1,021 research outputs found

    Dagstuhl News January - December 2000

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Encrypted control for networked systems -- An illustrative introduction and current challenges

    Full text link
    Cloud computing and distributed computing are becoming ubiquitous in many modern control systems such as smart grids, building automation, robot swarms or intelligent transportation systems. Compared to "isolated" control systems, the advantages of cloud-based and distributed control systems are, in particular, resource pooling and outsourcing, rapid scalability, and high performance. However, these capabilities do not come without risks. In fact, the involved communication and processing of sensitive data via public networks and on third-party platforms promote, among other cyberthreats, eavesdropping and manipulation of data. Encrypted control addresses this security gap and provides confidentiality of the processed data in the entire control loop. This paper presents a tutorial-style introduction to this young but emerging field in the framework of secure control for networked dynamical systems.Comment: The paper is a preprint of an accepted paper in the IEEE Control Systems Magazin

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Information-Theoretic Secure Outsourced Computation in Distributed Systems

    Get PDF
    Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir\u27s secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Privacy-preserving Security Inference Towards Cloud-Edge Collaborative Using Differential Privacy

    Full text link
    Cloud-edge collaborative inference approach splits deep neural networks (DNNs) into two parts that run collaboratively on resource-constrained edge devices and cloud servers, aiming at minimizing inference latency and protecting data privacy. However, even if the raw input data from edge devices is not directly exposed to the cloud, state-of-the-art attacks targeting collaborative inference are still able to reconstruct the raw private data from the intermediate outputs of the exposed local models, introducing serious privacy risks. In this paper, a secure privacy inference framework for cloud-edge collaboration is proposed, termed CIS, which supports adaptively partitioning the network according to the dynamically changing network bandwidth and fully releases the computational power of edge devices. To mitigate the influence introduced by private perturbation, CIS provides a way to achieve differential privacy protection by adding refined noise to the intermediate layer feature maps offloaded to the cloud. Meanwhile, with a given total privacy budget, the budget is reasonably allocated by the size of the feature graph rank generated by different convolution filters, which makes the inference in the cloud robust to the perturbed data, thus effectively trade-off the conflicting problem between privacy and availability. Finally, we construct a real cloud-edge collaborative inference computing scenario to verify the effectiveness of inference latency and model partitioning on resource-constrained edge devices. Furthermore, the state-of-the-art cloud-edge collaborative reconstruction attack is used to evaluate the practical availability of the end-to-end privacy protection mechanism provided by CIS

    Where Do Your IoT Ingredients Come From?

    Get PDF
    The Internet of Things (IoT) is here: smart objects are pervading our everyday life. Smart devices automatically collect and exchange data of various kinds, directly gathered from sensors or generated by aggregations. Suitable coordination primitives and analysis mechanisms are in order to design and reason about IoT systems, and to intercept the implied technology shifts. We address these issues by defining IoT-LySa, a process calculus endowed with a static analysis that tracks the provenance and the route of IoT data, and detects how they affect the behaviour of smart objects
    • …
    corecore