelve satellites is shown in Fig. 4.2, where it is assumed that the interaction has 0-1 weights

and there are six leaders in the first layer and six followers in the second layer. The dynamics

of each satellite is described by (4.1) with

A =


0 1 0

0 0 1

−4 −1 −4

 and B =


0 1

0 −1

1 0

 ,

and the desired formation reference is described by (4.2) with K1 =

0 0 0 0

0 0 0 0

 and the

control input uN+1 has been made zero.

The control objective of this theoretical case study is to let the assembly of six leader satel-

lites maintain a circular time-varying parallel hexagon formation and keep rotating around

the predefined formation reference (also called the virtual leader). Then the positions of the

six followers are required to converge into the convex hull spanned by those six leaders. The

time-varying circular formation of the leaders is specified by

hi(t) =


15sin(t + (i−7)π

3 )

15cos(t + (i−7)π
3 )

−15sin(t + (i−7)π
3 )

 , ∀i ∈ {7,8, . . . ,12} .

It can be verified that the formation tracking feasibility condition (4.19) in Theorem 4.1 is

satisfied with this hi(t). Thus, if the predefined time-varying formation hi(t) is achieved, the
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Figure 4.3: Position of the agents at time instants: (a) t = 0s; (b) t = 10s; (c) t = 20s; (d)
t = 40s.

 

Figure 4.4: Trajectory of the formation reference signal.

six leaders will be placed at the six vertices of a parallel hexagon and keep rotating around

the reference signal with an angular velocity of 1 rad/s. The followers will also converge

into the parallel hexagon formed by the leaders.
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Figure 4.5: Variation of the coupling weights with respect to time.

According to Algorithm 2, the controller gains can be obtained as

K2 =

−0.0022 −0.0812 −0.0257

−0.1804 0.2749 0.0790

 ,

Γ =


−0.0325 0.0494 0.0142

0.0494 −0.0822 −0.0238

0.0142 −0.0238 −0.0069

 ,

by choosing Q =
[0.05 0 0

0 0.05 0
0 0 0.05

]
, R =

1 0

0 1

, and the constants η = µ = 0.2 for a given

σ = 0.

Let the initial values of the coupling weights ĉi(0) = 0 and ci(0) = 0 for all the satellites

and the initial states of each of the satellites be chosen pseudorandomly with a uniform

distribution in the interval (−10,10).

The spatial positions of the satellites at different time instants are depicted in Fig. 4.2 while

Fig. 4.3 shows the state trajectory of the predefined formation reference within 40s. The

variation of the coupling weights ĉi and ci are shown in Fig. 4.4. The 2-norms of the forma-

tion tracking error of the leaders and the containment error of the followers are depicted in

Fig. 4.5. From these figures, it is observed that the six leaders form a parallel hexagon which

keeps rotating around the desired formation reference, and the followers eventually converge

into this hexagonal region formed by the leaders while maintaining the same velocity as that

of the leaders. Also, the coupling weights are bounded and converge to some finite positive
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(a)

 

(b)

Figure 4.6: Variations of the 2-norms of the (a) containment error (ς), and (b) formation
error (ξ) with respect to time.

constants. It is now concluded that the desired formation-containment is achieved applying

the fully distributed FCC protocol given in (4.7) and (4.6).

4.4.2 Experimental Validation Results with Mobile Robots

In the hardware experiment, we used small-scale, autonomous mobile robots, Mona [1], to

test the feasibility of the proposed FCC scheme. Mona is a low-cost, open-source, miniature

robot which has been developed for swarm robotic applications. As shown in Fig. 4.7, Mona

has two 6V low power DC geared-motors connected directly to its wheels having 32mm

diameter and the robot has a circular chassis having 80mm diameter. The main processor

embedded in this robot is an AVR microcontroller equipped with an external clock having

16MHz frequency. Each robot is equipped with NRF24101 wireless transceiver module for

inter-robot communication. The robots are operated and controlled by Arduino Mini/Pro

microcontroller boards which are programmed by using the existing open-source software

modules. The experimental platform includes a 1.2m×1.2m blue arena and a digital camera

connected to a host PC which operates the entire tracking system. The position tracking

system used in this experiment is an open-source multi-robot localization platform [98].

The tracking system is not only capable of following a robot’s position but also capable

of measuring its velocity and detecting its orientations by identifying the unique circular

tags attached on top of the robots. The state information is transmitted to the computer via

the ROS communication framework and then the relative state information is sent to the
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Figure 4.7: The autonomous mobile robot, Mona [1], used in the hardware experiment.
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Figure 4.8: The directed communication topology among the robots considered in the hard-
ware experiment.

corresponding robot using RF transceiver module.

In the experiment, six nonholonomic mobile robots (Mona) were considered to perform a

formation-containment activity. Each mobile robot can be feedback linearized into a double

integrator system as shown in Section 3.4.

In this experimental demonstration, the four leader robots will form a square-shaped region

(i.e., the convex hull) in the experimental arena and the two follower robots is expected to

converge into this safe region. Fig. 4.8 depicts the directed interaction topology among the

six mobile robots. The state of the virtual leader (labelled with no. 7) is arbitrarily chosen

as [0.7,0,0.7,0]T . The control objective of this experiment is to let the four leader robots

to achieve a planar square formation, tracking the virtual target and keep surrounding the

followers. The time-varying circular formation for the leader robots is specified by
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Figure 4.9: Progress of the formation-containment mission being achieved by a team of
six mobile robots in real-time hardware experiment. (a) Initial orientation of the robots at
t = 0s; (b) At t = 20s: leader robots are about to attain the desired square formation; (c)
At t = 40s: leaders have already achieved the formation and two follower robots have also
converged into the area spanned by the leaders; (d) At t = 80s: the whole assembly of the
leaders has moved towards the centre of the arena following the location of the given target
along with the followers being surrounded by them – mission accomplished.

hi(t) =


r sin(ωt + 2(i−1)π

4 )

ωr cos(ωt + 2(i−1)π
4 )

r cos(ωt + 2(i−1)π
4 )

−ωr sin(ωt + 2(i−1)π
4 )

 ∀i ∈ {3,4,5,6}

where r = 0.3m and ω = 0.1rad/s denote respectively the radius and angular velocity of

the desired time-varying formation. It can be verified that the formation tracking feasibility

condition (4.18) of Theorem 4.3.1 is satisfied in the present scenario and hence, when the

predefined time-varying formation hi(t) is achieved, the leaders will automatically be placed

at the four vertices of a square. After attaining the desired formation, the assembly of

the leader robots keeps on rotating around the tracking reference with a constant angular

velocity of 0.1rad/s and two follower robots will eventually converge into this area.
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Figure 4.10: Position trajectories of the robots in the XY plane during the course of achiev-
ing formation tracking and containment in the hardware experiment under the application
of the proposed FCC protocol. In this figure, the circles represent the leaders, the triangles
denote the followers and the star indicates the target to be tracked.

 

(a)

 

(b)

Figure 4.11: Time variation of the 2-norms of (a) formation tracking error ξi(t) of the leaders
and (b) containment error ςi(t) of the followers.

Fig. 4.9(a)–4.9(d) presents the hardware experiment results on achieving the formation-

containment by a team of six nonholonomic mobile robots (Mona) on a planar surface.

Fig. 4.9(a) shows the initial orientation (at t = 0s) of the robots on the arena. Fig. 4.9(b)

depicts the progress of the mission at t = 20s from which it is apparent that the four leader

robots are moving in the right track to attain the expected square formation and subsequently,

Fig. 4.9(c) reveals that the leader robots have truly achieved the desired square formation

(at t = 40s) and the two follower robots have also converged into the area spanned by the

leaders. Finally, Fig. 4.9(d) portrays that the assembly of the leaders has moved towards the

centre of the arena in order to track the position of the given target without disturbing the
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formation and the followers have also moved accordingly being surrounded by the leaders.

This then concludes that the formation-containment mission has been achieved successfully

under the application of the proposed distributed FCC scheme. Fig. 4.10 complements the

hardware experiment result presented in Fig. 4.9(a)–4.9(d) by plotting the position trajecto-

ries of all six robots in the XY plane during the course of achieving the formation tracking

and containment in the hardware experiment. Fig. 4.10 traces the movement of the robots

staring from the initial positions until they converge at the desired locations to attain the

leaders’ formation around the given target (marked by the Red star) and the followers’ con-

tainment within the area spanned by the positions of the leader robots. Finally, time evolve-

ment of the 2-norms of the formation tracking error ξi(t) of four leaders and the containment

error ςi(t) of two followers are shown in Fig. 4.11(a) and 4.11(b). The figures reveal that

both the formation tracking and containment errors die down to zero within 80s which is

in agreement with the fact that the experiment also took 80s to accomplish the mission as

reflected in Fig. 4.9(d). It can hence be ascertained that both formation tracking and con-

tainment have been achieved by the team of six mobile robots under the influence of the

proposed distributed FCC scheme.

Even though we have used lab-based experimental set-up, small-scale robots and open

source software modules, but the experimental results reflect usefulness of the proposed

scheme in finding potential applications in robotics. High precision performance is also

possible to be achieved by the proposed scheme with improvised camera tracking system,

high-end embedded micro-controllers and advanced robots.

4.5 Conclusions

In this chapter, a fully distributed formation-containment problem for linear MASs with

directed graphs is investigated. A two-layer control architecture is proposed to solve the

formation-containment problem, which consists of the leaders’ formation layer and the fol-

lowers’ containment layer. To achieve formation-containment, distributed adaptive proto-

cols are constructed based on relative state information, which made the proposed control

design fully distributed without using global information about the interaction topology.
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Then, algorithms are presented to construct the control laws by testing formation feasibility

condition and solving algebraic Riccati equation. The stability of the proposed scheme is

proved by Lyapunov theory. Moreover, it is proved that the states of followers not only con-

verge into the convex hull spanned by those of leaders but also maintain certain formation

determined by the leaders and the virtual agent. Finally, the effectiveness of the proposed

strategy is verified by numerical simulations and experiments with formation-containment

tasks of networked satellites and mobile robots.

Future works may consider time delays and nonlinear dynamics of the MASs, and robust

methods such as [99, 100] can be applied to design a robust FCC protocol.



Chapter 5

Observer-Based Optimal Formation

Control of Innovative Tri-Rotor UAVs

Using Robust Feedback Linearization

5.1 Introduction

In recent years, cooperative control of multi-rotor Unmanned Aerial Vehicles (UAVs) have

received significant attention from both the practical engineering and academic communities

due to their broad prospect in applications [101]. When working together, they are able to

perform complex tasks with excellent efficiency and reliability, such as search and rescue

[102], crop and weed management in agriculture [103], oil pipeline surveillance [104], etc.

Aiming at more efficient configurations in terms of size, autonomy, flight range, payload

capacity and other factors, some innovative vehicle platforms are developed by researchers

[105]. One of such aerial robotic platforms that holds new and significant properties is the

tri-rotor UAV, which is cost effective with more flexibility and agility [2], [106].

