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Chapter 1

Introduction

The goal of this work is to provide experimental results of a real-world multi-vehicle

coordination application, perimeter detection and tracking , not to prove opti-

mality, convergence, stability, etc. Perimeter detection and tracking means the follow-

ing: A robotic swarm cooperatively searching for, locating, and tracking a dynamic

perimeter while avoiding collisions. The assumption is that a chemical spill, i.e., oil,

is the dynamic perimeter and that the general, but not exact, location of the dynamic

perimeter is already known by some means, i.e., an unmanned aerial vehicle (UAV).

Other groups have used the terms perimeter and boundary interchangeably, but in

this thesis, there is a distinct difference. The perimeter is the chemical substance

being tracked, while the boundary is the limit of the exploration area.

In this thesis, the cooperative system is modeled as a hybrid system (a dynamical

system composed of continuous dynamics and decision logic). A library of simple

controllers, i.e., bang-bang, proportional, etc., have been designed; they are com-

bined to form a hybrid system where group behavior emerges allowing the system to

accomplish the perimeter detection and tracking application.

More formally, a decentralized coordination algorithm is presented that allows a

robotic swarm to locate and track a dynamic perimeter. A cooperative communi-

cation scheme is used by the team to rapidly detect a perimeter. Collision-free cy-

cling behavior emerges by composing simple reactive control laws. The decentralized

framework could potentially allow the algorithm to scale to many robots. Extensive
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simulation results in Matlab and Gazebo (a more realistic simulator) and experiments

verify the validity and scalability of the proposed cooperative control scheme [1].

1.1 Motivation

Many applications of multi-robot cooperation have been studied including area cov-

erage, search and rescue, manipulation, exploration and mapping, and perimeter

detection [2, 3, 4, 5, 6, 7, 8]. The reader is referred to [9] for a survey on cooperative

mobile robotics.

Perimeter detection could have a wide range of uses in several areas, including:

(1) Military, i.e., locating minefields or surrounding a target, (2) Nuclear/Chemical

industries, i.e., tracking radiation/chemical spills, (3) Oceans, i.e., tracking oil spills,

and (4) Space, i.e., planetary exploration. In many cases, humans are used to perform

these dull and/or dangerous tasks; however, robotic swarms replacing humans would

be more beneficial.

A perimeter is an area enclosing some type of substance. Consider two types of

perimeters: (1) static and (2) dynamic. A static perimeter does not change over time,

i.e., possibly a minefield. Dynamic perimeters are time-varying and expand/contract

over time, i.e., a radiation leak. See Fig. 1.1 for examples of perimeters, an oil spill1

and a concentration function representing a perimeter.

In perimeter detection tasks, a robotic swarm locates and surrounds a substance,

while dynamically reconfiguring as additional robots locate the perimeter. All robots

must be equipped with sensors capable of detecting whatever substance they are

trying to track. Substances could be airborne, ground-based, or underwater.

The ability of a robot to track a perimeter depends on the robot’s kinematic

and dynamic constraints, along with the characteristics of the perimeter. A robot’s

limitations and several different types of perimeters that may be encountered while

1”The IXTOC I exploratory well blew out on June 3, 1979 in the Bay of Campeche off Ciudad del
Carmen, Mexico. By the time the well was brought under control in 1980, an estimated 140 million
gallons of oil had spilled into the bay. The IXTOC I is currently #2 on the all-time list of largest oil
spills of all-time, eclipsed only by the deliberate release of oil, from many different sources, during
the 1991 Gulf War.” Courtesy of the NOAA Office of Response and Restoration.
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Figure 1.1: Example perimeters: (a) Oil spill and (b) Concentration function.

performing perimeter detection and tracking are described below.

The physical constraints of a robot must be taken into account, as several things

may deter a robot from being able to track a perimeter including the robot’s maximum

speed and limited turning radius. If a dynamic perimeter is expanding faster than

the robot’s maximum speed, the perimeter cannot be tracked. A perimeter can only

be accurately tracked if there are no abrupt turns required. Specifically, if a required

turn is greater than the robot’s radius of curvature, some error will occur or the robot

will completely miss a section of the perimeter and may not be able to recover.

The perimeters are assumed to be contiguous, convex, and trackable. See Fig. 1.2

for some examples of different types of perimeters. In Fig. 1.2(a), the perimeters are

Figure 1.2: Perimeters: (a) Separate, (b) Pinched, and (c) Concave.

not contiguous. The robots may recognize these two perimeters as one large perimeter

3



depending on the space in between the individual perimeters. In Fig. 1.2(b), the

perimeter is pinched in the middle, potentially causing the robots to track the wrong

portions of the perimeter. In Fig. 1.2(c), because the perimeter is concave, the robots

may be unable to track the interior of this perimeter. The aforementioned examples

are primary illustrations of perimeters that may not be trackable.

1.2 Contributions

The contributions of this thesis are two-fold: The design and implementation of a

hybrid system capable of executing perimeter detection and tracking.

A decentralized, cooperative hybrid system is developed utilizing biologically-

inspired emergent behavior. Emergent behavior is defined as, “when a number of

simple entities operate in an environment, forming more complex behaviors as a col-

lective” 2. The algorithm has been verified by simulations and through experiments.

A library of simple controllers compose the hybrid system, and each controller

consists of finite state machines. Controllers are developed to search for, move to, and

track a dynamic perimeter. The proportional tracking controller developed is unique;

it utilizes the difference between color blobs seen by an inexpensive camera to control

the angular velocity, thus, allowing the robot to smoothly track the perimeter. A

communication scheme is implemented permitting the robots to coordinate to reach

the perimeter once one robot initially detects the perimeter.

This thesis can be used as a basis for a formal analysis of the perimeter detection

and tracking hybrid system or for a system capable of dynamic perimeter estimation.

Furthermore, it can be used as a reference if the researcher is interested in extending

the results to an outdoor environment or wishes to use the results from the tracking

controller for another application.

2http://encyclopedia.thefreedictionary.com/Emergent behavior
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1.3 Thesis Outline

Hereafter, the organization of the thesis is as follows: A literature review of some

relevant work is discussed in Chapter 2. Additionally, summaries of other applications

are given along with applications closely related to perimeter detection and tracking.

A brief overview of hybrid systems theory is presented in Chapter 3. A detailed

description of the hybrid system is described, which includes the model used to rep-

resent the platform and descriptions of each controller agent.

Chapter 4 contains simulation results for static and dynamic perimeters. Specif-

ically, Matlab was used as a proof of concept to verify the hybrid system followed

by the use of Gazebo to create a more realistic environment for simulation purposes.

The advantages and disadvantages of each simulator are discussed.

Provided in Chapter 5 are a brief description of the experimental testbed, a list of

hardware difficulties, and a discussion of detailed experimental results for static and

dynamic perimeter tracking with three robots.

Chapter 6 presents the concluding remarks of this thesis as well as ideas for future

work for improving the algorithm. Specifically, estimating the evolution of a dynamic

perimeter and a formal analysis of the system behavior.
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Chapter 2

Literature Review

2.1 Introduction

Multi-robot cooperation includes a variety of applications such as area coverage,

search and rescue, manipulation, exploration and mapping, and perimeter detection

and tracking.

This literature review is inexhaustive and subjective. Particularly, some of the

algorithms developed could fall into multiple applications, each of which were grouped

into applications deemed appropriate. Other applications are discussed, followed by

applications more closely related to perimeter detection and tracking.

2.2 Other Applications

To accomplish perimeter detection and tracking, the results from numerous other

applications might be extended and combined. The following is an inexhaustive list

of previously reviewed approaches: area coverage, cyclic pursuit, formation control,

and gradient tracking.

2.2.1 Area Coverage

Area coverage occurs when a mobile sensor network is trying to cover an area effi-

ciently. Detailed below are some approaches to solving this application.
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In [7], the algorithm uses virtual potential fields and graph theory (Delaunay

triangulation and Voronoi diagrams) to allow a sensor network to efficiently cover

an area. Delaunay triangulation is an optimal partioning of the space around a set

of irregular points (robots) into non-overlapping triangles and their edges1. On the

other hand, a Voronoi diagram is a special kind of decomposition of a metric space

determined by distances to a specified discrete set of objects in the space2. The

Voronoi diagram and the Delaunay triangulation are duels to each other. These

methods allow each robot’s relationship (distances) with its neighbors to be uniquely

defined, which allows the virtual potentials to be applied, and the network to cover

the area. See Fig. 2.1 for a simulation of 50 robots covering an area.

Figure 2.1: Self-deployment of 50 mobile robots in an open space (Delaunay triangulation
in blue, Voronoi diagram in red): (a) Initial deployment and (b) Final deployment [7].

In [10], robots cover a plane in a specified pattern such as in Fig. 2.2. Each

robot communicates only with its nearest neighbors and when a robot fails, a new

group of nearest neighbors form. Optimization is used to minimize the error between

neighboring robots.

2.2.2 Cyclic Pursuit

Cyclic pursuit can be represented as individual agents following the next agent re-

sulting in a cyclic group behavior. Cyclic pursuit is studied for holonomic robots in

[11], in which each vehicle follows the vehicle in front of it (1 follows 2, 2 follows 3,

1http://cwx.prenhall.com/bookbind/pubbooks/clarke/chapter3/custom2/deluxe-content.html
2http://en.wikipedia.org/wiki/Voronoi diagram
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Figure 2.2: 20 robots spreading out to cover a plane [10].

etc.), hence, forming regular formations (polygons). The vehicles move with constant

speed and use a proportional controller to handle orientation. Perfect sensing is as-

sumed, collisions are ignored, and the result is extended to the unicycle model. The

algorithm is distributed, scalable, and requires local communication (each agent only

needs information from one other agent). See Fig. 2.3 for an example of a cyclic

pursuit simulation.

