
Where do your IoT ingredients come from? ?

Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta

Dipartimento di Informatica, Università di Pisa
{chiara,degano,giangi,galletta}@di.unipi.it

Abstract. The Internet of Things (IoT) is here: smart objects are per-
vading our everyday life. Smart devices automatically collect and ex-
change data of various kinds, directly gathered from sensors or generated
by aggregations. Suitable coordination primitives and analysis mecha-
nisms are in order to design and reason about IoT systems, and to inter-
cept the implied technology shifts. We address these issues by defining
IoT-LySa, a process calculus endowed with a static analysis that tracks
the provenance and the route of IoT data, and detects how they affect
the behaviour of smart objects.

1 Introduction

This is the era of the Internet of Things (IoT), where digitally connected de-
vices are intruding into our everyday life. “Software is eating the world” is the
vivid slogan referring to the smartification of the objects and devices around
us. As buzzword, the IoT is indeed simple and accurate: a global network of
things ranging from light bulbs to cars, equipped with suitable software allowing
things to interact each other and coordinate their behaviour. For instance, our
smart alarm clock can drive our coffeemaker to prepare us a cup of coffee in
the morning, while our smart TV can suggest us some movies for the evening.
Furthermore, smart devices can automatically exchange information of various
kinds gathered from different sources (e.g. sensors) or generated by aggregating
several data sets.

More connected smart devices and more applications available on the IoT
mean more software bugs and vulnerabilities to identify and fix. For instance, a
bug can cause you to wake up into a cold house in winter or an attacker can enter
into your smart TV and break your bank account. This is not a big surprise:
every advance in information technology has exposed software to new challenges.

Smart devices exhibit and require open-endedness to achieve full interactive
and cooperative behaviour, and thus they generalise the so-called “embedded
systems.” These are essentially controllers of machines and are closed systems.
Therefore, we cannot simply rely on standard techniques for supporting the de-
sign and development of IoT, and new software solutions have emerged, e.g. Ama-
zon AWS for IoT and Google Brillo. We argue that the formal techniques and
tools need to be adapted in order to support open-endedness of IoT applications
and the new complex phenomena that arise in this hybrid scenario.
? Partially supported by Università di Pisa PRA 2016 64 Project Through the fog.

Chiara
Typewriter
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39519-7_3

Here, we contribute to this new line of research by introducing the kernel
of a formal design framework for IoT, which will provide us with the founda-
tions to develop verification techniques and tools for certifying properties of IoT
applications.

Our starting point is the process calculus IoT-LySa, a dialect of LySa [4,6],
within the process calculi approach to IoT [15,8]. It has primitive constructs
to describe the activity of sensors and of actuators, and suitable primitives for
managing the coordination and communication capabilities of smart objects.
More precisely, our calculus is made up from:

1. systems of nodes, consisting of (a representation of) the physical components,
i.e. sensors and actuators, and of software control processes for specifying
the logic of the node, including the manipulation of data gathered from
sensors and from other nodes. Intra-node generative communications are
implemented through a shared store à la Linda [12,7]. The adoption of this
coordination model supports a smooth implementation of the cyber-physical
control architecture: physical data are made available to software entities
that analyse them and trigger the relevant actuators to perform the desired
behaviour.

2. an asynchronous multi-party communication among nodes, which can be
easily tuned to take care of various constraints, mainly those concerning
proximity;

3. functions to process and aggregate data.

A further contribution of this paper is the definition of an analysis for IoT-LySa
to statically predict the run time behaviour of smart systems. We introduce a
Control Flow Analysis (CFA) that safely approximates the abstract behaviour of
a system of nodes. Essentially, it describes the interactions among nodes, tracks
how data spread from sensors to the network, and how data are manipulated.

Technically, our CFA abstracts from the concrete values and only considers
their provenance and how they are put together. In more detail, it returns for
each node ` in the network:

– an abstract store Σ̂` that records for sensors and variables a super-set of the
abstract values that they may denote at run time;

– a set κ(`) that over-approximates the set of the messages received by the
node `, and for each of them its sender;

– a set Θ(`) of possible abstract values computed and used by the node `.

The result of the analysis can be exploited as the basis for checking and certifying
various properties of IoT systems. As it is, the components κ and Θ track how
data may flow in the network and how they influence the outcome of functions.
An example of property that can be statically checked using the component
κ is the detection of redundant communications, thus providing the means for
refactoring the system to avoid message storms. Further, the analysis can be
used to check whether the values produced by a certain classified sensor reaches
an untrusted node. This helps evaluating the security level of the system and
detecting potential vulnerabilities.