The proposed tri-rotor UAV has three rotors arranged in an equilateral triangular configua-

tion and each rotor is attached to a servo motor that can independently change the rotating

direction of the propeller. Thus, complete 3D thrust and 3D torque vectoring authority is

achieved, which means that the vehicle does not have a nominally upright flying orientation:

81
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it can fly in any orientation chosen by the user. Any time-dependent 3D position trajectory

can be tracked at the same time as tracking any time-dependent 3D attitude trajectory. This

configuration guarantees the UAV a high level of flexibility and maneuverability for attitude

control and position movement. Compared to the quadrotor, this innovative configuration

also requires less hover power and hence provides longer flight time [107], which makes it

ideal for deployment in various missions.

To the best of the author’s knowledge, no prior literature has studied a tri-rotor UAV config-

uration with completely independent tilted-rotor capability on all three rotors. The tri-rotor

UAV introduced in [108] only has one servo motor that is installed on the arm, which cannot

hold different attitudes while hovering. A triangular quadrotor is proposed in [107], which

contains a single large rotor fixed on the main body. This configuration requires more power

to hover and causes uncompensated gyroscopic drift.

In contrast to a quadrotor UAV, which has zero angular momentum in hover, a tri-rotor

UAV has persistent angular moment, and hence also gyroscopic dynamics due to the asym-

metric configuration of the system which poses significant control systems complexities.

Furthermore, independent attitude and trajectory tracking can and should be considered si-

multaneously. However, the control algorithm in [109] only considers attitude stabilization

(as opposed to simultaneous independent attitude and trajectory tracking) and the control

design proposed in [110] only focus on the static hovering. In this chapter, both these two

objectives (i.e. simultaneous independent 3D attitude and 3D trajectory tracking) are con-

sidered for the tri-rotor UAV in order to overcome the limitation of quadrotors and thus

create more possibilities when performing special tasks through aerial robotic platforms.

Furthermore, swarm robotics is a field of multi-robotics where a group of robots are con-

trolled in a distributed way to perform complex tasks in a more efficient way than using a

single robot [111]. As a key control technique in swarm robotics, distributed cooperative

control of multi-agent systems has also experienced a rapid growth in the research efforts

from the international robotics community, which includes consensus control [27], [112],

rendezvous control [113], obstacle avoidance [114], formation control [115], [116], etc. For-

mation control of multi-agent systems is hence a key active area of research which shows

broad applications [117]. In applications where the goal cannot be accomplished by a single
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robot or a single aerial robotic vehicle due to physical limitations in its capability, forma-

tion control has been flagged as an important underpinning methodology. It can be applied

to a variety of areas, such as cooperative surveillance [118], target enclosing [119], load

transport [120], etc. Based on a consensus strategy, [84] proved that leader-follower, virtual

structure and behavior-based formation control approaches can be unified in the framework

of consensus problems. [86] discussed the formation stability problems for general high-

order swarm systems, but the question how to achieve desired formation was not considered.

Static formation experiments on quadrotor swarm systems based on consensus approaches

is achieved in [65], while time-varying formation control of aerial swarm systems is still a

vigorously active research topic with much progress still needed.

Motivated by the challenges stated above, the combination of time-varying formation con-

trol and the proposed innovative tri-rotor drone is developed and investigated in this chap-

ter. The formation control protocol for the designed aerial swarm is fully distributed. The

communication topology of the network is modelled using graph theory. Robust feedback

linearization [121] is used to handle the tri-rotor drone’s highly coupled and nonlinear dy-

namics. It provides a systematic multi-input/multi-output (MIMO) method which linearises

nonlinear dynamics geometrically to match the Jacobi linearization of the nonlinear sys-

tem at the operating point of interest. In contrast to classic feedback linearization which

does full nonlinear dynamic inversion to produce a linear system which is simply a chain

of integrators, robust feedback linearization preserves the system information at the oper-

ating point of interest. It has been successfully demonstrated [122] to provide significant

robustness to both model uncertainty and external dynamics. An output feedback formation

control protocol is also applied to the networked tri-rotor UAV swarm, which consists of

an optimal state observer and a Linear Quadratic Regulator (LQR)-based distributed state

feedback formation protocol. It is shown that LQR based optimal design provides a straight-

forward way to construct fully distributed controllers and observers that ensure stabilization

and synchronization of the swarm [123].

The chapter is organized as follows. The nonlinear dynamical model of the tri-rotor drone

is described in Section 5.2. Robust feedback linearization of a single tri-rotor drone is first

given in Section 5.3 and then an optimal distributed formation controller is designed at the

end of Section 5.3 to control a swarm of tri-rotor drones. Section 5.4 is devoted to the
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presentation of simulation results when the proposed control architecture is applied to the

aerial swarm of tri-rotor drones. Conclusions are given in Section 5.5.

5.2 Mathematical Modeling

In this section, we dynamically modeling the proposed tri-rotor UAV.

5.2.1 System Description

The configuration of the tri-rotor UAV was first proposed in [2]. The UAV has a triangular

structure with three arms and a force generating unit plus a revolute joint at the end of each

arm. All three arms have identical length l. Each force generating unit includes a fixed pitch

propeller driven by a brushless DC motor to provide thrust. The motors can be powered

by a single battery pack located at the centre of mass or by three separate battery packs

located at an equal distance from the centre of mass and each other. The propeller-motor

assembly is attached to the body arm via a servo motor that can rotate in a vertical plane to

tilt the propeller-motor assembly with an angle αsi (the subscript ’s’ denotes servo) in order

to produce a horizontal component of the generated force.

All three propellers can be tilted independently to give full thrust vectoring authority. Then

the UAV becomes a full six-degrees-of-freedom (6-DOF) vehicle in which all motions can

be achieved independently by changing speed of the propellers and tilting angles of the servo

motor directly. This configuration enables vehicle attitude (i.e. 3D orientation) and vehicle

translation (i.e. 3D movement) to be independently controlled.

In order to develop the dynamic model of the proposed tri-rotor UAV, the following right

hand coordinate systems shown in Fig. 5.1 are considered: (Xe,Ye,Ze) represents the earth

coordinate system, which is assumed to be inertial (i.e. fixed). (Xb,Yb,Zb) denotes the

body coordinate system, where the origin Ob is fixed to the center of mass of the vehicle.

This coordinate system moves with the vehicle. (Xli,Yli,Zli) with i ∈ {1,2,3} is the local

coordinate system of each propeller-motor assembly. The location of the origin of each local
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Figure 5.1: Coordinate systems of the tri-rotor UAV [2].

coordinate system coincides with the intersection of the UAV arm and the propeller-motor

assembly, where Xli is extended outside the ith arm of UAV along the same line as the arm

and Zli is along the direction of the motor shaft axis when the servo angle is zero.

In this section, the superscript b, e and li are used to denote the corresponding coordinate

system in which vectors are expressed. The subscript i refers to the ith propeller, servo motor

or brushless DC motor with i ∈ {1,2,3}. The nominal mathematical model is based on the

following assumptions:

1) Fast actuators are assumed, so the dynamics of actuators are neglected.

2) Propellers are considered to be rigid, thus blade flapping is not considered in the model.

3) The body structure is rigid and the mass is fixed.

It should be noted that although we do not consider these factors in model design, they

can still be included as perturbations and uncertainties when carrying out simulation or

experiment to test the robustness of the proposed control system in the next section.

5.2.2 Dynamic Model

The dynamic model of the tri-rotor can be described by

v̇b
v = gΘ−S(ωb

v)v
b
v +

k f

m
H f ρ, (5.1)
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Table 5.1: Notation of the tri-rotor UAV model
Symbol Defination

ωmi Rotational speed of the ith DC motor
αsi Tilting angle of the ith servo motor
k f Thrust-to-speed constant of the propeller
kd Torque-to-speed constant of the propeller
g Gravitational acceleration
m Total mass of the UAV
Ib
v Inertia matrix of the UAV

κb
v The transitional velocity of the UAV

ub,vb,wb The Cartesian coordinates of the UAV transitional velocity
ωb

v Angular velocity of the UAV
p,q,r The Cartesian coordinates of the UAV angular velocity

ηv Attitude vector of the UAV related to the earth frame
λe

v Position vector of the UAV (earth frame)
φ Roll angle of the UAV related to the earth frame
θ Pitch angle of the UAV related to the earth frame
ψ Yaw angle of the UAV related to the earth frame
xv The x coordinate position of the UAV in the earth frame
yv The y coordinate position of the UAV in the earth frame
zv The z coordinate position of the UAV in the earth frame
Re

b The rotational matrix from frame b to frame e

ω̇
b
v =−(Ib

v)
−1

S(ωb
v)I

b
vω

b
v +(Ib

v)
−1
(k f Ht− kdH f )ρ, (5.2)

η̇v = Ψω
b
v , (5.3)

λ̇
e
v = Re

bvb
v , (5.4)

where all terms used in the model of the UAV are described in Table 5.1 and

vb
v =


ub

vb

wb

 , ω
b
v =


p

q

r

 , ηv =


φ

θ

ψ

and λ
e
v =


xv

yv

zv

 .

The vehicle’s inertia matrix expressed in the body coordinate frame and the skew matrix

constructed from the vector ωb
v = [p q r]T are given by

Ib
v =


Ixx 0 0

0 Iyy −Iyz

0 −Iyz Izz

 (5.5)
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and

S(ωb
v) =


0 −r q

r 0 −p

−q p 0

 . (5.6)

More details of modeling process and the construction of parameters are defined in [2, 13].

Choosing the state vector as

x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]
T

= [ub vb wb p q r φ θ ψ xv yv zv]
T , (5.7)

and the input vector as

u = ρ =



u1

u2

u3

u4

u5

u6


=



ω2
m1 sin(αs1)

ω2
m2 sin(αs2)

ω2
m3 sin(αs3)

ω2
m1 cos(αs1)

ω2
m2 cos(αs2)

ω2
m3 cos(αs3)


, (5.8)
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then the set of (5.1)-(5.4) can be written in the state-space form as

ẋ1 = x2x6− x3x5 +gsin(x8)−
√

3k f

2m
u2 +

√
3k f

2m
u3, (5.9)

ẋ2 = x3x4− x1x6−gsin(x7)cos(x8)+
k f

m
u1−

k f

2m
u2−

k f

2m
u3, (5.10)

ẋ3 = x1x5− x2x4−gcos(x7)cos(x8)+
k f

m
u4 +

k f

m
u5 +

k f

m
u6, (5.11)

ẋ4 =
x5x6(Iyy− Izz)+ Iyz(x2

5− x2
6)

Ixx
+

√
3kd

2Ixx
u2−

√
3kd

2Ixx
u3 +

√
3lk f

2Ixx
u5−

√
3lk f

2Ixx
u6, (5.12)

ẋ5 =
x4x5(IxxIyz− IyyIyz− IzzIyz)

IyyIzz− I2
yz

+
x4x6(I2

yz + I2
zz− IxxIzz)

IyyIzz− I2
yz

+
Iyzk f l− Izzkd

IyyIzz− I2
yz

u1

+
2Iyzk f l + Izzkd

2(IyyIzz− I2
yz)

u2 +
2Iyzk f l + Izzkd

2(IyyIzz− I2
yz)

u3−
Izzk f l + Iyzkd

IyyIzz− I2
yz

u4

+
Izzk f l−2Iyzkd

2(IyyIzz− I2
yz)

u5 +
Izzk f l−2Iyzkd

2(IyyIzz− I2
yz)

u6, (5.13)