2.2.3 Formation Control

Formation control is a multi-agent application where the objective is for the robotic

network to move into a desired formation (particular pattern, i.e., triangular) and

to accomplish the desired task. Several examples of formation control are described

below.

In [12], a control law is described that guarantees obstacle avoidance by using

gyroscopic forces. Gyroscopic forces denote forces that do not do any work and

create coupling between different degrees of freedom [13]. Gyroscopic forces act like

steering forces and do not affect the total energy of the system. A braking force is also

8



Figure 2.3: Five vehicles in cyclic pursuit [11].

used that allows the vehicles to slow down in order to turn, hence, avoiding a collision.

The braking forces also do not affect the total energy of the system. Each vehicle can

sense neighboring obstacles or vehicles only in its detection shell. If multiple obstacles

are inside the detection shell, the vehicle only reacts to the closest obstacle. A benefit

of this method is obstacles behind the vehicle are ignored, even if they are inside the

detection shell. A simulation of a group of 25 vehicles accomplishes the split/rejoin

maneuver in which the vehicles’ target is a virtual vehicle moving in a straight line

in Fig. 2.4.

In [14], the development of a decentralized framework allows a nonholonomic

sensor network to navigate using only an omnidirectional camera sensor. See Fig. 2.5

for an example of formation switching.

In [15], a hybrid control system is designed and implemented for formation con-

9



Figure 2.4: Split/rejoin maneuver for a group of 25 vehicles [12].
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Figure 2.5: Experimental formation switching to avoid obstacles with three robots [14].

trol that does not require communication. Nonlinear controllers, along with optimal

estimation techniques (extended Kalman filter) are used instead of communication.

See Fig. 2.6 for a simulation of three robots maintaining a formation while avoiding

obstacles.
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Figure 2.6: Three robot formation control with obstacle avoidance [15].

A sensor network is able to avoid obstacles while maintaining a formation in [16].

A simulation is presented in Fig. 2.7 where three robots are able to navigate through a

difficult set of obstacles while maintaining a triangular formation. One drawback is a

leader must be selected. The dynamic unicycle model, which includes torque, is used.

Graph theory and input-to-state stability are used to maintain formations, while
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Figure 2.7: Three robots in formation while avoiding obstacles [16].

a revised Dynamic Window Approach (DWA) is used for obstacle avoidance. The

DWA is a combination of model predictive control and a control Lyapunov function

(proper, positive definite function where, if it is possible to make the derivative less

than zero at every point, the system can be stabilized [17]), which the authors proved

is convergent in a previous work.

2.2.4 Gradient Tracking

Gradient tracking can be defined as a robotic swarm moving towards a target or

source by using some form of the gradient method. Gradient descent/climbing meth-

ods are useful for surrounding a target or tracking an environmental plume (pollutants

released from a point source3). Current approaches to solving this problem are sum-

marized below.

In [18], a simulation shows a sensor network climbing/descending an environmental

gradient. With limited sensing (each vehicle is only able to measure the gradient along

its path) and local communication (nearest neighbors), a vehicle network is able to

find the global minimum of a system, while individual vehicles are not. Three vehicles

form a triangle while moving towards the minimum in Fig. 2.8.

Gradient descent algorithms are developed in [3]. A simulation is presented in

3http://www.dictionary.com
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Figure 2.8: Three robots converging to a source [18].

Fig. 2.9 that allows a group of 32 vehicles to converge and surround a target while

avoiding collisions.

Figure 2.9: Coverage control with 32 vehicles: (a) Initial deployment, (b) Trajectories, and
(c) Final deployment [3].

In [8], a method using artificial potentials and virtual bodies is shown. The vehicles

are modeled as point masses with fully actuated dynamics. It is possible to extend the

results to underactuated vehicles. Inter-vehicle potentials, based on natural swarms,

are used for low-level control, and perfect sensing is assumed. This approach is
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centralized, as the virtual bodies require intensive processing. It is assumed that the

field the robots are tracking is unknown, but can be measured along the path the

vehicle takes. Simulations are shown for three to eight vehicles in which the networks

form regular polygons upon uniformly surrounding the target in Fig. 2.10.

Figure 2.10: Formation control with three to eight vehicles [8].

A Swarm Intelligence summary is presented and an implementation applying odor

tracking to mobile robots is shown in [19]. A spiral search pattern is used for initially

searching an area that does not optimally cover an area (as compared to a coordinated

search, which is considered the best in [20]), but is nonetheless, effective. When an

odor is detected, the robots move upwind for a constant distance. If the odor is still

detected, they will repeat this maneuver until the source is lost, if ever. If lost, they

will start the spiral search again. Simple communication is used, i.e., if one robot

locates the source, it will chirp, and all robots downwind or that have not located an

odor will move towards it. The testing area is shown in Fig. 2.11.
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Figure 2.11: Plume tracking testbed [19].

2.3 Related Applications to Perimeter Detection

and Tracking

Some of the previous and ongoing work related to perimeter detection and tracking

is briefly reviewed below.

In [2], an interesting approach to swarm behavior rooted in biology is presented.

Social potential fields are implemented using IR, chirps, and light sensing. Emergent

behaviors, i.e., searching and perimeter formation, occur as the robots respond to

light and sound changes. Traditional sensors such as encoders, GPS, sonar, etc.

were abandoned in favor of touch, light, and IR sensors, along with a speaker and

microphones. Some of the robots use RF transmissions to receive commands from a

human operator. These robots then use IR sensors to transmit this information to

the others. A group of GrowBots were able to autonomously locate and surround a

water spill in Fig. 2.12.
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Figure 2.12: Robots deployed in a cluttered DOE facility form a perimeter around a water
spill [2].

Perimeter surveillance is experimentally accomplished outdoors over a large area

using a group of vehicles that investigates alarms from intrusion detection sensors

in [5]. The vehicles spread uniformly around the perimeter and communicate using

differential GPS and RF radios. When an alarm is tripped, the closest vehicle will

investigate, while the others adapt to maintain the perimeter. Note that the sensors

are broadcasting a signal, whereas if the perimeter were a chemical, this broadcast

would not occur. In regards to perimeter detection as described in this thesis, the

robot must be equipped with a sensor that can detect the perimeter, as an intrusion

sensor will not be in place. A formal stability analysis is shown for a large-scale

system. The sensor network was able to surround a facility and uniformly space

around it over large distances in Fig. 2.13.

In [21], modified snake (energy-minimizing curves) algorithms, adapted from im-

age processing, are constructed for a group of vehicles. A snake (vehicles) could

be thought of as a ”rubber band” that inflates or contracts until it fits around the

perimeter. A snake is controlled by internal forces and external constraint forces.

The agents are assumed to be equipped with sensors capable of detecting the chem-
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Figure 2.13: Four vehicles surrounding the backside of a facility [5].

ical they are tracking. Represented by a concentration function in Fig. 2.14 is a

simulation of the snake surrounding the perimeter. Two different forms of updating

are applied: (1) frequent communication where each robot is given the positions of its

neighbors, and (2) infrequent communication where each robot must know the posi-

tions of all robots. Shown by simulation, the algorithm can overcome large amounts

of agents failing, while sacrificing accuracy. Perfect sensing, communication, and a

static perimeter is assumed. This method may be suitable for tracking static perime-

ters, but may have difficulty tracking dynamic perimeters because the gradient of the

concentration may change rapidly.

The research that most closely relates to the tracking aspect of the work described

in this thesis is in [22]. An algorithm is presented in which vehicles equipped with

binary sensors turn left and right along circular paths to track a static perimeter

(see Fig. 2.15). The linear velocity is adjusted to distribute the group around the

perimeter. The drawbacks to this method are the vehicles start on the perimeter and

the large amount of error while tracking the perimeter. Furthermore, the vehicles

repeated entry of the perimeter can create a problem if the perimeter is for instance,
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Figure 2.14: Snake contracting to surround a static perimeter: (a) The initial placement
of agents is on a circle of radius 2.5, (b) Agents begin to move towards the perimeter, (c)
Agents partially surrounding the perimeter, and (d) Final configuration where the perimeter
is completely surrounded [21].

oil that causes wheel slippage or a minefield destroying the vehicle. Lastly, no results

are shown for dynamic perimeters.
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Figure 2.15: Single vehicle tracking a static perimeter (note the tracking error) [22].
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Chapter 3

Hybrid System for Perimeter

Detection and Tracking

3.1 Introduction

This chapter presents a brief summary of hybrid systems as an introduction to this

relatively new area of research. In addition, a hybrid system designed specifically for

perimeter detection and tracking is detailed.

3.2 Overview of Hybrid Systems

The following summaries of hybrid systems theory and hybrid automata were guided

by the work of [23].

3.2.1 Introduction to Hybrid Systems

A hybrid system is a dynamical system that consists of continuous dynamics and

decision logic (discrete states). The system continuously evolves unless there is a

change in the decision logic. Therefore, a time elapse or a discrete switch can alter

the hybrid system state.

Majors areas of research in hybrid systems are modeling and analysis. Modeling

consists of how to model and describe real systems (almost any analog plant controlled
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by a digital program) using hybrid systems theory. Two areas of hybrid systems anal-

ysis are stability and reachability analysis. An example of stability analysis is finding

the conditions to guarantee system stability for any sequence of discrete transitions,

whereas reachability analysis is verifying if a specific state is reachable from a set of

initial conditions.