2

Fig. 1. The organisation of nodes in our street light control system.

The paper is organised as follows. The next section introduces our approach
with the help of an illustrative example. In Sect. 3 we briefly introduce the
process calculus IoT-LySa, while we present our CFA in Sect. 4. Concluding
remarks and related work are in Sect. 5.

2 A smart street light control system

The IoT European Research Cluster (IERC) has recently identified smart lighting
in smart cities [14] as one of most relevant applications for the Internet of Things.
Recent studies, e.g. [10,11], show that smart street light control systems represent
effective solutions to improve energy efficiency. Many proposed solutions are
based on sensors that acquire data about the physical environment and regulate
the level of illumination according to the detected events. In this section we show
how this kind of scenario can be easily modelled in IoT-LySa and what kind of
information our CFA provides to designers.

We consider a simplified system made of two integrated parts, working on
a one-way street. The first consists of smart lamp posts that are battery pow-
ered and can sense their surrounding environment and can communicate with
their neighbours to share their views. If (a sensor of) the lamp post perceives a
pedestrian and there is not enough light in the street it switches on the light and
communicates the presence of the pedestrian to the lamp posts nearby. When
a lamp post detects that the level of battery is low, it informs the supervisor
of the street lights, Ns, that will activate other lamp posts nearby. The second
component of the street light controller uses the electronic access point to the
street. When a car crosses the checkpoint, besides detecting if it is enabled to, a
message is sent to the supervisor of the street accesses, Na, that in turn notifies
the presence of the car to Ns. This supervisor sends a message to the lamp post
closest to the checkpoint that starts a forward chain till the end of the street.
The structure of our control light system is in Fig. 1.

3

We first define the checkpoint Ncp as an IoT-LySa node that only contains
a visual sensor Scp to take a picture of the car detected in the street, defined as

Scp = µh.(τ.1 := vp).τ. h

where vp is the picture of the car. The sensor communicates the picture to the
node by storing it in the location 1 of the shared store. In our model we assume
that each sensor has a reserved store location in which records its readings. The
action τ denotes internal actions of the sensor, which we are not interested to
model, e.g. reading from the environment; the construct µh. implements the
iterative behaviour of the sensor. Then, the taken picture is enhanced by the
process Pcp and sent to the supervisor Na

Pcp = µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}. h

where `a is the label of the node Na (note that 1 is the identifier of the sensor
Scp in the assignment z := 1). Hence, the checkpoint Ncp is defined as

Ncp = `cp : [Pcp ‖ Scp ‖ Bcp]

where `cp is the identifier of Ncp and Bcp abstracts other components we are not
interested in. The node Na (checks if the car is allowed to enter the street and)
communicates its presence to the lamp posts supervisor Ns:

Na = `a : [µh.(; x). 〈〈car, x〉〉 . {`s}. h ‖ Ba]

where `s is the identifier of Ns (see below for the intuition of the general format
of the input (;x)). The supervisor Ns contains the process Ps,1 that receives the
picture from Na and sends a message to the node closest to the checkpoint, call
it N1, labelled with `1:

Ps,1 = µh.(car; x). 〈〈x〉〉 . {`1}. h

The input (car;x) is performed only if the corresponding output matches the
constant car, and the store variable x is bound to the value of the second element
of the output (see below for the full definition of Ns).

In our intelligent street light control system there is a node Np for each lamp
post, each of which has a unique identifier p ∈ [1, k]. The lamp posts have four
sensors to sense (1) the environment light, (2) the solar light, (3) the battery
level and (4) the presence of a pedestrian. Each of them is defined as follows

Sp,i = µh. (i := v). τ. h

where v is the perceived value and i ∈ [1, 4] are the store locations for the sensors.
After some internal actions τ , the sensor Sp,i iterates its behaviour. The actuator
for the lamp post p is defined as

A5 = µh. (|5, {turnon, turnoff}|). h

4

It only accepts a message from Nc whose first element is its identifier (here 5)
and whose second element is either command turnon or turnoff and executes it.

The control process of a lamp post node is composed by two parallel pro-
cesses. The first process Pp,1 is defined as follow

Pp,1 = µh.(x1 := 1. x2 := 2. x3 := 3. x4 := 4).
(x4 = true) ?