ẋ6 =
x4x6(IyyIyz + IzzIyz−IxxIyz)

IyyIzz− I2
yz

+
x4x5(IxxIyy− I2

yz− I2
yy)

IyyIzz− I2
yz

+
Iyyk f l− Iyzkd

IyyIzz− I2
yz

u1

+
2Iyyk f l + Iyzkd

2(IyyIzz− I2
yz)

u2 +
2Iyyk f l + Iyzkd

2(IyyIzz− I2
yz)

u3−
Iyzk f l + Iyykd

IyyIzz− I2
yz

u4

+
Iyzk f l−2Iyykd

2(IyyIzz− I2
yz)

u5 +
Iyzk f l−2Iyykd

2(IyyIzz− I2
yz)

u6, (5.14)

ẋ7 = x4 + x5 sin(x7) tan(x8)+ x6 cos(x7) tan(x8), (5.15)

ẋ8 = x5 cos(x7)− x6 sin(x7), (5.16)

ẋ9 = x5 sin(x7)sec(x8)+ x6 cos(x7)sec(x8), (5.17)

ẋ10 = x1 cos(x8)cos(x9)+ x2(sin(x7)sin(x8)cos(x9)− cos(x7)sin(x9))

+ x3(cos(x7)sin(x8)cos(x9)+ sin(x7)sin(x9)), (5.18)

ẋ11 = x1 cos(x8)sin(x9)+ x2(sin(x7)sin(x8)sin(x9)+ cos(x7)cos(x9))

+ x3(cos(x7)sin(x8)sin(x9)− sin(x7)cos(x9)), (5.19)

ẋ12 =−x1 sin(x8)+ x2 sin(x7)cos(x8)+ x3 cos(x7)cos(x8). (5.20)
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The output vector is chosen as

y =



φ

θ

ψ

xv

yv

zv


=



x7

x8

x9

x10

x11

x12


. (5.21)

Remark 5.2.1. Note that the real inputs (ωmi and αsi) are mapped into the control inputs ui

via the nonlinear mapping (5.8). It can be shown that this nonlinear mapping is invertible

thus giving actuator signals ωmi and αsi for use in real application. The physical actuator

inputs ωmi and αsi can be calculated back from the control inputs ui via

αsi = arctan
(

ui

ui+3

)
and ωmi =

4
√

u2
i +u2

i+3 ∀i ∈ {1,2,3}.

5.3 Control System Design

The objective of this section is to design a robust distributed formation control protocol for

swarms of the proposed tri-rotor UAV. Since the dynamical model of a single tri-rotor UAV

is highly coupled and nonlinear, a robust feedback linearization technique is first applied to

each tri-rotor to obtain simpler closed-loop dynamics. Then the swarm of identical tri-rotor

UAVs is controlled through an optimal distributed formation control protocol which solves

the time-varying formation tracking problem for tri-rotor robotic swarms.

5.3.1 Robust Feedback Linearization

Consider a single nonlinear system with n states, m inputs, and m outputs described by

ẋ = F (x)+G(x)u = F (x)+
m

∑
i=1

Gi (x)ui, (5.22)

y = [H1 (x) , . . . ,Hm (x)]T , (5.23)
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where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rm is the

output vector, and F (x), G1 (x), . . . , Gm (x), y are smooth vector fields defined on an open

subset of Rn.

Suppose that this system satisfies the well-known conditions for feedback linearization

[124]: The relative degree of Hi is equal to ri for i ∈ {1, . . . ,m} such that r1 + · · ·+ rm = n,

and the decoupling matrix

M(x) =


LG1Lr1−1

f H1 (x) . . . LGmLr1−1
f H1 (x)

... . . . ...

LG1Lrm−1
f Hm (x) . . . LGmLrm−1

f Hm (x)

 (5.24)

is invertible, where L(.) (.) denotes the Lie derivative operator [124]. It is then possible to

find a feedback linearizing control law of the form

u(x,w) = αc (x)+βc (x)w, (5.25)

where w(t) is a new control input, and αc(x) = −M−1(x)
[
Lr1

f H1(x) . . . Lrm
f Hm(x)

]T
,

βc(x) = M−1(x), such that on application of the control law in (5.25), the nonlinear state-

equation (5.22) reduces into the linear state-equation

ẋc = Acxc +Bcw, (5.26)

where Ac and Bc are matrices of the Brunovsky canonical form [124], and a change of

coordinates is given by xc = φc (x) with φ
T
ci(x) =

[
Hi(x), L f Hi(x), . . . , Lri−1

f Hi(x)
]

and

φ
T
c (x) =

[
φ

T
c1(x), . . . , φ

T
cm(x)

]
.

The robust feedback linearization technique [121], on the other hand, exactly transforms

the nonlinear state-equation into a linear state-equation that is equal to the Jacobi linear

approximation of the original nonlinear state-equation around the origin. This can then

be controlled using linear techniques [122]. In the robust feedback linearization case, the

linearized state-equation becomes

ẋr = Arxr +Brv, (5.27)

where Ar = ∂xF (0) and Br = G(0). The nonlinear state-equation (5.22) is geometrically

transformed into the linear state-equation of any operating point, not only in a small neigh-

borhood of the origin point. [121] argues that classical feedback linearization may be non



CHAPTER 5. OPTIMAL FORMATION CONTROL OF TRI-ROTOR UAVS 91

robust in the presence of uncertainties as any system is transformed into a chain of inte-

grators (i.e. Brunovsky form) whereas robust feedback linearization preserves some system

information.

The robust feedback linearization control law is

u(x,v) = α(x)+β(x)v, (5.28)

where

α(x) = αc (x)+βc (x)LU−1
φc (x) , (5.29)

β(x) = βc (x)R−1, (5.30)

φr (x) =U−1
φc (x) , (5.31)

L =−M (0)∂xαc (0) , (5.32)

R = M−1 (0) , (5.33)

U = ∂xφc (0) , (5.34)

xr = φr (x) . (5.35)

Now we apply the robust feedback linearization to the dynamics of tri-rotor UAV system.

The relative degrees r1 = 2, r2 = 2, r3 = 2, r4 = 2, r5 = 2 and r6 = 2 are computed from the

output (5.21), resulting in a vector relative degree r = 12, which is equal to the number of

states. The decoupling matrix M(x) can also be written in a compact form as given in [2]:

M(x) =

Ψ(Ib
v)
−1
(k f Ht− kdH f )

k f
m Re

bH f

 . (5.36)

It can be verified that det[M(x)] 6= 0 as the pitch angle is assumed to be in the range of

−π/2 < θ < π/2, such that M(x) is always invertible in this case. As a result, the conditions

for feedback linearization are satisfied.

After calculating the classic Brunowski form linearizing input (5.25) and applying the for-

mulas for the robust feeedback linearization (5.28)-(5.35), the system can then be robust

feedback linearized into

ẋr = Arxr +Brv, (5.37)

y =Crxr. (5.38)
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Figure 5.2: Control system scheme: Distributed optimal formation control law and robust
feedback linearization combining linear and nonlinear parts

The state space matrix Ar, Br and Cr are given by

Ar =



0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


, (5.39)

Br =



0 −
√

3k f
2m

√
3k f
2m 0 0 0

k f
m −

k f
2m −

k f
2m 0 0 0

0 0 0
k f
m

k f
m

k f
m

0
√

3kd
2Ixx −

√
3kd

2Ixx 0
√

3lk f
2Ixx −

√
3lk f

2Ixx
Iyzk f l−Izzkd

IyyIzz−I2yz

2Iyzk f l+Izzkd
2(IyyIzz−I2yz)

2Iyzk f l+Izzkd
2(IyyIzz−I2yz)

−
Izzk f l+Iyzkd

IyyIzz−I2yz

Izzk f l−2Iyzkd
2(IyyIzz−I2yz)

Izzk f l−2Iyzkd
2(IyyIzz−I2yz)

Iyyk f l−Iyzkd
IyyIzz−I2yz

2Iyyk f l+Iyzkd
2(IyyIzz−I2yz)

2Iyyk f l+Iyzkd
2(IyyIzz−I2yz)

−
Iyzk f l+Iyykd

IyyIzz−I2yz

Iyzk f l−2Iyykd
2(IyyIzz−I2yz)

Iyzk f l−2Iyykd
2(IyyIzz−I2yz)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (5.40)

Cr =

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 . (5.41)

Furthermore, L, R and U are calculated by

L =


0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 , (5.42)
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R =



0 − Iyz
3k f l

Izz
3k f l 0 2m

3k f

kdm

3k2
f l

0 − Iyz
3k f l

Izz
3k f l −

√
3m

3k f
− m

3k f

kdm

3k2
f l

0 − Iyz
3k f l

Izz
3k f l

√
3m

3k f
− m

3k f

kdm

3k2
f l

0 − 2Iyy
3k f l

2Iyz
3k f l 0 − 2kdm

3k2
f l

m
3k f

√
3Ixx

3k f l
Iyy

3k f l −
Iyz

3k f l

√
3kdm

3k2
f l

kdm

3k2
f l

m
3k f

−
√

3Ixx
3k f l

Iyy
3k f l −

Iyz
3k f l −

√
3kdm

3k2
f l

kdm

3k2
f l

m
3k f


, (5.43)

U =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


, (5.44)

and φc and φr are given by

φc = [x7 x8 x9 x10 x11 x12 ẋ7 ẋ8 ẋ9 ẋ10 ẋ11 ẋ12]
T , (5.45)

φr = [ẋ10 ẋ11 ẋ12 ẋ7 ẋ8 ẋ9 x7 x8 x9 x10 x11 x12]
T . (5.46)

From (5.35) we know xr = φr (x). Finally, α(x) and β(x) can then be computed from (5.29)

and (5.30) directly.

5.3.2 Distributed Optimal Formation Protocol Design

In practical applications, some states do not need to be measured by sensors for controller

design. For example, the vehicle’s translational velocity in the body coordinate frame vb
v is

not used in the robust feedback linearization controller. It can hence be obtained by using an

observer on input and output information of the feedback linearized system. In this section,

we propose a distributed optimal formation protocol which uses the neighbourhood state es-

timation information for controller design and the local output estimation error information

for the observer design. The scheme for controlling the dynamics of attitude and position

of each tri-rotor UAV, based on robust feedback linearization and distributed optimal output

feedback formation protocol, is illustrated in Fig. 5.2.

Assumption 5.3.1. The directed graph G contains a spanning tree and the root node i can

obtain information from the leader node.
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Consider a set of N tri-rotor UAVs. Suppose that each tri-rotor UAV has the identical lin-

earized dynamics described by

ẋri = Arxri +Brvi, (5.47)

yi =Crxri. (5.48)

It can be easily verified that (Ar,Br,Cr) is stabilizable and detectable.