3.2.2 Hybrid Automata

Finite state machines can usually be used to model a hybrid system. Each finite state

machine is equipped with a set variables that can change according to the evolution

laws defined by the specific discrete state. Each discrete state has a set of guards and

assignments, where, if the boolean condition of the guard, i.e., x > 21, is satisfied, a

transition occurs and the assignment, i.e., on or off, executes. To prevent deadlock,

where no transitions are enabled for the current state, an invariant condition must be

true whenever the system is executing in that state. The invariant condition could

be thought of as a fail-safe mechanism, where if the guard condition fails to trigger a

state change, the invariant condition should execute a state change before the system

becomes unstable.

A hybrid automaton (self-operating mechanism1) is a finite state machine and a

finite number of variables. These variables can change continuously, through differ-

ential equations, or discretely, according to a specified assignment. For an example of

a hybrid automaton, a thermostat, see Fig. 3.1 [24]. In Fig. 3.1, the system starts in

x < 19

x > 21

x = 20
Off

x � 18

xx 1.0−=�

On

x � 22

xx 1.05−=�

Figure 3.1: Thermostat hybrid automaton.

1http://www.dictionary.com
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the Off mode with x = 20 degrees. In this mode, the temperature decreases according

to ẋ = −0.1x. Due to the guard condition x < 19, the heater should switch to the

On state as soon as the temperature falls below 19 degrees. At the latest, the heater

will move to the On state when the temperature falls below 18 degrees according to

the invariant condition x ≥ 18 degrees. In the On control mode, the temperature

increases according to ẋ = 5 − 0.1x and the control jumps to the Off mode when

the temperature is greater than 21 degrees. Also, the invariant condition, x ≤ 22

degrees, guarantees that at the latest the heater will move to the Off state when the

temperature becomes greater than 22 degrees.

3.3 Hybrid Automata for Perimeter Detection and

Tracking

The theory of hybrid systems [25] offers a convenient framework to model the multi-

robot system engaged in a perimeter detection and tracking task. In previous work

[26], an object-oriented software architecture was developed that supports hierarchical

composition of robot agents and behaviors or modes. Key features of the software

architecture are summarized below.

• Architectural hierarchy: The building block for describing the system archi-

tecture is an agent that communicates with its environment via shared variables

and also communication channels. In this application, the team of mobile sen-

sors defines the group node. The group node receives information about the

area i.e., boundary where the perimeter is located.

• Behavioral hierarchy: The building block for describing a flow of control

inside a node is a mode. A mode is basically a hierarchical state machine, that

is, a mode can have submodes and transitions connecting them. Modes can be

connected to each other through entry and exit points. We allow the instan-

tiation of modes so that the same mode definition can be reused in multiple

contexts.
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• Discrete and continuous variable updates: Discrete updates are specified

by guards labeling transitions connecting the modes. Such updates correspond

to mode-switching, and are allowed to modify variables through assignment

statements.

The state of a robot node is given by x ∈ Rn, its evolution is determined by a set of

differential equations:

ẋ = fq(x, u) (3.1)

u = kq(x, z) (3.2)

where u ∈ Rm is the control vector, q ∈ Q ⊂ Z is the control mode for the node, Q is a

finite set of control mode indices, Z denotes the set of positive integers, and z ∈ Rp is

the information about the external world available either through sensors or through

communication channels. The robot node contains modes describing behaviors that

are available to the robot. A robot performing a perimeter detection and tracking

task is abstracted by a hybrid automaton below.

The overall finite automaton consists of three states: (1) Random Coverage Con-

troller (RCC), (2) Potential Field Controller (PFC), and (3) Tracking Controller

(TC). The conglomeration of these three controllers is such that the sensor/robot

network is able to locate and track a perimeter. See Fig. 3.2 for a hierarchical state

diagram of the cooperative hybrid system developed herein. In the next sections,

details of the model used to represent the platform and the controller agents forming

the hybrid system are presented.

3.4 Platform and Model

The platform and model used to represent the platform are introduced in this section.
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read discrete bool DetectedPoint, PerimeterDetected;

PerimeterDetected == false
DetectedPoint== true

Tracking TC

PerimeterDetected == true

Random Coverage RCC Potential Field PFC

DetectedPoint == true

PerimeterDetected == true

PerimeterDetected == false

Figure 3.2: Overall finite automaton.

For simplicity, the platform was modeled with the unicycle model:

ẋi = vi cos θi

ẏi = vi sin θi (3.3)

θ̇i = ωi,

where xi, yi, θi, vi, and ωi are the x-position, y-position, orientation angle, linear

velocity, and angular velocity of robot i, respectively. vi ranges from −2 ≤ vi ≤ 2 m/s

and this comes from extensive tests of the platform shown in Fig. 3.3 along with the

model used to represent it.

Assuming double-steering, the maximum possible angular speed has been calcu-

lated using the following formula from [27].

ωmax =
v

rmin

=
v

0.5
= 2v (3.4)

where rmin is the minimum radius of curvature and rmin = 0.5 m was experimen-
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(xi, yi)

θi

C

Figure 3.3: (a) Platform and (b) Unicycle model.

tally determined by the author. For this application, the rear servo was removed.

Consequently, each robot had single-steering instead of double-steering, in which case

rmin = 1 m, yielding the following result:

ωmax =
v

rmin

=
v

1
= v (3.5)

The actual results varied slightly because equation (3.5) is an approximation of the

platform. So, the angular velocity range is approximately −vi ≤ ωi ≤ vi rad/s.

3.5 Controller Agents

The following controllers that create the hybrid system are detailed in this section:

1. Random Coverage Controller (RCC)

2. Potential Field Controller (PFC)

3. Tracking Controller (TC)
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3.5.1 Random Coverage Controller

The goal of the Random Coverage Controller (RCC) is to efficiently cover as large an

area as possible while searching for the perimeter and avoiding collisions. The robots

move fast in this state to quickly locate the perimeter. The RCC consists of three

states: (1) spiral search, (2) boundary avoidance, and (3) collision avoidance. Refer

to 3.4 for the RCC finite state machine. The spiral search is a random search for

Random Coverage Controller

read discrete bool BoundaryDetected, RobotDetected;

RobotDetected== true

Boundary
Avoidance BoundaryDetected == true

Spiral
Searching

Collision
Avoidance

RobotDetected == true

BoundaryDetected == true

BoundaryDetected == false

RobotDetected == false

Figure 3.4: Random coverage controller (RCC) finite state machine.

effectively covering the area. The boundary and collisions are avoided by adjusting

the angular velocity.

The logarithmic spiral, seen in many instances in nature, is used for the search

pattern. In [19], a spiral search pattern such as that used by moths is utilized for

searching an area. The spiral search is not optimal, but effective, as shown in [20].

Some examples are hawks approaching prey, insects moving towards a light source,

sea shells, spider webs, and so forth. See Fig. 3.5 for an example of a logarithmic

spiral in a sea shell2.

2http://en.wikipedia.org/wiki/Logarithmic spiral

26



Figure 3.5: Example of logarithmic spiral in nature.

The linear and angular velocity controllers are:

vi = vs

(
1− e−t

)
(3.6)

ωi = aebθi , (3.7)

where vs is a positive constant, a is a constant and b > 0. If a > 0 (< 0), then the

robots move counterclockwise (clockwise). The robots spiral clockwise in this thesis,

such as in Fig. 3.6.

The linear velocity is approximately constant when the robot is using the RCC,

such as in Fig. 3.7, while the angular velocity is slowly increasing in Fig. 3.8.

The errors between the actual and desired velocity are reasonable considering this

experiment was performed outdoors on grass. See Figs. 3.9 and 3.10.

Collision and boundary (limit of the exploration area here) avoidance are handled

in simulation by sharply turning, while in experiments, the robots back up and turn,

then go forward. Fig. 3.11 shows an experimental plot of a robot performing obstacle

avoidance against a wall. The robot starts at (3.5,0). It senses the wall, backs up,
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Figure 3.6: Logarithmic spiral search.
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Figure 3.7: Nearly constant linear velocity.
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Figure 3.8: Angular velocity slightly increasing.
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Figure 3.9: Linear velocity error close to zero.

moves forward, and repeats this maneuver until it escapes the wall, upon which the

robot begins the spiral search.

The linear velocity is positive and negative in Fig. 3.12, indicating the robot is

moving forwards and in reverse. In Fig. 3.13, the robot is always turning right or
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Figure 3.10: Slight angular velocity error.
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Figure 3.11: Robot avoiding a wall at x=3.8 m.
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Figure 3.12: Linear velocities indicate forward and reverse movement.

going backwards, so the angular velocity is mostly negative.
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Figure 3.13: Negative angular velocity indicates robot turning right.

Both the linear and angular velocities have a moderate amount of error in Figs.

3.14 and 3.15 because of the delays associated with the robot’s motors switching

between forwards and reverse.

31



0 5 10 15 20 25 30 35 40
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

t (s)

v 
er

ro
rs

Perimeter Detection and Tracking
Linear Velocity Error (Actual − Desired) vs. Time

(RCC) Obstacle Avoidance

Figure 3.14: Moderate linear velocity error from switching.
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Figure 3.15: Moderate angular velocity error from switching.

3.5.2 Potential Field Controller

Potential fields have been used by a number of groups for controlling a swarm [28,

8, 7, 2]. The majority of the time when potential field methods are used, attractive
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(goals) and repulsive (obstacles) potentials are created. See Fig. 3.163 for an example

of the attractive and repulsive potentials created when using this method. In Fig.
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Path planning of a mobile robot

Figure 3.16: Attractive (dark blue) and repulsive (dark red) potentials showing a robot
path to a goal.

3.16, dark blue indicates more attractive potentials, whereas dark red indicates more

repulsive potentials. To use attractive and repulsive potentials, the locations of the

goal(s) and obstacle(s) must be known. For perimeter detection and tracking, only

the goal was known once a robot located the perimeter, so only an attractive potential

was used.