The dynamics of the leader node, labeled 0, is given by

ẋ0 = Arx0, (5.49)

y0 =Crx0. (5.50)

where x0 ∈ Rn is the state, y0 ∈ Rp is the output. It can be considered as a command

generator, which generates the desired target trajectory. The leader can be observed from a

subset of agents in a graph. If node i observes the leader, an edge (0, i) is said to exist with

weighting gain gi > 0 as a pinned node. We denote the pinning matrix as G = diag{gi} ∈

RN×N .

The desired formation is specified by the vector h =
[
hT

1 ,h
T
2 , . . . ,h

T
N
]T with hi ∈ Rn being a

preset vector known by the corresponding ith agent. It should be noted that the formation

problem reduces to a consensus problem when hi = 0 ∀ i ∈ {1, . . . ,N}.

Denote the estimate of the state xri by x̂ri ∈ Rn and let the state estimation error be x̃ri =

xri− x̂ri. Then the consequent estimate of the output yi is given by ŷi =Crx̂ri and the output

estimation error for node i is given by ỹi = yi−ŷi. Consider the following distributed optimal

formation protocol

vi =cK ∑
j∈Ni

ai j
((

x̂r j−h j
)
− (x̂ri−hi)

)
+ cKgi (x0− (x̂ri−hi))+ γi, (5.51)

˙̂xri = Arx̂ri +Brvi− cFỹi, (5.52)

where c > 0 is the scalar coupling gain, K ∈ Rm×n is the feedback control gain matrix,

F ∈Rn×m is the observer gain, and γi ∈Rm represents the formation compensation signal to

be designed.

Let x =
[
xT

r1,x
T
r2, . . . ,x

T
rN
]T , x̂ =

[
x̂T

r1, x̂
T
r2, . . . , x̂

T
rN
]T , x̃ =

[
x̃T

r1, x̃
T
r2, . . . , x̃

T
rN
]T , x0 = 1N ⊗ x0,

and γ =
[
γT

1 ,γ
T
2 , . . . ,γ

T
N
]T . Under a control protocol with directed topology, the tri-rotor
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UAV swarm can be written in a compact form as

ẋ =(IN⊗Ar)x− c[(L+G)⊗BrK](x̂− x0)+ c[(L+G)⊗BrK]h+(IN⊗Br)γ, (5.53)

˙̂x =(IN⊗Ar)x̂− (IN⊗ cFCr)(x− x̂)− c[(L+G)⊗BrK](x̂− x0)

+ c[(L+G)⊗BrK]h+(IN⊗Br)γ.
(5.54)

It follows the fact that matrix Br given in (5.40) is of full rank, there always exists a nonsin-

gular matrix [B̃T
, B̄T

]
T

with B̃ ∈ Rm×n and B̄ ∈ R(n−m)×n such that B̃Br = Im and B̄Br = 0.

The following theorem which is motivated by [125], has been improved to deal with output

feedback tracking of multi-agent systems.

Theorem 5.3.1. Let λi (i ∈ {1, . . . ,N}) be the eigenvalues of (L+G). If Assumption 5.3.1

is satisfied, then the tri-rotor UAV swarm with directed interaction topology asymptotically

converges to the formation specified by (x0 +hi) ∈ Rn ∀i ∈ {1, . . . ,N} if the following con-

ditions hold for all i ∈ {1, . . . ,N}

B̄Arhi− B̄ḣi = 0, (5.55)

Ar− cλiBrK and Ar + cFCr are Hurwitz, (5.56)

and γi = B̃ḣi− B̃Arhi for all i ∈ {1, . . . ,N} . (5.57)

Proof. Let formation tracking error be Φi = xri−hi− x0 and Φ = [ΦT
1 , . . . ,Φ

T
N ]

T . Then the

global formation error dynamics with directed interaction topology can be written as

Φ̇ =[IN⊗Ar− c(L+G)⊗BrK]Φ+ c[(L+G)⊗BrK]x̃

+(IN⊗Ar)h− (IN⊗ IN)ḣ+(IN⊗Br)γ.
(5.58)

The global observer error dynamics is

˙̃x = IN⊗ (Ar + cFCr)x̃. (5.59)

In view of Assumption 5.3.1, all the eigenvalues of matrix (L+G) have positive real parts

[126]. It is well known that there exists a nonsingular T such that T−1 (L+G)T is in the
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Jordan canonical form J. Let ϑ =
(
T−1⊗ In

)
Φ =

[
ϑ

T
1 ,ϑ

T
2 , . . . ,ϑ

T
N
]T . Then the multi-agent

system can be represented in terms of ϑ as

ϑ̇ =(IN⊗Ar− cJ⊗BrK)ϑ+ c[T−1 (L+G)⊗BrK]x̃

+
(
T−1⊗Ar

)
h− (T−1⊗ IN)ḣ+

(
T−1⊗Br

)
γ.

(5.60)

If condition (5.55) holds, then for all i ∈ {1, . . . ,N}

B̄Arhi− B̄ḣi + B̄Brγi = 0. (5.61)

By letting γi = B̃ḣi− B̃Arhi, it follows that

B̃Arhi− B̃ḣi + B̃Brγi = 0. (5.62)

From (5.61) and (5.62) and the fact that
[
B̃T

, B̄T ]T is nonsingular, one gets

Arhi− ḣi +Brγi = 0, (5.63)

which means that

(IN⊗Ar)h− (IN⊗ IN)ḣ+(IN⊗Br)γ = 0. (5.64)

Pre-multiplying the both sides of (5.64) by T−1⊗ IN yields

(
T−1⊗Ar

)
h− (T−1⊗ IN)ḣ+

(
T−1⊗Br

)
γ = 0. (5.65)

Then (5.60) reduces to the following dynamics

ϑ̇ = (IN⊗Ar− cJ⊗BrK)ϑ+ c[T−1 (L+G)⊗BrK]x̃. (5.66)

From (5.66) and (5.59), it can be obtained thatϑ̇

˙̃x

=

Ae Be

0 IN⊗ (Ar + cFCr)

ϑ

x̃

 , (5.67)

where

Ae = IN⊗Ar− cJ⊗BrK,

Be = cT−1 (L+G)⊗BrK.

Therefore, the global error system in (5.67) is asymptotically stable if and only if both Ae

and IN⊗ (Ar + cFCr) are Hurwitz, and the latter can be satisfied due to the detectability of
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(Cr,Ar). Note that the the state matrix Ae is either block diagonal or block upper-triangular.

Hence the stability of (5.67) is equivalent to the stability of the N subsystems defined with

the diagonal blocks. Therefore, Ar − cλiBrK is Hurwitz ∀ i ∈ {1, . . . ,N} if and only if

IN ⊗Ar− cJ⊗BrK is Hurwitz. Therefore, ϑ converges asymptotically to the origin which

is equivalent to stating that xri converges asymptotically to x0+hi for all i ∈ {1, . . . ,N}.

Next we will show how to select state variable feedback control gain K to guarantee stability

on arbitrary directed graphs containing a spanning tree by using LQR based optimal design

and proper choice of the coupling gain c. The following theorem is an extension of a result

in [123], which only considers the consensus problem. In the case where h = 0, the op-

timal formation tracking protocol (5.51) becomes the optimal consensus tracking protocol

of [123], so it can be viewed as a special case of the result in the current chapter.

Theorem 5.3.2. Let Q = QT ∈Rn×n and R = RT ∈Rm×m be positive definite matrices. Let

P be the unique positive definite solution of the algebraic Riccati equation

AT
r P+PAr +Q−PBrR−1BT

r P = 0. (5.68)

Then, under Assumption 5.3.1 and condition (5.55), the distributed formation tracking con-

trol protocol (5.51) with

K = R−1BT
r P (5.69)

and γi set as in (5.57) ensures that the tri-rotor UAV swarm with directed interaction topology

asymptotically converges to the formation specified by (x0 +hi) ∈ Rn ∀i ∈ {1, . . . ,N} if the

coupling gain

c≥ 1
2λR

(5.70)

with λR = mini∈{1,...,N}Re(λi), where λi are the eigenvalues of (L+G).

Proof. Consider the stability of the following subsystem

δ̇i = (Ar− cλiBrK)δi, (5.71)

where δ denotes the formation tracking closed-loop error. Construct the following Lyapunov

candidate function

Vi = δ
∗
i Pδi. (5.72)
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Taking the derivative of Vi along the trajectory of subsystem gives

V̇i = δ
∗
i
(
PAr +AT

r P− cλ
∗
i (BrK)T P− cλiPBrK

)
δi. (5.73)

Substituting K = R−1BT
r P and AT

r P+PAr =−Q+PBrR−1BT
r P into (5.71) one has

V̇i =
[
1−2cRe(λi)

]
δ
∗
i
(
PBrR−1BT

r P
)

δi−δ
∗
i Qδi. (5.74)

It can be seen that if condition (5.70) holds, then V̇i < 0. Therefore, Ar− cλiBrK is Hurwitz

for all i ∈ {1, . . . ,N} by Lyapunov theory [127]. This completes the proof.

The ARE in (5.68) is extracted by minimizing the following performance index for each

tri-rotor UAV

Ji =
1
2

∫
∞

0
(δT

i Qδi + vT
i Rvi)dt. (5.75)

The design Riccati matrices Q and R can be selected to adjust the relative cost of formation

tracking error and control effort. This allows the cooperative control system to be tuned to

trade-off between the speed of formation tracking and the speed of DC motors to achieve it.

Remark 5.3.1. In order to enhance the robustness of our tri-rotor UAV, suppose external

white noises ε1 and ε2 are added to (5.47) and (5.48) respectively, which satisfy that

E[ε1ε1
T ] = Q̄,E[ε2ε2

T ] = R̄,E[ε1ε2
T ] = 0, (5.76)

where E donates the expected value, and Q̄ and R̄ are positive definite matrices. Then a

local optimal observer gain F can be calculated by a similar approach (see [128] for further

details) as

F = P̄CT
r R̄−1

, (5.77)

where P̄ is the unique positive definite solution of ARE

ArP̄+ P̄AT
r − P̄CT

r R̄−1CrP̄+ Q̄ = 0. (5.78)

This optimal observer is also known as Kalman-Bucy filter [129], which has been widely

used in system state estimation. It has been demonstrated [130] to have many advantages,

including optimality of state estimation in the presence of white noise and external distur-

bance [131].
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Algorithm 3 Procedure for construction of the control law of a tri-rotor UAV robotic swarm
1: initialize state variables for a tri-rotor UAV robotic swarm;
2: for each vehicle i ∈ {1, . . . ,N} do
3: select the desired formation reference hi ∈ Rn;
4: if formation feasibility condition (5.55) is satisfied then
5: compute distributed feedback gain K using (5.69) and (5.68);
6: select coupling gain c according to condition (5.70);
7: compute local optimal observer gain F using (5.77) and (5.78);
8: set γi ∈ Rn according to (5.57);
9: set the distributed optimal formation control protocol vi as in (5.51) and (5.52);

10: set the robust feedback control law ui as in (5.28).
11: else
12: back to Step 3;
13: end if
14: end for

With the above analysis, the procedure to construct the control law ui is given in Algorithm 3.

Validation of internal stability using closed-loop data from experiments can be performed

using technique described in [132]. This is useful as one would also expect unmodelled

dynamics.

5.4 Simulation Results

The electric propulsion unit of the tri-rotor UAV includes energy storage units (battery

packs), electronic speed control units (ESC), electric motors (brushless DC motors), and

propellers. Also, an embedded system is installed on the main body, which includes an

on-board microcontroller (OBM), a data acquisition module (DAQ) and a sensor module

(IMU). The measured model parameters of the tri-rotor UAV are given in Table 5.2.

The simulation environment has been designed and implemented in Simscape Multibody
TM

and Simulink R© for more realistic results as this provides a 3D graphical display of physical

devices. Simscape Multibody
TM

is used to develop the dynamic model of the tri-rotor UAV

based on physical components such as joints, constraints, force elements, and sensors. The

designed control system is implemented in Simulink R©. Furthermore, a time delay of 0.01s

in servo motor responses and a maximum speed saturation constraint of 12000 RPM on the

electric motors are considered in the simulation model to mimic real physical considerations.



CHAPTER 5. OPTIMAL FORMATION CONTROL OF TRI-ROTOR UAVS 100

Table 5.2: Tri-rotor UAV and controller parameters
Value Unit Description

m 0.5 kg Tri-rotor mass
g 9.81 m/s2 Gravity acceleration
l 0.23 m Arm length

Ixx 6.8×10−3 kg ·m2 Moment of inertia along Xb
Iyy 5.3×10−3 kg ·m2 Moment of inertia along Yb
Izz 1.7×10−3 kg ·m2 Moment of inertia along Zb
Iyz 3.1×10−4 kg ·m2 Product of inertia about Yb and Zb

k f 1.97×10−5 kg ·m/rad2 Thrust to speed coefficient
kd 2.88×10−7 kg ·m2/rad2 Drag to speed coefficient
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Figure 5.3: Directed interaction topologies

For this case study, consider a set of six tri-rotor UAVs performing a target surveillance

task, whose goal is to track a predefined time-varying formation while maintaining different

attitudes individually for monitoring the full range of target activity. The directed interaction

topology among the six vehicles is shown in Fig. 5.3, where the leader agent 0 provides

the formation reference signal and the directed topology is switched every 5 seconds in

sequence. Recall that hi ∈ Rn is the formation offset vector with respect to the formation

reference x0 ∈ Rn. The 3D attitude and 3D position of each UAV are chosen independently.

The matrix B̄ can be chosen as

B̄ =

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 ,
and B̃ can be calculated as a left generalized inverse of Br, which is given by

B̃ =


0 406.09 29.68 0 −0.05 0.28 0 0 0 0 0 0

−351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0
351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0

0 −59.36 203.04 0 −1.79 0.10 0 0 0 0 0 0
51.41 29.68 203.04 1.99 0.89 −0.05 0 0 0 0 0 0
−51.41 29.68 203.04 −1.99 0.89 −0.05 0 0 0 0 0 0

 .



CHAPTER 5. OPTIMAL FORMATION CONTROL OF TRI-ROTOR UAVS 101

0

50

5

10

40
z
(m

)

15

y(m)

20

0 20

x(m)

25

0

-50 -20

vehicle1

vehicle2

vehicle3

vehicle4

vehicle5

vehicle6

Figure 5.4: 3D trajectories of the tri-rotor swarm

In this case, the states of the leader node are given by

x0 = [0 0 0 0 0 0 0 0 0 5 −5 0]T ,

which indicates that the reference position will be located at a static position (5,−5,0) with

roll, pitch and yaw angles being zero, and all the reference velocities and reference angular

velocities are kept zero to maintain the static target position. It should however be pointed

out that the individual attitudes and positions of each UAV are also effected by the choice

of hi, which will not be set to zero. The proposed control strategy is valid regardless of the

target is static or time-varying. In this case, hi is selected as

hi =



10cos(t+ (i−1)π
3 )

−10sin(t+ (i−1)π
3 )

0
0
0
0

−0.5×(−1)i

−0.5×(−1)i

0.5×(−1)i

10sin(t+ (i−1)π
3 )

10cos(t+ (i−1)π
3 )

20


(for i ∈ {1,2, . . . ,6}),

where the desired offsets of 3D attitude and 3D position with respect to the reference signal

for each agent are represented by last six rows, and the first six rows are the derivatives of

them according to the change of coordinates given in (5.46).

It can be verified that the formation tracking feasibility condition (5.55) in Theorem 5.3.1 is

satisfied. Then the optimal state-feedback gain K and coupling gain c can be obtained using
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(a) (b) (c)

(d) (e)

 

(f)

Figure 5.5: 3D shots of the tri-rotor swarm. (a) t = 0 s. (b) t = 5 s. (c) t = 10 s. (d) t = 15
s. (e) t = 25 s. (f) t = 50 s.

the approach in Theorem 5.3.2. The local optimal observer gain F for each UAV can also be

selected easily by solving the corresponding ARE based on the estimation of noise. These

design gains are hence given by

c = 5,

K =


−2.1 0.3 12 −0.1 −2.3 3.2 −0.9 −9.4 18 −2.2 0.5 2.6
2.1 −2.9 12 2.6 1.2 3.1 11 7.6 17 2.8 −3.5 2.6
2.6 2.5 12 −2.4 1.3 3.1 −11 8.9 17 3.7 2.9 2.6
−20 0 85 0 −17 0.3 0.1 −81 −0.5 −25 0 18
10 −18 85 17 8.4 −0.8 77 40 −3.6 12 −22 18
10 18 85 −17 8.4 −0.8 −77 40 −3.6 12 22 18

 ,

F =



−0.12 10.08 −0.01 9.83 0 0
−10.14 −0.12 0 0 9.83 0

0 0 −0.18 0 0 1.25
160.26 0 0 −0.12 5.57 0

0 208.61 50.72 −6.01 −0.12 0
0 50.72 916.32 −0.13 0 −0.18

17.90 0 0 −0.01 −0.20 0
0 20.36 1.60 0.16 −0.01 0
0 1.60 42.77 0 0 0

−0.01 0.16 0 4.43 0 0
−0.20 −0.01 0 0 4.43 0

0 0 0 0 0 1.5864


.

On using robust control law (5.28) with optimal distributed formation control protocol (5.51)

and (5.52), the trajectory of each tri-rotor UAV is given by Fig. 5.4. The 3D visualisation

of distributed formation of the tri-rotor UAV swarm are illustrated in Fig. 5.5. The attitude

tracking performance with respect to roll, pitch and yaw angles is shown in Fig. 5.6. The

position tracking of hovering is shown in Fig. 5.7. From all these figures, it can be seen that

the tri-rotor swarm forms a regular hexagonal formation with circular time-variation in the x-

y plane after 25s and the surveilled target lies in the middle of the circular rotation at ground
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(a) (b) (c)

Figure 5.6: Attitude response of the tri-rotor swarm system. (a) Roll angle φ. (b) Pitch angle
θ. (c) Yaw angle ψ.

(a) (b) (c)

Figure 5.7: Position response of the tri-rotor swarm system. (a) Longitudinal displacement
xv. (b) Lateral displacement yv. (c) Vertical displacement zv

level. The attitude of each tri-rotor UAV varies with time along the circular trajectory so that

each tri-rotor points (e.g. its onboard camera) to the target located at the centre of the circle.

It is concluded that the desired formation and attitude tracking of the UAV swarm is achieved

independently, and the designed control system preserves good robustness properties when

subjected to simulated aerodynamic disturbances and model uncertainties.

5.5 Conclusion

In this chapter, we have proposed a new tri-rotor unmanned aerial vehicle which is more

efficient and flexible than a quadrotor UAV. A formation tracking problem of a networked

tri-rotor UAV swarm has also been solved using a distributed formation control protocol.

To achieve this, the dynamical model was first derived based on force and torque kinematic

analysis and subsequent translational and rotational dynamic modelling. A robust feedback

linearization controller was then developed to deal with this highly coupled and nonlinear

tri-rotor UAV to achieve a feedback linearized system through geometric transformation that
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is valid at any operating point but matches the Jacobi linearization of the system at the oper-

ating point of interest. The technique preserves robustness as it does not invert all nonlinear

dynamics, unlike classic feedback linearization. An distributed optimal formation tracking

control protocol was then developed for the tri-rotor robotic swarm, which guarantees that

the target time-varying position and time-varying attitude of each UAV can be achieved in-

dependently. Finally, simulation results were given in a realistic environment based on 3D

graphical display and physical visualisations. It has been shown that the proposed tri-rotor

UAV swarm is able to track a desired time-varying formation whilst independently track-

ing different time-varying attitudes. A target surveillance task was performed effectively by

these tri-rotor UAVs, which lays the foundation for some more complex collaborative tasks

to be explored.

Future work will take obstacle avoidance and power management as shown in [133] into

consideration, the proposed distributed controller will be applied to real hardware, and ro-

bust methods such as [134], [135] will be exploited in the design of the distributed control

protocol.



Chapter 6

Cooperative Control of Heterogeneous

Connected Vehicle Platoons

6.1 Introduction

The notion of Intelligent Highway Vehicle Systems was introduced more than two decades

ago and has attracted considerable attention of the transportation engineering communities

to accommodate exponentially increasing number of highway traffic in today’s life along

with minimizing the risk of traffic accidents [136]. The key strategy to implement IHVSs

is to employ automatic or semi-automatic cruise control mechanisms for highway vehicles

and thereby reducing human intervention in driving the vehicles.

The fundamental issue in controlling a string (also called platoon) of connected vehicles is

how to ensure platoon stability when the lead vehicle in a platoon suddenly accelerates or

decelerates due to exogenous disturbances. platoon stability of automated vehicles guar-

antees that the spacing and velocity errors between the successive vehicles do not grow or

amplify upstream along the platoon [137]. Efficacy of a platoon control scheme depends

highly on the vehicular information available for feedback and on the spacing policy used.

For instance, the acceleration feedback via Vehicle-to-Vehicle (V2V) communication (such

as DSRC and VANET [138]) in addition to position and velocity feedback information en-

hances the relative platoon stability of a platoon [139]. Spacing policy also plays a major

105
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Figure 6.1: A platoon of driverless vehicles in an automated highway system.

role in deciding a particular platoon control strategy. Constant spacing policy is quite pop-

ular in the literature since it ensures constant inter-vehicular spacing independent of the

cruising velocity of the platoon and also offers high traffic capacity and easier implementa-

tion. (as portrayed in Fig. 6.1).