The Potential Field Controller (PFC) uses an attractive potential allowing the

robots to quickly move to the perimeter once it has been detected. The first robot to

detect the perimeter broadcasts its location to the other robots, who upon receiving

the goal location can broadcast also, forming a relay communication scheme. If a

robot is within range, the PFC is used to quickly move to the perimeter. Otherwise,

the robot will continue to use the RCC unless it comes within range of another robot

that has already detected the perimeter, at which point the robot will switch to the

PFC. See Fig. 3.17 for an example of the relay scheme used.

3http://arri.uta.edu/acs/jmireles/Robotics/PathPlanMobileRobots.pdf
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Boundary

Perimeter

Relay Communication

Figure 3.17: Relay communication example.

As a robot moves towards the goal and detects the perimeter before it reaches the

goal, it will switch to the TC. The PFC has two states: (1) attractive potential and

(2) collision avoidance (same as RCC). Refer to Fig. 3.18 for the PFC finite state

machine.

Potential Field Controller

read discrete bool RobotDetected;

Attractive
Potential

Collision
Avoidance

RobotDetected == true

RobotDetected == false

Figure 3.18: Potential field controller (PFC) finite state machine.

The attractive potential, Pa(xi, yi), is [29]:

Pa(xi, yi) =
1

2
ε[(xi − xg)

2 + (yi − yg)
2], (3.8)
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where (xi, yi) is the position of robot i, ε is a positive constant, and (xg, yg) is the

position of the attractive point (goal). The attractive force, Fa(xi, yi), is derived

below.

Fa(xi, yi) = −5Pa(xi, yi)

Fa(xi, yi) = −




∂Pa

∂xi

∂Pa

∂yi




Fa(xi, yi) = ε




xg − xi

yg − yi


 =




Fa,xi

Fa,yi


 (3.9)

Equation (3.9) is used to get the desired orientation angle, θi,d, of robot i :

θi,d = arctan 2(Fa,yi
, Fa,xi

) (3.10)

Depending on θi and θi,d, the robot will turn the optimal direction to quickly line up

with the goal using the following proportional angular velocity controller:

ωi = ±k (θi,d − θi) (3.11)

where k = ωmax

2π
and ωmax = 0.4 rad/s. Each robot moves with constant linear speed

when using the PFC.

In Fig. 3.19, robot 1 begins in the RCC at (3.5, 0). Robot 2 (not shown) was

placed on the perimeter so it could broadcast the goal location to the robot 1. When

robot 1 receives the goal located at (2.5, 2.5), it turns left and moves toward the goal

using the PFC. Upon detection of the perimeter, robot 1 begins tracking.

The state transitions are shown in Fig. 3.20. The robot moves with nearly con-

stant linear velocity in Fig. 3.21. In Fig. 3.22, the robot initially is turning right,

but upon entering the PFC, turns left. As the robot detects the perimeter, it turns

right and then left again as it is tracking the perimeter. The error in linear velocity

is fairly small, as shown in Fig. 3.23. Large errors occur in the angular velocity in
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Figure 3.19: Robot shown receiving the goal location, it then moves towards and tracks the
perimeter, which begins at (2.5, 2.5).
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Figure 3.20: Discrete state transitions showing the robot entering the (PFC), then the (TC).
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Figure 3.21: Nearly constant linear speed.
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Figure 3.22: Angular velocity showing robot turning right (RCC), turning left (PFC), and
then turning right and then left as it finds and tracks the perimeter (TC).

Fig. 3.24 as the robot turns back and forth.
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Figure 3.23: Small linear velocity error.
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Figure 3.24: Large angular velocity error as the robot turns.

3.5.3 Tracking Controller

The Tracking Controller (TC) changes ω and v in order to track the perimeter and

avoid collisions, respectively. Cyclic behavior emerges as multiple robots track the

perimeter. The TC differs from [30] in that each robot’s objective is to track the
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perimeter, while avoiding collisions. There are no restrictions on robot order, v is not

constant, and orientation is controlled by either a bang-bang (Matlab) or proportional

(Gazebo and experiments) controller.

The robots’ goal in this state is to accurately track the perimeter counterclockwise.

The TC consists of two states: (1) tracking and (2) collision avoidance. Refer to Fig.

3.25 for the TC finite state machine. Tracking is accomplished by adjusting the

Tracking Controller

read discrete bool RobotDetected;

Tracking Collision
Avoidance

RobotDetected == true

RobotDetected == false

Figure 3.25: Tracking controller (TC) finite state machine.

angular velocity. On the other hand, collisions are avoided by changing the linear

velocity.

The angular velocity controller in Matlab is:

ωi =




−ωt inside perimeter

ωt outside perimeter,
(3.12)

where ωt = 0.1 rad/s. A look-ahead distance is defined to be the sensor point directly

in front of the robots. If the omnidirectional sensor has detected the perimeter and

the look-ahead distance is inside the perimeter, the robot will turn right. Otherwise,

the robot turns left. This zigzagging behavior is often seen in moths following a

pheromone trail to its source [31].

Otherwise, the angular velocity controller is:

ωi = kp (γout − γin), (3.13)
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where kp > 0, and γout and γin are the areas outside and inside the perimeter seen

by the camera (blobfinder), respectively. This controller is described in more detail

in Chapter 4.

A robot is shown tracking a static perimeter in Fig. 3.26. In Fig. 3.27, the linear
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Figure 3.26: Robot tracking a static perimeter.

velocity is nearly constant. The angular velocity is sinusoidal in Fig. 3.28, meaning

the robot is tracking the perimeter. In Fig. 3.29, the error in linear velocity is near

zero. The moderate amount of error in the angular velocity in Fig. 3.30 shows that

the robot is tracking and turning back and forth.

Solo tracking occurs only if one robot has detected the perimeter and in this state

the linear velocity is constant. Otherwise, cooperative tracking occurs when two or

more robots have sensed the perimeter. Equation (3.12) is still used to track the

perimeter, but now the linear velocity is adjusted to allow the swarm to distribute

around the perimeter. The robots communicate their separation distances to each

other and each robot only reacts to its nearest neighbor on the perimeter. The swarm
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Figure 3.27: Nearly constant linear speed.
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Figure 3.28: Sinusoidal angular velocity indicating the robot is tracking.

will attempt to uniformly distribute around the perimeter at a desired separation
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Figure 3.29: Small linear velocity error.
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Figure 3.30: Moderate angular velocity error (also sinusoidal).

distance, ddes, using the following linear velocity proportional controller:

vi =





0 |dij − ddes| < ε

kp|ddes − dij| otherwise
(3.14)

42



where dij is the distance from robot i to robot j, ε = 0.01, and kp = vmax

|ddes−dij,max| '
0.06.

When the swarm is uniformly distributed, it stops. This allows each robot to

conserve its resources. If the perimeter continues to expand or robots are added or

deleted, the swarm will reconfigure until the perimeter is uniformly surrounded. How-

ever, uniformly distributing around a dynamic perimeter may be difficult to achieve.

The choice of ddes is critical to the swarm’s behavior. If ddes is too low, the swarm

will not surround the perimeter. Subgroups may also be formed since each robot

only reacts to its nearest neighbor. If ddes is too high, the swarm will surround the

perimeter, but group cycling emerges and the robots will not stop.

Collision avoidance is handled inherently in the controller. Since the robots can

communicate, collisions should never occur.

The cooperative tracking method described above has only been implemented in

Matlab, not in Gazebo or experimentally. Using euclidean distances instead of the

distance apart along the perimeter is not an effective way to distribute around the

perimeter, hence, distribution will not work for many irregular-shaped perimeters.

Cooperative tracking will only work effectively for the majority of perimeters if the

perimeter location can be accurately estimated.
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Chapter 4

Simulation Results

4.1 Introduction

Matlab1 was initially used to simulate the hybrid system. Once the system worked

in Matlab, Gazebo, a simulator developed at USC, was used to verify the simulation

results from Matlab [32]. Results from both simulators are described below for static

and dynamic perimeters.

4.2 Simulations from Matlab

Described in this section are the static and dynamic perimeter simulations from Mat-

lab. Accompanied with these descriptions are figures that present the algorithm work-

ing with and without communication for static perimeters and with communication

for dynamic perimeters.

4.2.1 Static Perimeter

In the following simulations, five to 11 nonholonomic2 robots are shown tracking a

static perimeter with and without communication. The omnidirectional sensor and

communication ranges are 3 m and 25 m, respectively.

1http://www.mathworks.com
2It is common in the literature to use simplified linear models.
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In Fig. 4.1, there is no communication available, thus, each robot must search for

and locate the perimeter on its own. After 300 s, all of the robots except robot 1
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Figure 4.1: Five robots tracking a static perimeter without communication.

reach the perimeter in Fig. 4.1. Robot 1 detects the perimeter, however, it is tracking

clockwise instead of counterclockwise. Therefore, robot 1 continues searching for the

perimeter. If communication were available, robot 1 would reach the perimeter.

The same simulation as in Fig. 4.1 is run again with communication now available

(see Fig. 4.2) to see if the communication relay improved the performance of the

system. Specifically, the communication relay is established in Fig. 4.2. The robots

start searching, robot 5 locates the perimeter first and begins broadcasting the goal

location. As robot 5 is tracking the perimeter, robot 1 comes within range, receives

the goal location, and is able to reach the perimeter. Robot 3 also receives the goal

location, reaching the perimeter slightly quicker than during the previous simulation.

Robots 2 and 4 find the perimeter on their own.

With 11 robots and communication available, after 450 s, all robots locate the

45



0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

x (m)

y 
(m

)

Perimeter Detection Animation

Time (s) = 300 Communication Range (m) = 25

Perimeter

Boundary

Figure 4.2: Five robots tracking a static perimeter with communication.

perimeter. See Fig. 4.3. In Fig. 4.3, robots 4 and 11 received the goal location,

but had difficulty reaching the perimeter. Each one was avoiding the others that

were tracking, but eventually reached the perimeter. No collisions occurred during

simulation. Paths intersect, but at different instances of time.

4.2.2 Dynamic Perimeter

In the following simulation, Dcom, Dsen, and Dsep are the communication range, the

sensor range, and the desired separation distance, respectively. Shown in Fig. 4.4,

five robots are tracking a dynamic perimeter that is expanding at 12.5 mm/s.

Initially, all robots are searching for the perimeter in Fig. 4.4. Robot 4 locates

the perimeter first. Robot 3 is within range and receives the location. Once robot

3 reaches the perimeter, it stops until robot 4 reaches Ddes. As robot 4 is tracking

the perimeter, robot 2 comes within range, receives the location, and moves toward

it. As robot 2 nears the perimeter, it avoids a collision with robot 4 and reaches the
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Figure 4.3: 11 robots tracking a static perimeter.

perimeter. Robots 1 and 5 locate the perimeter on their own. When robot 5 reaches

the perimeter, it is tracking the wrong way, so it quickly turns around. Subgroups are

formed because there are not enough robots to distribute around the perimeter. The

swarm does not stop because the expanding perimeter is never uniformly surrounded.

Unfortunately, some of the system behavior, such as communication and collision

avoidance, is not apparent when viewing these static plots. However, movies were

made for a number of simulations to show the different behaviors. These movies are

available electronically and show a number of behaviors including reconfiguration,

collision avoidance, and some unstable behavior with 15 robots. The code for the

controller logic is shown in Appendix A.1.

Writing all Matlab functions as MEX (Matlab executable) files is recommended.

MEX files allow the user to write code in C, which Matlab can then access like a

normal Matlab function. MEX files are more efficient than Matlab functions. In

hindsight, writing all of the functions as MEX files would save an enormous amount
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Figure 4.4: Five robots tracking a dynamic perimeter expanding at 12.5 mm/s: (a) Initial
configuration and (b) Final configuration.
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of time. When simulating a complex hybrid system such as this, simulation time ran

up to 19 hours on a dual Intel Xeon processor depending on the number of robots.

MEX files would have significantly reduced the required simulation time.

4.3 Simulations from Gazebo

Gazebo served as a bridge between Matlab and the real world since it models real

world physics (sensors, robots, and the environment) fairly accurately. If the system

works in Gazebo, then ideally the system should also work experimentally without

any modification to the code.

Gazebo is an open-source environment simulator that allows virtual robots to be

simulated by connecting the driver from Player3 to Gazebo. Player is a server for

robotic communication that is language independent and works under UNIX-based

operating systems. It provides an interface to controllers and sensors/actuators over

TCP/IP protocol. Each robot has a driver and is connected to a specified socket,

which can read/write to all of the sensors and actuators on the robot. Users connect

to the sockets through a client/robot interface and can send commands or receive

information from each robot. Each robot can communicate with each other or a

single common client and update their information continuously to all clients [33].

Our platform, the Tamiya TXT-1, can be modeled in Gazebo using the ClodBuster

model. See Fig. 4.54 for several views of the ClodBuster model. Each robot is

equipped with odometers, a pan-tilt-zoom camera, and a sonar array. Refer to Fig.

4.65 for an example of a ClodBuster model equipped with a pan-tilt-zoom camera.

Position and orientation are estimated using the odometers. The camera is used for

tracking the perimeter. It is pointed down and to the left on each robot to allow

the robots to track the perimeter at a small offset. The sonar array is used to avoid

collisions. It consists of a ring of 16 sonar sensors around the robot, and only the

3Player is freely available under the GNU General Public License from
http://playerstage.sourceforge.net.

4http://playerstage.sourceforge.net/doc/Gazebo-manual-0.5-html/figures/ClodBuster-6-1.gif.
5Courtesy of Daniel Cruz.
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Figure 4.5: Gazebo ClodBuster model.

Figure 4.6: ClodBuster model equipped with pan-tilt-zoom camera.

front four are being used.

Shown in Fig. 4.7 is a simulation of a robot that searches for, locates, and tracks

a perimeter while avoiding collisions. An environment was created to represent an

oil spill in a grassy area in Fig. 4.7. The perimeter and boundary are represented by

a black cylinder (oil) and gray walls, respectively. A proportional controller shown

below (same as equation (3.13), but shown again for clarity) was developed based off

the differences between the areas outside (grass) and inside the perimeter (oil) seen

by the camera.

ωi = kp (γout − γin), (4.1)
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Figure 4.7: Gazebo simulation showing camera view on the right.

where kp > 0, and γout and γin are the areas outside and inside the perimeter seen

by the blobfinder, respectively. See Fig. 4.8 for a view of what the camera sees in

Gazebo. This controller is described further in Chapter 5.

Another simulation is shown in Fig. 4.9 in which three robots search for, locate,

and track a perimeter while avoiding collisions. Again, an environment was created

to represent an oil spill in a grassy area in Fig. 4.9. The perimeter and boundary are

represented by a black cylinder (oil) and gray walls, respectively. The wall textures

and the grass were removed to speed up the simulation because during simulations

with multiple robots and textures, the simulations ran extremely slow.

The main advantage of Gazebo over Matlab is its ability to debug real world

problems without incurring damage to the real robots. For example, when a robot

hits the boundary in Matlab, it passes through the boundary, but in Gazebo, the
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Figure 4.8: Gazebo camera view (the perimeter is black, while the grass is green).

Figure 4.9: Gazebo simulation showing three robots (overhead view) with camera views on
the right.
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robot climbs the wall and flips over. See Fig. 4.106 for an example of a robot hitting

a wall and flipping over. Additionally, if a robot is driven too fast in Gazebo, it pops

Figure 4.10: Gazebo simulation showing a robot hitting a wall and flipping over.

a wheelie. These examples are situations that are difficult to simulate in Matlab.

For the tracking controller, in Matlab a binary sensor (bang-bang controller) was

used to track the perimeter. In Gazebo, a blobfinder (proportional controller) was

used which allowed for much smoother tracking. In fact, a nearly identical propor-

tional controller was implemented for experiments.

The code for the controller logic is shown in Appendix A.2.1. In Gazebo, all

environmental features (plane, walls, robots, light source, etc.) must be defined in

a world file. World files are written in Extensible Markup Language (XML). See

Appendix A.2.2 for the world file used.

As of yet, dynamic perimeters cannot be modeled in Gazebo. When simulating

multiple robots with textures, i.e., the grass and the wall, the simulations began slow-

ing down, whereas without textures, the simulations ran at close to real-time. Gazebo

is becoming a powerful tool for verifying cooperative control systems as processing

6Courtesy of Daniel Cruz.
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power increases and more models are defined. Gazebo was an invaluable tool for this

application because of the time saved by debugging in simulation and the ability to

port the C code almost directly experimentally.
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Chapter 5

Experimental Results

5.1 Introduction

This chapter contains a brief description of the experimental testbed (see Fig. 5.1),

encountered hardware issues, and detailed experimental results.

Figure 5.1: Marhes multi-vehicle experimental testbed.
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5.2 Marhes Multi-Vehicle Experimental Testbed

The platform hardware and system architecture for the Marhes testbed are briefly

discussed below [34]. For more detailed descriptions of the testbed, refer to the

Marhes website at http://marhes.okstate.edu.

5.2.1 Platform Hardware

The platform consists of a R/C truck chassis from Tamiya Inc., the TXT-1, odometer

wheel sensors, a vision system, an embedded computer (e.g., PC-104 or laptop), a

suite of sensors, actuators, and wireless communication capabilities. The lower-level

sensing, speed control, and actuator control are all networked using the Controller

Area Network (CAN) system [35]. This lower-level network is capable of controlling

linear speed up to 2 m/s, angular speed, and managing the network. See Fig. 5.2 for

a picture of the platform.

Figure 5.2: Platform equipped with a Bumblebee stereo-vision camera and a PC-104.

Having a velocity-controlled platform is important, since many coordination ap-

proaches available in the literature have been developed considering kinematic rather

than dynamic mobile robot models [14]. Managing the network consists of detect-
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ing modules, controlling the state of a module, and maintaining network integrity

by monitoring the network for messages from all modules currently working. The

higher-level PC is notified when a module is not working properly. The vehicles are

versatile enough to be used indoors, or outdoors in good weather.

5.2.2 System Architecture

The system architecture consists of low-level and high-level layers. The low-level

layer is composed of sensors, electronics, and a PCMCIA card to interface the CAN

bus with the high-level PC. The high-level layer is made up of PC’s and the server.

Currently, communication is handled by opening TCP sockets.

The CAN protocol is a message-based bus, therefore bases and workstation ad-

dresses do not need to be defined, only messages. These messages are recognized by

message identifiers. The messages have to be unique within the whole network and

define not only the content, but also its priority. Specifically, the lower-level CAN Bus

system allows for sensors and actuators to be added and removed from the system

with no reconfiguration required to the higher-level structure c.f., [36]. This type of

flexible capability is not common in commercially available mobile robotic platforms.

The current configuration of the CAN Bus system is shown in Fig. 5.3.

5.3 Sensing and Communication

In order for the controllers to work properly, several hardware issues with sensing

(odometry, vision, and IR) and communication were debugged. These problems and

their solutions are described in this section.

5.3.1 Sensing

Odometry

The position and orientation information is estimated from the odometers. Initially,

each robot uses the RCC to search for the perimeter, which requires the current
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Figure 5.3: CAN bus configuration.

estimate of the orientation angle. In order for the PFC to work, a global coordinate

system was set up and each robot’s position was estimated so that each robot knows

where it is in relation to the goal location.