A Cooperative Adaptive Cruise Control technique was proposed in [140] for heterogeneous

vehicle platoon along with practical validation results and also examined the platoon stabil-

ity of the practical setup. The article [141] has introduced the concept of Lp platoon stabil-

ity for connected vehicles and analysed platoon stability properties of cooperative adaptive

cruise control strategies for vehicle platoons with experimental validation results. In [142],

platoon stability of homogeneous and heterogeneous vehicle platoons with constant time

headway spacing policy has been investigated considering time delays in sensors and actua-

tors.An adaptive bidirectional platoon control scheme using a coupled sliding-mode control

technique is proposed in [143] to ensure platoon stability of the platoon and to improve

its performance. In [144], a distributed finite-time adaptive integral sliding-mode control

framework is designed for a platoon of vehicles subjected to bounded exogenous distur-

bances. However, these studies have considered fixed interaction topology among the ve-

hicles which reduces the flexibility and reliability of a platoon control scheme. Of late,

in [145], a fully decentralized control scheme is developed including obstacle avoidance

feature for a platoon of car-like vehicles equipped with on-board cameras to detect the ob-

stacles. In the present context, the experimental work done in [146] is a major contribution

in the area of cooperative driving in which a fleet of miniature robotic cars is developed for

conducting platoon control activities.
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With the advent of multi-agent consensus theory and formation control techniques [13,147,

148], cooperative control of connected vehicles platoons has started emerging in the recent

years [149–151]. The major objective of cooperative control of connected vehicle platoon

is to maintain uniform velocity of all the vehicles in a platoon moving in one dimension

on a straight flat road alongside ensuring a desired inter-vehicular spacing at the steady-

state. Pioneering research works have been carried out in [149] and [150] to apply the

consensus based cooperative control techniques in developing distributed control schemes

for connected vehicle platoons moving in one dimension. While [149] have developed the

control schemes for homogeneous vehicle platoons, [150] have extended their previous re-

sults for heterogeneous platoons. However, in [149] and [150], the proposed cooperative

control protocols are not adaptive and the case of communication link failure have not been

explored.

Motivated by the ongoing developments and existing challenges in the area of cooperative

control of multiple connected vehicle platoon, in this chapter, we consider the problem of

designing a distributed control scheme for a platoon of heterogeneous connected vehicles

moving in one dimension considering constant spacing policy and constant longitudinal

velocity of the lead vehicle. Below, we summarize the contributions of this chapter:

• A two-layer distributed and adaptive control architecture is developed for a heteroge-

neous platoon of bidirectionally connected vehicles to maintain same cruising velocity

of all vehicles in the platoon and to keep equal inter-vehicular spacing between any

two successive vehicles, which together preserve platoon stability of the platoon in

presence of exogenous input applied to the lead vehicle.

• The proposed scheme takes into account the complete nonlinear vehicle dynamics

during the controller design, hence, the heterogeneity of the vehicles due to different

parameters are directly considered in this scheme.

• The proposed platoon control design being distributed and adaptive facilitates unin-

terrupted and reliable control of the platoon despite any bounded disturbance on the

lead vehicle and also in the event of communication link failure.

• Effectiveness of the proposed method has been validated through affordable real robot
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experiments on a two-lane platoon of six connected vehicles, represented by au-

tonomous, miniature Mona robots [1], in a real-time laboratory environment equipped

with low-cost over-head camera tracking system.

6.2 Technical Background and Problem Formulation

In this chapter, we aim to establish the platoon stability of a heterogeneous vehicle platoon

and thereby to ensure that all the vehicles in the platoon remain equidistant even when

the lead vehicle is affected by exogenous input (e.g. sudden acceleration/deceleration). In

order to achieve this, we developed a two-layer platoon control scheme which exploits the

feedback linearization technique to first linearize the nonlinear vehicle dynamics and then

applies a distributed cooperative control technique to develop a rectilinear static formation

of the connected vehicles to keep them equidistant assuming that the leader vehicle has

constant velocity.

6.2.1 Communication Topology

Suppose that the information links among following vehicles are bidirectional and there

exists at least one directional link from the leader to followers. If the ith following vehicle

observes the lead vehicle then an edge (0, i) between them is said to exist with the pinning

gain gi > 0. We denote the pinning matrix as G = diag{gi} ∈ RN×N . It is assumed that at

least one follower is connected to the leader. In virtue of the bidirectional communication

topology among the followers, all the eigenvalues of the matrix L+G (denoted by λi for

1,2, . . . ,N) are real and positive.

6.2.2 Modelling of Heterogeneous Vehicles

We consider a platoon of connected vehicles with non-identical dynamics that forms a pla-

toon running through dense traffic on a straight highway assuming there is no overtaking.

In each platoon, the vehicle at the front is considered as the leader that moves at a constant
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Figure 6.2: Cooperative control architecture of a heterogeneous and connected vehicle pla-
toon in which the vehicle labelled with 0 acts as the leader while the rest 1,2, . . . ,N vehicles
are considered as followers.

velocity while rest of the downstream vehicles are considered as followers. A schematic di-

agram of the platoon is depicted in Fig. 6.2 where all the following vehicles try to maintain

equal spacing between any two of them. In this chapter, we will use the following notations:

position, velocity and acceleration of the ith following vehicle are denoted by pi(t), vi(t),

ai(t) for all i ∈ {1,2, . . . ,N}, while those of the lead vehicle are denoted by p0(t), v0(t) and

a0(t). In rest of the chapter, explicit dependence on time t ≥ 0 has been omitted. Now, the

dynamics of each vehicle can be modelled, as shown in [137], by the following nonlinear

input-affine differential equation

ȧi = fi(vi,ai)+gi(vi)bi ∀i (6.1)

which encompasses the engine dynamics, brake system and aerodynamics drag. In (6.1), bi

is the input to the engine of the ith vehicle and the nonlinear functions fi(vi,ai) and gi(vi)

are given by

fi(vi,ai) =−
1
τi

(
ai +

σφicdi

2mi
v2

i +
dmi

mi

)
− σφicdi

mi
viai,

gi(vi) =
1

τimi
,

where σ denotes the specific mass of the air, φi is the cross-sectional area, cdi indicates the

drag coefficient, mi denotes the mass, dmi represents the mechanical drag and τi symbolizes

the engine time constant (also called the inertial time-lag). The group of terms σφicdi
2mi

models

the air resistance [137]. Note that since most of the parameters mentioned in (6.1) are

not identical for all vehicles, hence, the present work deals with control of heterogeneous

vehicle platoon. Now, we can use the following feedback linearizing control law

bi = uimi +0.5σφicdiv2
i +dmi + τiσφicdiviai (6.2)
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for all i ∈ {1,2, . . . ,N} to transform the nonlinear vehicle dynamics into a linearized model.

Note that the feedback linearized controller constitutes the inner layer of the proposed two-

layer platoon control scheme and is implemented as a local controller available to each

vehicle as shown in Fig. 6.5. In (6.2), ui is the new control input to be designed. Now,

substituting (6.2) into (6.1), the longitudinal dynamics of each vehicle in the platoon is

obtained as 
ṗi = vi,

v̇i = ai,

τiȧi +ai = ui ∀i,

(6.3)

which is then expressed in the standard state-space form as

ẋi = Aixi +Biui ∀i, (6.4)

where

xi(t) =


pi

vi

ai

 , Ai =


0 1 0

0 0 1

0 0 − 1
τi

 and Bi =


0

0
1
τi

 .
It can be readily verified that the pair (Ai, Bi) is controllable for all i∈ F . The leader vehicle

runs with constant velocity under the steady-state condition (i.e., u0 = 0). Note that even

though the nonlinear vehicle dynamics (6.1) is linearized to (6.4) but it is still heterogeneous

due to the presence of the parameter τi. This makes the present problem non-trivial and

challenging.

6.2.3 Problem Formulation

Cooperative control of a platoon of N +1 heterogeneous vehicles moving on a straight flat

road is considered in this work, which includes a leader indexed by 0 and N followers

indexed from 1 to N. Let F = {1,2, . . . ,N} be the set of the followers. The control objective

is to ensure all the following vehicles maintains the same speed as the leader while keeping a

constant inter-vehicular spacing, thereby potentially improving road throughput. This policy

can provide advantages such as high vehicle density and low energy consumption.

The heterogeneous connected vehicles shown in Fig. 6.2 are said to achieve the desired

platoon control objectives with the lead vehicle having constant velocity if for any given
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bounded initial states 
lim
t→∞

∥∥pi(t)− p j(t)
∥∥= (i− j)dr,

lim
t→∞
‖vi(t)− v0(t)‖= 0 and

lim
t→∞
‖ai(t)−a0(t)‖= 0,

(6.5)

for all i, j ∈ F , j 6= i. The platoon control activities including how to preserve platoon

stability is formulated as a ‘Leader-following’ static formation of the connected vehicles

in the platoon where the lead vehicle is considered as the root node. The desired static

formation of the platoon is specified by the vector di = [idr,0,0]
T ∀i ∈ {1,2, . . . ,N} known

to the ith following vehicle, where dr is a pre-specified gap between any two consecutive

vehicles in the platoon. In case of implementing constant spacing policy, the desired gap

dr remains constant for all i. Note that any acceleration/deceleration in a vehicle happening

due to taking sharp turns, climbing uphill or going downhill can be considered as a bounded

disturbance acting on the vehicle temporarily. Platoon stability of a platoon ensures that the

spacing error grows only during the period of disturbance but quickly decays to zero as soon

as the disturbance (i.e. the acceleration/deceleration) disappears.

6.3 Control Protocol Design

This section develops distributed cooperative control scheme for a platoon of heterogeneous

and connected vehicles, which is the main theoretical contribution of the chapter. The con-

trol objectives are i) to keep equal and constant inter-vehicular spacing between successive

vehicles, ii) maintain the velocities of all the following vehicles same as that of the leader

and iii) to maintain zero acceleration for all the vehicles in the platoon. Motivated by the

adaptive control techniques developed in [15, 82, 152], we propose a distributed control

protocol given in Theorem 6.3.1 to satisfy the aforementioned objectives and thereby to

maintain platoon stability of the platoon.

Theorem 6.3.1. Consider a platoon of heterogeneous connected vehicles with the feed-

back linearized dynamics given in (6.4). Define δ = τ0
maxi∈F τi

, ρ = τ0
mini∈F τi

and select

ϕ ≥ 1
2δmini∈F λi

. Then, the cooperative control objectives of the heterogeneous platoon are

achieved when the following adaptive control protocol is applied to each followers vehicles
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i ∈ F 
ui = BT

0 ξixi +ϕK
N

∑
j=0

αi j
(
(xi−di)− (x j−d j)

)
,

ξ̇i = ρxT
i B0K

N

∑
j=0

αi j
(
(xi−di)− (x j−d j)

)
,

(6.6)

with K =−BT
0 P where P > 0 is a unique solution to the algebraic Riccati equation (ARE)

AT
0 P+PA0−PB0BT

0 P+ γI3 = 0 (6.7)

for a given γ > 0.