If the experiments were run for long periods of time, the error from the odometers

will lead to large position errors. This was not a problem indoors, as each experiment

lasted less than seven minutes. A rough estimate of each robot’s initial position was

initially taken, which turned out to be effective enough. A detailed description of the

odometry is presented in [37].

Vision

An inexpensive Unibrain Fire-i camera was used for vision. A black and white

blobfinder algorithm was implemented. For the camera to see black for the table-

cloths (perimeter) and white for the floor, the camera was calibrated for the testing

area.

As each robot detects the perimeter, it begins using the TC with the following

proportional angular velocity controller (same as equation (3.13), but shown again
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here for clarity):

ωi = kp (γout − γin), (5.1)

where kp > 0, and γout and γin are the areas outside and inside the perimeter seen by

the blobfinder, respectively. Counterclockwise tracking is assumed that implies the

robot will turn left (right) if the robot is too far outside (inside) the perimeter.

Some outdoor experiments were attempted, but the cameras were ineffective in

bright sunlight because the blobfinder algorithm used saw only white. In order to

run experiments outdoors, a blobfinder is needed that is immune to bright sunlight,

perhaps by looking at the noise (variance) of different textures to separate them into

blobs1.

IR Sensors

Collision avoidance is accomplished through the use of IR sensors. Sometimes colli-

sions occurred during experiments when the IR sensors missed a reading or because

their range is small. Other times, collisions occurred because IR sensors were not

placed on the rear of each robot, so when a robot backed up, it was ”blind” to

whatever was behind it.

5.3.2 Communication

Because the experiments were indoors, communication for the experiments worked

differently than in Matlab. Specifically, the relay communication scheme was not

needed because every robot is within range of the others at all times.

When the experiments begin, all of the robots are pinging each other once per

second. The first robot to locate the perimeter sends the goal location when pinged by

the others. Once a robot receives the goal location, it stops pinging. The advantage

of doing this is robots could be added to the experiment and they should be able to

quickly locate the perimeter.

To communicate, an access point was needed, so a base station was setup to

1Idea provided by Chris Flesher.
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function as the access point. The algorithm is still decentralized as another robot

could be deployed to act as the access point.

5.4 Experiments

Experiments were performed with the Marhes multi-vehicle testbed in the Student

Union, Room 415. The perimeter was represented by blue tablecloths. See Fig. 5.4

for a view of the testing area with three robots.

Figure 5.4: Indoor experimental setup for perimeter detection.

Experiments were run in which three robots search for, locate, and track static

and dynamic perimeters while avoiding collisions. Refer to Appendix A.3 for the code

used for the controller logic.

5.4.1 Static Perimeter

For the static perimeter experiment, all robots were able to successfully reach and

track the perimeter. Refer to Fig. 5.5 for a trajectory plot. The perimeter in Fig. 5.5

is not exactly like the perimeter in Fig. 5.4, but the perimeter defined by the robots

is fairly accurate and allows the user to infer the location of the perimeter.

R1 locates the perimeter first and begins tracking. It broadcasts its location to
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Figure 5.5: Three robots defining a perimeter.

the other robots, who upon receiving the location, enter the PFC. R2 locates the

perimeter next, followed by R3. Fig. 5.6 shows the state transitions for each robot.
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Figure 5.6: Discrete state transition plot.

The robots move with almost constant linear speed in Fig. 5.7. The large spike

at approximately 55 s occurs when a robot detects an obstacle and starts to move in
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reverse. The sinusoidal angular speed indicates the robots are tracking the perimeter
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Figure 5.7: Robots tracking with nearly constant speed.

in Fig. 5.8.
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Figure 5.8: Angular velocities become sinusoidal indicating the robots are tracking the
perimeter.

To verify the accuracy of the low-level control system, the errors between the

actual and desired velocities were plotted. The linear velocity error is relatively small
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the majority of the time, except when a robot goes in reverse to avoid an obstacle,

i.e., at 55 s in Fig. 5.9. There will almost always be a moderate amount of error in
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Figure 5.9: Accurate linear velocity provided by low-level control unit.

the angular velocity in Fig. 5.10 because the robots are constantly switching in an

effort to track the perimeter.

5.4.2 Dynamic Perimeter

A second experiment was conducted where all of the robots were placed next to

the perimeter. The robots start tracking the perimeter. After one lap or so, a

section of the perimeter was removed to show that the swarm can still track this

dynamic perimeter. This setup is a simplified case of a dynamic perimeter, but

indoor experiments limit the ability to test with true dynamic perimeters. Refer to

Fig. 5.11 for a trajectory plot. The robots were able to adjust as a section of the

perimeter was removed in Fig. 5.11. Also, R1 ran low on batteries and began to have

trouble tracking the perimeter until it completely stopped.

R2 begins tracking first, so R1 and R3 switch to the PFC. R3 followed by R1

locate the perimeter and switch to the TC. These transitions can be seen in Fig.
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Figure 5.10: Moderate error indicating the robots are constantly turning in an effort to
track the perimeter.
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Figure 5.11: Three robots tracking a perimeter where part of the perimeter is removed. R1

runs low on power and stops.

5.12. The robots track with nearly constant speed, shown in Fig. 5.13. R1 begins to

lose battery power at about 250 s, which causes it to slow down and stop moving for

the rest of the experiment in Fig. 5.13. The large spike at approximately 280 s was

when R3 was performing obstacle avoidance. In Fig. 5.14, the angular velocities are
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Figure 5.12: Discrete state transition plot with a dynamic perimeter.
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Figure 5.13: Dynamic perimeter tracking with nearly constant speed.

sinusoidal indicating the robots are tracking the perimeter. At approximately 250 s,

R1 is unable to turn, again, because of low power. The errors between the actual

and desired velocities are shown in Fig. 5.15 and Fig. 5.16. In Fig. 5.15, the linear

velocity errors are very small except at 250 s when R1 runs out of power and when
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Figure 5.14: Angular velocities become sinusoidal indicating the robots are tracking the
dynamic perimeter.
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Figure 5.15: Small error except at 250 s when R1 runs out of power and R3 is avoiding an
obstacle.

R3 is performing obstacle avoidance. As before, there is a moderate amount of error

in the angular velocities in Fig. 5.16 because of the constant switching required to

track the perimeter.
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Figure 5.16: Moderate error indicating the robots are constantly turning in an effort to
track the dynamic perimeter.
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Chapter 6

Conclusions and Future Work

A decentralized, cooperative hybrid system was shown that allows a group of nonholo-

nomic robots to search for, detect, and track a dynamic perimeter, while avoiding

collisions and reconfiguring on-the-fly as additional robots locate the perimeter or

the perimeter shape changes. The algorithm has been extensively tested in Matlab,

Gazebo, and experimentally.

The two simulators each have benefits and disadvantages. Matlab was useful for

individually verifying each controller and eventually, the hybrid system, and for simu-

lating many robots. On the other hand, Player/Gazebo was invaluable for debugging

real-world problems. Testing in the Gazebo environment allowed the hybrid system

to be implemented experimentally in a short amount of time.

Experimental results were promising, but further testing is required. Specifically,

outdoor testing is needed in more realistic scenarios. If the camera is used as the

detector, it must be able to handle a variety of lighting conditions.

The most useful feature this algorithm might provide is the initial framework for

allowing a dynamic perimeter to be estimated as it evolves. Dynamic perimeter esti-

mation could be important for a variety of applications, such as monitoring a chemical

spill. Each robot must be able to estimate at least a portion of the perimeter (through

some form of position estimation, e.g., odometry, GPS, IMU, or a combination of the

three) for this to work. Once an estimate of the perimeter is known, cooperation can

be used to attempt to uniformly surround the perimeter, which should give a better
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estimate of the perimeter. If the perimeter is uniformly surrounded, it may be more

efficient for the robots to hold their positions instead of moving. They could then

move as needed as the perimeter expands/contracts.

Future work may include the following:

1. Experiments with all ten robots in more realistic scenarios, i.e., outdoors, which

will require sensor fusion (GPS, IMU, etc.) for localization. See Fig. 6.1 for an

example of an outdoor setup for perimeter detection.

Figure 6.1: Outdoor setup for perimeter detection.

2. Methods to estimate the dynamic perimeter as it evolves.

3. Formal analysis of the system behavior, i.e., cycling, stability, etc.

4. Verification and validation using recent tools from hybrid systems.
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5. The performance of the team may be evaluated based on different communica-

tion schemes.

6. Methods to optimize the search space, which would reduce the required search-

ing time.

7. Further investigation of the proportional angular velocity tracking controller.

8. Extension to tracking a fully three-dimensional field, i.e., underwater plume

(pollutants released from a point source).

This algorithm is envisioned to be used in the future at a much higher-level in

which the unmanned ground vehicles are part of a heterogeneous team consisting

of unmanned aerial and underwater vehicles tailored to the specific application, i.e.,

planetary exploration, monitoring chemical spills, combat scenarios (see Fig. 6.2).