Proof. The closed-loop dynamics of the heterogeneous vehicle platoon given in (6.4) under

the proposed distributed platoon control law (6.6) is obtained as

ẋi =
(
Ai +BiBT

0 ξi
)
xi +ϕBiK

N

∑
j=0

αi j
(
(xi−di)− (x j−d j)

)
. (6.8)

For each connected vehicle, exploiting the controllable canonical structure of A0, B0, Ai

and Bi for all i, it is always possible to find a constant scalar ζi such that the following

relationship

A0 = Ai +BiBT
0 ζi (6.9)

holds for all i ∈ F . Plugging (6.9) into (6.8), we get

ẋi =A0xi +BiBT
0 (ξi−ζi)xi +ϕBiK

N

∑
j=0

αi j
(
(xi−di)− (x j−d j)

)
. (6.10)

Define the formation tracking error εi = xi− di− x0 for each following vehicle and let the

vector ε =
[
εT

1 ,ε
T
2 , . . . ,ε

T
N
]T . Then ε̇ is calculated as:

ε̇i = A0εi +BiBT
0 (ξ

T
i −ζi)xi +ϕBiK

N

∑
j=0

αi j(εi− ε j) (6.11)

by using (6.4) and since ḋi = [000]T . Then, (6.11) is expressed in the Kronecker product

form as

ε̇ = (I⊗A0)ε+ϕdiag{BiK}
(
(L+G)⊗ I

)
ε+


B1BT

0 (ξ1−ζ1)x1

B2BT
0 (ξ2−ζ2)x2

...

BNBT
0 (ξN−ζN)xN

 . (6.12)
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In this proof, the platoon control problem, and therefore ensuring platoon stability of the pla-

toon, has been cast as an asymptotic stability problem of the closed-loop formation tracking

error dynamics ε̇. To approach this problem via Lyapunov’s method, we consider the fol-

lowing Lyapunov function candidate

V = ε
T((L+G)⊗P

)
ε+

N

∑
i=1

(ξi−ζi)
2. (6.13)

Note V > 0 since L +G > 0 and P > 0 for a given γ > 0. The time derivative of V is

computed along the trajectories of (6.11) as

V̇ = ε
T((L+G)⊗ (PA0 +AT

0 P)
)
ε+2ε

T((L+G)⊗ I
)
ϕdiag{PBiK}

(
(L+G)⊗ I

)
ε

+2ε
T((L+G)⊗P

)


B1BT
0 (ξ1−ζ1)x1

B2BT
0 (ξ2−ζ2)x2

...

BNBT
0 (ξN−ζN)xN

+2
N

∑
i=1

(ξi−ζi)ξ̇i

=ε
T((L+G)⊗ (PA0 +AT

0 P)
)
ε

+2ε
T((L+G)⊗ I

)
ϕdiag{PBiK}

(
(L+G)⊗ I

)
ε

+2
N

∑
i=1

N

∑
j=0

αi j(εi− ε j)
T PBiBT

0 (ξi−ζi)xi

+2ρ

N

∑
i=1

(ξi−ζi)xT
i B0K

N

∑
j=0

αi j
(
(xi−di)− (x j−d j)

)
=ε

T((L+G)⊗ (PA0 +AT
0 P)
)
ε

+2ε
T((L+G)⊗ I

)
ϕdiag{PBiK}

(
(L+G)⊗ I

)
ε

+2
N

∑
i=1

N

∑
j=0

αi j(εi− ε j)
T PBiBT

0 (ξi−ζi)xi

−2ρ

N

∑
i=1

N

∑
j=0

(ξi−ζi)xT
i B0BT

0 Pαi j
(
εi− ε j

)
=ε

T((L+G)⊗ (PA0 +AT
0 P)
)
ε

+2ε
T((L+G)⊗ I

)
ϕdiag{PBiK}

(
(L+G)⊗ I

)
ε

+2
N

∑
i=1

N

∑
j=0

αi j(εi− ε j)
T P
(
BiBT

0 −ρB0BT
0
)
(ξi−ζi)xi

[since K =−BT
0 P and noting that εi− ε j = (xi−di)− (x j−d j) for any i, j ∈ F ].

Now exploiting the structures of B0, Bi and the parameter ρ= τ0
mini∈F τi

, we can readily obtain
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the following relationship

BiBT
0 −ρB0BT

0 ≤ 0. (6.14)

Upon applying (6.14) into the last expression of V̇ , it gives

V̇ ≤ε
T [(L+G)⊗ (PA0 +AT

0 P) − 2ϕ
(
(L+G)⊗ I

)
diag{PBiBT

0 P}
(
(L+G)⊗ I

)]
ε

which in turn implies

V̇ ≤ ε
T [((L+G)⊗ (PA0 +AT

0 P)−2ϕδ(L+G)2⊗PB0BT
0 P
]

ε, (6.15)

since

BiBT
0 −δB0BT

0 ≥ 0 ∀i ∈ F (6.16)

due to a similar argument used to show (6.14). Now since L+G > 0, there always ex-

ists an unitary diagonalizing matrix D ∈ RN×N such that Λ = DT (L + G)D where Λ =

diag{λ1,λ2, . . . ,λN}. Replacing L+G in (6.15) by DT ΛD, we have

V̇ ≤ ε
T (DT ⊗ I)

[
Λ⊗ (PA0 +AT

0 P)− 1
mini∈F λi

Λ
2⊗PB0BT

0 P
]
(D⊗ I)ε

≤ ε
T (DT ⊗ I)

[
Λ⊗ (PA0 +AT

0 P−PB0BT
0 P)
]
(D⊗ I)ε. (6.17)

Then, (6.17) implies V̇ ≤ 0 using the ARE given in (6.6) for a given γ > 0 and V̇ = 0 only

when ε = 0. Hence invoking LaSalle’s invariance principle [55], asymptotic stability of the

closed-loop tracking error dynamics (ε̇) given in (6.11) can be guaranteed. Therefore,

lim
t→∞

ε(t) = 0 (6.18)

which implies

lim
t→∞

xi(t)−di− x0(t) = 0 ∀i ∈ F . (6.19)

This completes the proof.

Remark 6.3.1. Different from the results shown in [139, 149] where only homogeneous

vehicular platoons are considered (i.e., Ai = A0, Bi = B0, ∀i ∈ F ), the proposed control

protocol in this work can deal with the heterogeneous dynamics of vehicles, which is more

practical in real applications. Even though control of heterogeneous vehicle platoons is

investigated in [143], it is required to know all the model information of the leader and fol-

lowers before designing the control law, while in this work only the leader’s model and the

bound of the followers’ models are needed, which largely reduces the computation com-

plexity and thus provides more possibility in real hardware implementation.
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Following the analysis presented above, the procedure to construct the control law ui is given

in Algorithm 4.

Algorithm 4 Procedure to design the control law for heterogeneous vehicle platoons
1: for each vehicle i ∈ {1, . . . ,N} do
2: initialize pi, vi, ai and ξi;
3: set a bidirectional communication graph;
4: set the desired distance dr;
5: if all the vehicles are connected with the leader as the root node then
6: choose positive constants ρ and δ;
7: select the positive parameter ϕ;
8: compute controller parameter K by solving ARE (6.7) for a given γ;
9: construct the control protocol ui given in (6.6);

10: else
11: back to Step 3;
12: end if
13: end for

6.4 Nonlinear Simulation Results

In this section, we provide a complete set of simulation results to show the usefulness and

performance of the proposed cooperative platoon control scheme. We consider a heteroge-

neous platoon of six connected vehicles, of which one is leader while the rest five are fol-

lowers, interconnected via three different communication topologies as shown in Fig. 6.3(a)-

6.3(c). The parameters of each connected vehicle are arbitrarily selected and tabulated be-

low in Table 6.1. Note that in the simulation study, the actual nonlinear vehicle dynamics as

mentioned in (6.1) has been considered.

Table 6.1: Vehicle Parameters Used in the Simulations
Index 0 1 2 3 4 5

mi (kg) 1753 1837 1942 1764 1029 1688
τi (s) 0.51 0.55 0.62 0.52 0.33 0.48

The initial state of the leader is arbitrarily assigned to p0(0) = 200m, v0(0) = 8m/s, and

a0(0) = 0m/s2. Note that the acceleration or deceleration of the leader can be viewed as

disturbances in a platoon. The initial position of the ith follower is given by pi(0) = (40−

8i)m. In the simulation study, the desired inter-vehicular spacing is set to dr = 5m. Now

based on the vehicle parameters given in Table 6.1, we calculate the controller parameters
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Figure 6.3: Variety of communication topologies used in the simulation case study on the
platoon control mission. (a) Topology 1: predecessor-following (PF); (b) Topology 2: two-
predecessor following (TPF) and (c) Topology 3: to examine the response of the platoon in
the event of link failure.

as ρ = 1.545, δ = 0.823 and ϕ = 10. Then, choosing γ = 100 and by solving the ARE (6.7),

we get

P =


180.287 112.517 7.1

112.517 195.7535 12.8004

7.1 12.8004 7.2787

> 0

which form the feedback gain matrix

K =−BT
0 P =−

[
10 18.0287 10.2517

]
.

Three sets of simulation results are presented in Fig. 6.4(a), 6.4(b) and 6.4(c) corresponding

to Topologies 1, 2 and 3 respectively as shown in Fig. 6.3(a), 6.3(b) and 6.3(c). Each set

of results contains position (pi) and velocity (vi) trajectories of the vehicles, the coupling

weights (ξi) designed for them and the spacing error (εi) corresponding to each vehicle. For

the first 10 sec of the simulation, the vehicles in the platoon move all together at the same

cruising velocity v0(0) = 8 m/s as that of the leader, hence, the inter-vehicular spacing be-

tween any two consecutive vehicles remains zero. Distance traversed by the vehicles during

this phase increases at a constant rate and the coupling weights also remain constant at their

initial values. Then, in order to disturb the constant velocity movement of the platoon, an
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(c) 

Figure 6.4: Simulation results shows the performance achieved by the proposed two-layer
cooperative control scheme when applied to a platoon of six connected and heterogeneous
vehicles of which one acts as the leader while rest five are followers. (a) Position pi(t),
velocity vi(t), coupling weight ξi(t) and spacing error εi(t) for each of the vehicles in the
platoon corresponding to Topology 1; (b) pi(t), vi(t), ξi(t), εi(t) corresponding to Topology
2; (c) pi(t), vi(t), ξi(t), εi(t) corresponding to Topology 3.

exogenous input

w0(t) =


0, 0 s≤ t < 10 s;

1, 10 s≤ t < 12 s;

0, t ≥ 12 s;

(6.20)

is applied on the lead vehicle causing an acceleration in it followed by a steep rise in its

velocity as portrayed in the velocity vs. time graph of Fig. 6.4(a). This figure also reveals

that in response to the sudden increase in the velocity of the leader the following vehicles

also try to synchronize with the new stable velocity of the leader and after t = 12s, all

following vehicles attain the same velocity as that of the leader. This has been made possible

due to the influence of the proposed platoon control scheme. The graph ξi vs. t in Fig.

6.4(a) shows that the coupling weights adapt to new values to tune the controller gains to

counteract the disturbance in the platoon. From the spacing error vs. time graph given in

Fig. 6.4(a), it is clear that during the transient period 10s ≤ t < 20s spacing error deviates

from zero, exhibits bounded variation, then quickly decays to zero around t = 20 s and after

that remains zero for all t > 20s. This confirms that the designed cooperative control scheme

has worked satisfactorily to sustain the disturbance in the platoon caused due to applying



CHAPTER 6. COOPERATIVE CONTROL OF VEHICLE PLATOONS 118

an acceleration input to the lead vehicle and to restore normal operating condition after the

disturbance is removed and thus the proposed controller has preserved platoon stability of

the platoon. The same conclusion can be drawn in case of the other two sets of simulation

results given in Fig. 6.4(b) and 6.4(c). Most importantly, Fig. 6.4(c) highlights that the

proposed distributed platoon control scheme works even in presence of communication link

failure as long as there exists a spanning tree in the topology, that is, all the following

vehicles are either explicitly or implicitly connected to the lead vehicle. Furthermore, in

contrast to the results reported in [150], the performance of the controller in Fig. 6.4(a) and

6.4(b) corresponding to Topologies 1 and 2 suggests that ‘two-predecessor’ topology is not

necessary for the proposed scheme to work.