Figure 6.2: Example of a combat scenario.
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Appendix A

Perimeter Detection and Tracking

Example Code

A.1 Matlab

The following portion of code shows the structure/logic for implementing the con-
trollers. However, for clarity purposes, the code for individual functions is not shown.

for i=1:N,
[x_lad(i), y_lad(i)]=Sensor(x_r(i), y_r(i), theta(i), D_OS);

% look-ahead distance
IN_lad(i)=inpolygon(x_lad(i), y_lad(i), Z_PER(:,1), Z_PER(:,2));

% look-ahead check
if IN_os(:,i) == 0 % omni-directional sensor outside

r_state(i)=0; % robot state
if GOAL == false % perimeter not found yet => (RCC)

[v(i), w(i)]=RCC(x_r(i), y_r(i), theta(i), x_os(:,i),...
y_os(:,i), t, V_MAX, Z_B); % (RCC)

else % perimeter detected by some robot => (PFC)
[v(i), w(i)]=RCC(x_r(i), y_r(i), theta(i), x_os(:,i),...

y_os(:,i), t, V_MAX, Z_B); % (RCC)
for j=1:size(R_REC,2), % check all detecting robots

L(j,i)=sqrt((x_r(i)-x_r(R_REC(1,j)))^2+(y_r(i)...
-y_r(R_REC(1,j)))^2); % calculate distance from

% detecting robots to robot i
if L(j,i) <= D_COM % inside communication range => (PFC)

r_state(i)=1; % robot state
[v(i), w(i)]=PFC(x_r(i), y_r(i), theta(i), Z_GOAL,...

w_max, t, V_MAX); % (PFC)
if size(R_REC,2) == N % all robots receivers

break
elseif R_REC(1,:) ~= i % if robot not a receiver yet

R_REC(R_COUNT)=i; % store receiving robot number
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R_COUNT=R_COUNT+1; % increment robot counter
end

break
end

end
end

else % omni-directional sensor inside => (TC)
r_state(i)=2; % robot state
if ((size(TC_REC,2) == 0) | (size(TC_REC,2) == 1)) % 0-1 robots

if ((size(TC_REC,2) == 0) | (TC_REC(1,:) ~= i)) % store if
% new robot
TC_REC(TC_COUNT)=i; % store robot
TC_COUNT=TC_COUNT+1; % increment (TC) counter

end
IN_lad(i)=inpolygon(x_lad(i), y_lad(i), Z_PER(:,1),...

Z_PER(:,2)); % look-ahead check
[v(i), w(i)]=TC(v_track, IN_lad(i), w_track); % (TC)

% bang-bang
else % 2+ robots

if TC_REC(1,:) ~= i % store if new robot
TC_REC(TC_COUNT)=i; % store robot
TC_COUNT=TC_COUNT+1; % increment (TC) counter

end
rn=0; % initialize robot number
L_sm=L_max; % initialize norm of closest robot
[x_v(i), y_v(i)]=Vertex_Front(0.6, x_r(i), y_r(i),...

theta(i)); % calculate front point of robot
for j=1:size(TC_REC,2),

L_TC(j,i)=sqrt((x_r(i)-x_r(TC_REC(1,j)))^2+(y_r(i)-...
y_r(TC_REC(1,j)))^2); % calculate norms to

% other robots
if ((L_TC(j,i) ~= 0) & (L_TC(j,i) < L_sm))

% 0 < norm < stored norm
L_sm=L_TC(j,i); % store norm of closest robot
rn=j; % store number of closest robot

end
L_TCf(j,i)=sqrt((x_v(i)-x_r(TC_REC(1,j)))^2+(y_v(i)-...

y_r(TC_REC(1,j)))^2); % calculate norms from front
% to other robots

end
[v(i)]=TC_Spacing(D_TC, L_sm, L_TCf(:,i), rn, L_max, N,...

V_MAX); % (TC) proportional
[w(i)]=TC_Angular(IN_lad(i), w_track); % set angular velocity

end % End number of robots if
end % End sensor check if

end % End main for loop
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A.2 Gazebo

This section includes the code for the main function used in Gazebo and an example

of the XML code used for the world file.

A.2.1 Main

// Run Commands
// compile client, start (1) server, (2) player, (3) playerv (optional)

// , and (4) client
// make, gazebo P_detection.world, player -g default player.cfg,

// playerv (optional)
// ./spiral using script => make, ./run
// End Run Commands

// Header Files
#include <playerclient.h> // Player
#include <math.h> // math
#include <stdio.h> // standard input/output
#include <stdlib.h> // standard library
#include <unistd.h> // universal standard
#include "Initial_Conditions.h" // Initial Conditions
#include "RCC.h" // Random Coverage Controller (RCC)
#include "PFC.h" // Potential Field Controller (PFC)
#include "TC.h" // Tracking Controller (TC)

// End Header Files

// Constant Definitions
const float B_MAX = 20.0; // maximum boundary limit
const bool GRASS = true; // logical for grass
const unsigned short int n = 1; // number of robots
const unsigned short int N = n+1; // number of robots + 1
const unsigned short int DELAY = 5; // pan-tilt delay
const float PI = 3.14159265; // pi

// End Constant Definitions

// Main
int main(int argc, char **argv)
{

// Initialize Variables
float x_ic[N], y_ic[N], theta_ic[N]; // initial conditions
float x_i[N], y_i[N], oa[N], v[N], w[N];
float s_ml[N], s_mr[N], s_ol[N], s_or[N], s_avg[N]; // sonars
int i, j, s[N]; // robot counters, states
bool p_detect[N]; // (RCC) => perimeter detected logical
bool Goal=false; // (PFC) => perimeter logical
float x_g, y_g; // (PFC) => perimeter location
int p_area[N], f_area[N]; // (TC) => areas
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// End Initialize Variables

PlayerClient robot("localhost"); // connect to Player

// Initialize Pointers to Sensors
BlobfinderProxy* camera[N]; // blobfinder
PositionProxy* position[N]; // odometers
PtzProxy* ptz[N]; // pan-tilt-zoom camera
SonarProxy* sonar[N]; // sonar array
// End Initialize Pointers to Sensors

// Initializations
for (i=1; i<N; i++)
{

camera[i] = new BlobfinderProxy(&robot,i,’r’);
// blobfinder

position[i] = new PositionProxy(&robot,i,’a’);
// odometers

ptz[i] = new PtzProxy(&robot,i,’a’);
// pan-tilt-zoom camera

sonar[i] = new SonarProxy(&robot,i,’a’);
// sonar array

ptz[i] -> SetCam(0.5, 0.3, 0); // set pan, tilt, and
// zoom (degrees)

p_detect[i] = false; // logical for detecting perimeter
Initial_Conditions(i, x_ic[i], y_ic[i], theta_ic[i]);

// initial conditions from world file
}
sleep(DELAY); // delay to allow cameras to point down and

// to the left
// End Initializations

while(1)
{

robot.Read(); // read all sensors

for (i=1; i<N; i++)
{

// Average Sonar Readings
s_ol[i] = sonar[i] -> ranges[3]; // outer left
s_ml[i] = sonar[i] -> ranges[4]; // middle left
s_mr[i] = sonar[i] -> ranges[5]; // middle right
s_or[i] = sonar[i] -> ranges[6]; // outer right
s_avg[i] = (s_ol[i]+s_ml[i]+s_mr[i]+s_or[i])/4.0;

// average readings
// End Average Sonar Readings

// Store x_i, y_i, theta_i
x_i[i] = position[i] -> xpos+(B_MAX-y_ic[i]); // x position
y_i[i] = position[i] -> ypos+x_ic[i]; // y position
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oa[i] = position[i] -> theta+(theta_ic[i]*(PI/180));
// theta

for (j=0; j<10; j++) // orientation angles must be
// positive for functions to work properly

{
if (oa[i] < 0) // theta negative

oa[i] = 2*PI+oa[i]; // make theta >= 0
if (oa[i] > 2*PI) // theta > 2*pi

oa[i] = oa[i]-2*PI; // make theta <= 2*pi
}
// End Store x_i, y_i, theta_i

// Check for Perimeter
// Blobfinder Channels
// 1 => green
// 3 => black
// 6 => yellow
// End Blobfinder Channels

if (GRASS == false) // for solid with grid.ppm
{

if ((camera[i] -> blob_count > 0) && (camera[i]...
-> blobs[0].id == 3)) // perimeter found

{
p_area[i] = camera[i] -> blobs[0].area;

// store perimeter area of blob 0 on
// channel 3 (black)

if (p_area[i] == 76788) // 76,788 =>
// camera seeing black on robot
p_area[i] = 0;

}
else // perimeter not found

p_area[i] = 0; // initialize perimeter area

if ((camera[i] -> blob_count > 0) && ...
(camera[i] -> blobs[0].id == 1)) // floor

// found
f_area[i] = camera[i] -> blobs[0].area;

// store floor area of blob 0 on
// channel 1 (pale green)

else // floor not found
f_area[i] = 0; // initialize floor area

}
else // when using grass.jpg
{

if ((camera[i] -> blob_count > 0) && ...
(camera[i] -> blobs[0].id == 3))

// perimeter found
{

p_area[i] = camera[i] -> blobs[0].area;
// store perimeter area of blob 0 on
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// channel 3 (black)
if ((p_area[i] < 50000) || ...

(p_area[i] == 76788)) // 76,788 =>
// camera seeing black on robot

p_area[i] = 0; // initialize
}
else // perimeter not found

p_area[i] = 0; // initialize perimeter area

if ((camera[i] -> blob_count > 0) && ...
(camera[i] -> blobs[0].id == 6)) // floor

// found
f_area[i] = camera[i] -> blobs[0].area;

// store floor area of blob 0 on
// channel 6 (yellow)

else // floor not found
f_area[i] = 0; // initialize floor area

}

if (p_area[i] > f_area[i]) // perimeter detected
{

p_detect[i] = true; // set perimeter detected to
// true => (TC)

if (Goal == false) // perimeter not found already
{

x_g = position[i] -> xpos+(B_MAX-y_ic[i]);
// store x position of perimeter location

y_g = position[i] -> ypos+x_ic[i];
// store y position of perimeter location

}
Goal = true; // perimeter found => set goal for (PFC)

}
// End Check for Perimeter

// Controllers
if (p_detect[i] == false) // perimeter not detected

// => (RCC) or (PFC)
{

if (Goal == false) // perimeter not located => (RCC)
{

RCC(oa[i], s_avg[i], v[i], w[i]); // (RCC)
s[i] = 0; // set state

}
else // perimeter located => (PFC)
{

PFC(i, x_g, y_g, x_i[i], y_i[i], oa[i]...
, PI, s_avg[i], v[i], w[i]); // (PFC)

s[i] = 1; // set state
}

}
else // perimeter detected => (TC)
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{
TC(GRASS, p_area[i], f_area[i], s_avg[i]...

, v[i], w[i]); // (TC)
s[i] = 2; // set state

} // end if (controllers)
position[i] -> SetSpeed(v[i], w[i]); // set motor speeds
// End Controllers

// Print Data
printf("R_%d: s=%d v=%1.3f w=%1.3f p_area=%d...

f_area=%d \n", i, s[i], v[i], w[i], p_area[i], f_area[i]);
// End Print Data

} // End for loop
usleep(20000); // 20 ms delay to improve odometer readings

} // End infinite while loop

// Shut Down
for (i=1; i<N; i++)
{

position[i] -> SetSpeed(0,0); // turn off robot
}
robot.Disconnect(); // disconnect from Player
// End Shut Down

}
// End Main

A.2.2 World File

The following code is the XML code for the world file used for this application.

<?xml version="1.0"?>

<gz:world
xmlns:gz=’http://playerstage.sourceforge.net/gazebo/xmlschema/#gz’
xmlns:model=’http://playerstage.sourceforge.net/gazebo/xmlschema/#model’
xmlns:sensor=’http://playerstage.sourceforge.net/gazebo/xmlschema/#sensor’
xmlns:window=’http://playerstage.sourceforge.net/gazebo/xmlschema/#window’
xmlns:param=’http://playerstage.sourceforge.net/gazebo/xmlschema/#params’
xmlns:ui=’http://playerstage.sourceforge.net/gazebo/xmlschema/#params’>

<param:Global>
<gravity>0.0 0.0 -9.8</gravity>

</param:Global>

<model:ObserverCam>
<id>userCam0</id>
<xyz>10 10 18</xyz> <!-- Overhead View -->
<rpy>0 10 0</rpy>
<updatePeriod>0.050</updatePeriod>

<window>
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<title>SharedWindow1</title>
<size>800 600</size>
</window>

</model:ObserverCam>

<model:LightSource>
<id>light1</id>

<xyz>0 0 100.0</xyz>
</model:LightSource>

<model:GroundPlane>
<id>ground1</id> <!-- color = rgb -->
<color>0 1 0</color> <!-- green = grass -->
<texture2D>grass.jpg</texture2D>

<!-- Boundary -->
<model:SimpleSolid>

<id>x_axis</id>
<xyz>10 0 0.125</xyz>
<shape>box</shape>
<size>20 0.25 3</size>
<color>0.7 0.7 0.7</color>

</model:SimpleSolid>
<model:SimpleSolid>

<id>y_axis</id>
<xyz>0 10 0.125</xyz>
<shape>box</shape>
<size>0.25 20 3</size>
<color>0.7 0.7 0.7</color>

</model:SimpleSolid>
<model:SimpleSolid>

<id>y_axis</id>
<xyz>10 20 0.125</xyz>
<shape>box</shape>
<size>20 0.25 3</size>
<color>0.7 0.7 0.7</color>

</model:SimpleSolid>
<model:SimpleSolid>

<id>y_axis</id>
<xyz>20 10 0.125</xyz>
<shape>box</shape>
<size>0.25 20 3</size>
<color>0.7 0.7 0.7</color>

</model:SimpleSolid>
<!-- End Boundary -->

<!-- Perimeter -->
<model:SimpleSolid>

<id>Perimeter</id>
<xyz>10 10 0</xyz>
<shape>cylinder</shape>
<size>10 0.020</size> <!-- radius, height -->
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<color>0 0 0</color> <!-- black = oil -->
</model:SimpleSolid>
<!-- End Perimeter -->

</model:GroundPlane>

<!-- Robots -->
<model:ClodBuster>

<id>robot1</id>
<xyz>15 15 0</xyz>
<rpy>0 0 270</rpy>
<model:Pioneer2Sonars>

<id>sonar1</id>
<xyz>2 0 0</xyz>

</model:Pioneer2Sonars>
<model:SonyVID30>

<id>camera1</id>
<xyz>0 0 0.1</xyz>
<rpy>0 0 0</rpy>
<updatePeriod>0.300</updatePeriod>
<window>

<title>Cam1</title>
<size>320 200</size>

</window>
</model:SonyVID30>

</model:ClodBuster>
<!-- End Robots -->

</gz:world>

A.3 Experimental

The following C code is the main program used for the experiments. No functions
are shown for clarity.

// Header Files
#include <stdio.h>
#include <pthread.h>
#include "vision.h"
#include "blobfinder.h"
#include "txtcontrol.h"
#include "pdetect.h"
#include "comms.h"

// End Header Files

// Constants
//#define SDL
const float PI = 3.141535;
const float SAMPLING_PERIOD = 20e-3;

// End Constants
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// Threads
pthread_mutex_t outgoing_lock;
pthread_t tid_controller, tid_video, tid_comms, tid_commands;

// End Threads

// Variables
//Global
int go=1;
FILE *LogFile;

// Control & Positioning
float v=0,w=0;
float x_pos, y_pos, theta;
float r_v, r_w;
// End Control & Positioning

// Potential Field Controller
float x_goal,y_goal,x_target,y_target;
int PFC=0;
// End PFC

// Video
int sw1 = 1;
int black, white, PDetect=0; // (TC)
Vision *v_obj = new Vision("FileName");
// End Video

int IRR[3], IRL[3]; // obstacle avoidance
// End Variables

// Threads & Functions
void *video(void *);
void *controller(void *);
void *comms(void*);
void *commands(void *);
void ResetOdometry(void);
void CalcOdometry(void);

// End Threads & Functions

// Main
int main(int, char *[])
{

pthread_mutex_init(&outgoing_lock,NULL);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setscope(&attr,PTHREAD_SCOPE_SYSTEM);

pthread_create(&tid_controller,&attr,controller,NULL);
sleep(5); // 5 second safety delay
pthread_create(&tid_video,&attr,video,NULL);
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pthread_create(&tid_comms,&attr,comms,NULL);
pthread_create(&tid_commands,&attr,commands,NULL);

pthread_join(tid_controller,NULL);
pthread_join(tid_video,NULL);
pthread_join(tid_comms,NULL);
pthread_join(tid_commands,NULL);
return 0;

}
// End Main

// Video Acquisition Thread
void *video(void *) {

int s=0; // States

LogFile = fopen("data.out","w");

if(!v_obj)
{

printf("Video Thread: cannot create a vision object!...
\n\nquitting ...\n");

exit(1);
}
v_obj->Setup();
v_obj->MakeCameraManual();

while(sw1 && go)
{

sw1 = v_obj->Process_Events();
if(sw1 > 0)
{

v_obj->CaptureImage();
GetBlobs(v_obj->pImage, v_obj->blobThresh, black, white);

}
#ifdef SDL

v_obj->Show_Image();
printf("Video Thread: BlobFinder Threshold =...

%d\n", v_obj->blobThresh);
#endif

GetOdometry(r_v, r_w, x_pos, y_pos, theta);
GetIRs(&IRR[0],&IRL[0]);

if (!PDetect) // check for perimeter
{

PDetect = (black>white)?1:0; // set perimeter logical
}

if (!PDetect) // (RCC) or (PFC)
{

RandomCoverageControl(theta, v, w); // call (RCC) function
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s = 0; // set state
if (IRR[2]>80 || IRR[1]>80 || IRL[2]>80 || IRL[1]>80)

// obstacle detected => back up!
{

v = -0.3; // back up
sleep(3);

}
if (PFC)
{

PotentialFieldControl(x_pos, y_pos, theta, x_goal,...
y_goal, v, w); // call (PFC) function

s = 1; // set state
}

}
else // (TC)
{

if (s!=2)
{

x_target = x_pos;
y_target = y_pos;

}
TrackingControl(black, white, v, w); // call (TC) function
s = 2; // set state
if (IRR[2]>80 || IRR[1]>80 || IRL[2]>80 || IRL[1]>80)

// obstacle detected
{

v = -0.1; // back up slowly
w = -w;
sleep(2);

}
}
PutCommand(v,w);

}
v_obj->print();
v_obj->Shutdown();
fclose(LogFile);
return 0;

}
// End Video Acquisition Thread

// Control Thread
void *controller(void *)
{

ResetOdometry();
UpCANBUS();
while(go)
{

ReadCANBUS();
}
PutCommand(0,0);

87



DownCANBUS();
return 0;

}
// End Control Thread

// Communications Thread
void *comms(void *) {

char robot1[5]="pete";
char robot2[5]="fett";
char robot3[5]="vaio";
static int Broadcast=0;

while(go)
{

if (Broadcast){CommsBcast(x_target,y_target);}
else
{

if (PDetect) // if the perimeter is detected
{ // start broadcasting

CommsStartServer(); // perimeter position
Broadcast = 1;

}
else
{ // if perimeter not detected

sleep(1); // listen for others
if (!PFC)
{

PFC = CommsRequest(x_goal,y_goal,robot1);
if (PFC){return 0;}
PFC = CommsRequest(x_goal,y_goal,robot2);
if (PFC){return 0;}
PFC = CommsRequest(x_goal,y_goal,robot3);

}
}

}
}
return 0;

}
// End Comms Thread

// Commands Thread
void *commands(void *)
{

char tmp[2];

while(go)
{

scanf("%s",tmp);
if (tmp[0]==’q’)
{

88



go=0;
pthread_exit(&tid_controller);
pthread_exit(&tid_video);
pthread_exit(&tid_comms);
pthread_exit(&tid_commands);

}
}
return 0;

}
// End Commands Thread
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