6.5 Experimental Validation

In order to establish the feasibility and effectiveness of the proposed two-layer distributed

platoon control scheme, in this chapter, real-world experiments with mobile robots have

been performed. Below we introduce the experimental setup in brief and subsequently, we

will analyse the experimental results.

6.5.1 Experimental Setup

Vehicle Platform

In the experiment, we used real autonomous robots, Mona [1], that approximate the lon-

gitudinal dynamics of a vehicle. Mona is a low-cost, open-source, miniature robot which

has been developed for swarm robotic applications and is used in this work. Mona houses

two DC gear-head motors connected directly to its wheels having 32mm diameter and it

has a circular chassis having diameter equal to 80mm. The main processor is an AVR mi-

crocontroller equipped with an external clock of 16MHz frequency. A NRF24l01 wireless

transceiver module is equipped on each robot to achieve inter-communication. The robot

is developed based on the Arduino Mini/Pro architecture that facilitates to use all existing

open-source libraries associated with the Arduino boards.
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Figure 6.5: Hardware control loop associated with the experiment. Experimental arena
includes overhead camera tracking system, base station (i.e. the desktop), aluminium framed
glass platform and the Mona robots.

Experimental Platform

As shown in Fig. 6.5, the experimental platform includes a digital camera connected to a

PC which runs the tracking system, arena frame and walls made of aluminium strut profile

and wooden floor. The tracking system used in this work is an open-source multi-robotic

localization system [98]. The tracking system can track the positions and orientations of the

robots using their unique circular tags which are placed on top of the robots. The position

information are transmitted to the controller via ROS communication framework. Note that

the over-head camera can be easily removed in real implementation if the automated vehicles

are equipped with on-board communication and positioning modules. For example, the road

information (e.g., lane width, lane curvature) and the surrounding vehicles information (e.g.,

relative distance, relative speed) can be recorded by Mobileye used in [153].

6.5.2 Experimental Results

In the experiment, a platoon of six connected vehicles is considered which consists of two

lanes as shown in Fig. 6.6. There are three vehicles in each lane which are bidirectionally

connected. All vehicles are moving in one dimension from left to right direction on the

glass board since only longitudinal motion has been considered. Fig. 6.6(a) shows the

initial rest position of the robots (i.e. the vehicles) in the platoon. The platoon is then

brought into motion at t > 0 by applying an external input to the leader as seen in Fig.

6.6(b). Note here that the initial acceleration in any vehicle can be considered as a temporary
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Figure 6.6: Experimental results: course of motion of a two-lane platoon containing six
connected vehicles, all represented by Mona robots, in the experimental arena. (a) Initial
rest position for all vehicles at t = 0s; (b) Lead vehicles has acquired the longitudinal motion
from rest at t > 0; (c) Following vehicles gradually catch the velocity of the leaders and the
desired inter-vehicular spacing is restored; and (d) At t = 45s, the platoon (both the lanes)
reaches the other end of the arena – mission accomplished.

bounded disturbance input since the platoon as a whole has been shown to be platoon-

stable under the influence of the proposed control scheme. Similar theoretical viewpoint

was established in [150]. The notion remains applicable when a vehicle decelerates for

taking a turn. Due to communication delay, the follower vehicles cannot catch up with the

velocity of the leader instantaneously. As a result, at the beginning, spacing between the

leader and the immediate follower becomes more than the desired spacing, but gradually

the followers get synchronized with the leader and also restore equal inter-vehicular spacing

at the steady-state. Fig. 6.6(c) reflects this situation. Fig. 6.6(d) indicates that the

platoon has reached its destination (i.e. the right end of the glass board) at t = 45s satisfying

all the platoon control objectives. Thus the mission is accomplished with the proposed

platoon control scheme, which demonstrates the feasibility and effectiveness of the scheme

in hardware experiment with real robots leading to its possible application in platoon control

of real vehicles. Fig. 6.7(a) and 6.7(b) complement the experimental results shown in Fig.

6.6(a)-6.6(d) by providing the time variation of the positions pi(t) and velocities vi(t) of the

vehicles and the associated spacing error εi(t). We observe from Fig 6.7(a) that velocities

of the followers in Lane 1 start rising in accordance with the leader from t = 4 s onwards,
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(a) (b) 

Figure 6.7: Time evolvement of position p(t), velocity v(t) and spacing error ε(t) of the
leader and following vehicles during the experiment with real Mona robots: (a) For the
vehicles in Lane 1; (b) For the vehicles in Lane 2.

reach the leader around t = 20 s and remain synchronized until the end. The graph for the

spacing error is in agreement with this fact. It shows that the spacing error between any

two vehicles decays to zero at the same time around t = 20 s and remains zero throughout

the rest of the experiment. The same conclusion can be drawn for the vehicles in Lane 2 as

illustrated in Fig. 6.7(b).

6.6 Conclusions

In this chapter, we have introduced a two-layer decentralized and adaptive control scheme

for heterogeneous connected vehicle platoon, which exploits first an input-output feed-

back linearization technique to linearize the nonlinear vehicle dynamics and then applies

a distributed cooperative control law to serve the platoon control objectives. The proposed

methodology ensures equal and constant inter-vehicular spacing between successive vehi-

cles along with maintaining a desired cruising velocity of the platoon when the lead vehicle

runs at constant velocity. Furthermore, the platoon stability of the platoon is preserved even

when the lead vehicle is disturbed by exogenous disturbances (for example, due to acceler-

ation/deceleration). It is investigated that the acceleration feedback, in addition to position



CHAPTER 6. COOPERATIVE CONTROL OF VEHICLE PLATOONS 122

and velocity feedback, improves the platoon stability and reliability of the proposed scheme.

Simulation results shows satisfactory performance of the platoon control scheme in presence

of leader’s disturbance which is then further validated by real-time hardware experiments

with Mona robots.

In the future, more challenging and realistic situations (e.g. when the road is uneven or there

is turning, when a vehicle at the middle of a platoon breaks down or starts malfunctioning

due to hardware faults, when the vehicles move along uphill or downhill roads, etc.) shall

be taken into account by improving the proposed platoon control scheme using outer-loop

optimization, game theoretic and artificial intelligence techniques. Furthermore, the pro-

posed scheme shall be validated with more sophisticated experimental platforms including

full-sized real cars in a controlled environment.



Chapter 7

Conclusions

In this chapter the main contributions of this thesis are summarised and possible directions of

future research are explored. The aim of this thesis is to generate advanced formation control

techniques for multi-agent systems (MASs), and to find possible real world applications

using the proposed distributed control algorithms.

7.1 Contributions

The main contributions of this thesis are summarised below.

• A distributed, adaptive and nonlinear control protocol has been introduced to achieve

TGFT for linear MASs having directed communication topology. The control ob-

jectives also include sub-formation and tracking, that is, the followers are divided

into several subgroups depending on the positions of the leaders and each subgroup

reaches individual sub-formations while tracking the positions of the respective lead-

ers attached to that subgroup. In contrast to existing literature, the proposed result

addresses the group formation tracking problem where each subgroup can have mul-

tiple leaders and the leaders may have separate control inputs. The proposed control

technique is fully distributed as it requires only the relative state information and does

not need to calculate the eigenvalues of the graph Laplacian. The advantage of using
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an appropriate blending of adaptive and nonlinear control techniques is to render the

proposed control scheme robust to network topology changes and unknown inputs to

the leaders.

• A fully distributed formation-containment problem for linear MASs with directed

graphs has been investigated. A two-layer control architecture is proposed to solve

the formation-containment problem, which consists of the leaders’ formation layer

and the followers’ containment layer. To achieve formation-containment, distributed

adaptive protocols are constructed based on relative state information, which made

the proposed control design fully distributed without using global information about

the interaction topology. Then, algorithms are presented to construct the control laws

by testing formation feasibility condition and solving algebraic Riccati equation. The

stability of the proposed scheme is proved by Lyapunov theory. Moreover, it is proved

that the states of followers not only converge into the convex hull spanned by those of

leaders but also maintain certain formation determined by the leaders and the virtual

agent. Finally, the effectiveness of the proposed strategy is verified by numerical sim-

ulations with formation-containment tasks of networked satellites and real-hardware

experiments with mobile robots.

• A formation tracking problem of a networked tri-rotor UAV swarm has been solved

using a distributed formation control protocol. To achieve this, a robust feedback

linearization controller was first developed to deal with this highly coupled and non-

linear tri-rotor UAV to achieve a feedback linearized system through geometric trans-

formation that is valid at any operating point. The technique preserves robustness as

it does not invert all nonlinear dynamics, unlike classic feedback linearization. An

distributed optimal formation tracking control protocol was then developed for the

tri-rotor robotic swarm, which guarantees that the target time-varying position and

time-varying attitude of each UAV can be achieved independently. Finally, simula-

tion results were given in a realistic environment based on 3D graphical display and

physical visualisations. It has been shown that the proposed tri-rotor UAV swarm is

able to track a desired time-varying formation whilst independently tracking different

time-varying attitudes. A target surveillance task was performed effectively by these

tri-rotor UAVs, which lays the foundation for some more complex collaborative tasks
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to be explored.

• A decentralized and adaptive control scheme for heterogeneous connected vehicle pla-

toon has been developed, which exploits first an input-output feedback linearization

technique to linearize the nonlinear vehicle dynamics and then applies a distributed

cooperative control law to serve the platoon control objectives. The proposed method-

ology ensures equal and constant inter-vehicular spacing between successive vehicles

along with maintaining a desired cruising velocity of the platoon when the lead vehicle

runs at constant velocity. Furthermore, the string stability of the platoon is preserved

even when the lead vehicle is disturbed by exogenous disturbances (for example, due

to acceleration/deceleration). It is investigated that the acceleration feedback, in addi-

tion to position and velocity feedback, improves the string stability and reliability of

the proposed scheme. Simulation results shows satisfactory performance of the pla-

toon control scheme in presence of leader’s disturbance which is then further validated

by real-time hardware experiments with mobile robots.

7.2 Future Works

Some possible future research directions are outlined below.

• In this thesis, most of the novel formation control techniques are developed for linear

homogeneous/heterogeneous MASs. How to deal with the nonlinearities and external

disturbances observed in the agent dynamics will be investigated.

• Some high-level swarm intelligence and decision making methods will be integrated

with the current formation control framework such that the collaborative multi-agent

system will become more smart.

• Robot localization, fault detection and obstacle avoidance are also very important in

the experimental implementation. Outdoor experiments involving field robotics and

full-size real car will be conducted in the future.

• The collaboration between aerial vehicles and ground vehicles for a complicated task

is also an interesting direction.
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