(x1 ≤ th1 ∧ x2 ≤ th2) ?
(x3 ≥ th3) ? 〈5, turnon〉. 〈〈x4〉〉 . Lp. h

: 〈〈err, `p〉〉 . {`s}. h
: h

: 〈5, turnoff〉. h

The process reads the current values from the sensors and stores them into the
local variables xi. The actuator is turned on if (i) a pedestrian is detected in the
street (x4 holds), (ii) the intensity of environment and solar lights are greater
than the given thresholds th1 and th2, and (iii) there is enough battery (at least
th3). In addition, the presence of the pedestrian is communicated to the lamp
posts nearby, whose labels, typically `p−1 and `p+1, are in Lp. Instead, if the
level battery is insufficient, an error message, including its identifier `p, is sent
to the supervisor node, labelled `s. The second process Pp,2 is defined as follows:

Pp,2 = µh.(; x). (x = true ∨ is a car(x)) ? (〈5, turnon〉. 〈〈x〉〉 . Lp).h : 〈5, turnoff〉. h

It waits for messages from its neighbours or from the supervisor node Ns. When
one of them is notified the presence of a pedestrian (x = true) or of a car
(is a car(x) holds), the current lamp post orders the actuator to switch the
light on. Each lamp post p is described as the IoT-LySa node below:

Np = `p : [Σp ‖ Pp,1 ‖ Pp,2 ‖ Sp,1 ‖ Sp,2 ‖ Sp,3 ‖ Sp,4 ‖ Ap,5]

where Σp is the store of the node `p, shared with its components. The supervisor
node Ns of lamp posts is defined as

Ns = `s : [µh. (err; x). 〈〈true〉〉 . Lx. h ‖ Ps,1 ‖ Bs]

where Ps,1 is the process previously defined. As above the input (err;x) is per-
formed only if the corresponding output matches the constant err, and the store
variable x is bound to the value of the second element of the output i.e. the label
of the relevant lamp post. If this is the case, after some internal elaborations Ns
warns the lamp posts nearby x (included in Lx) of the presence of a pedestrian.

Therefore, the whole intelligent controller N of the street lights is described
as the parallel composition of the checkpoint node Ncp, the supervisors nodes
Na and Ns, and the nodes of lamp posts Np, with p ∈ [1, k]:

N = Ncp | Na | Ns | N1 | · · · | Nk

5

We would like to statically predict how the system behaves at run time. In
particular, we want to compute: (i) how nodes interact each other; (ii) how data
spread from sensors to the network (tracking); and (iii) which computations
each node performs on the received data. To do that, we define a Control Flow
Analysis (CFA), which abstracts from the concrete values by only considering
their provenance and how they are manipulated. Consider e.g. the picture sent
by the camera of Scp to its control process Ppc. In the analysis we are only
interested in tracking where the picture comes from, and not in its actual value;
so we use the abstract value 1`cp to record the camera that took it. The process
Ppc reduces the noise in the pictures and sends the result to Na. Our analysis
keeps track of this manipulation through the abstract value noiseRed

`cp (1`cp),
meaning that the function noiseRed, computed by the node `cp, is applied to
data coming from the sensor with identifier 1 of `cp.

In more detail, our CFA returns for each node ` in the network: an abstract
store Σ̂` that records for each variable a super-set of the abstract values that it
may denote at run time; a set κ(`) that approximates the set of the messages
received by the node `; and the set Θ(`) of possible abstract values computed
and used by the node `.

In our example, for each lamp post labelled `p, the analysis returns in κ(`p)
both the abstract value noiseRed

`cp (1`cp) and the sender of that message, i.e.
`p+1. The result of our analysis can be exploited to perform several verifications.
For instance, since the pictures of cars are sensitive data, one would like to
check whether they are kept secret. By inspecting κ and Θ we discover that
the sensitive data of cars is sent to all lamp posts, so possibly violating privacy.
Another example is detecting whether there are redundant communications, e.g.
since the street is one-way, when a car is present the lamp post at position p
needs not to alert the one at p − 1. From κ it is easy to detect a redundant
communication from the next lamp post.

3 The calculus IoT-LySa

We adapt the LySa calculus [3,4,6], based on the π- [17] and Spi-calculus [1],
to model IoT applications. For that we introduce: (i) systems of nodes, in turn
consisting of sensors, actuators and control processes, plus a shared store Σ
within each node for internal communications; (ii) primitives for reading from
sensors, and for triggering actuator actions; (iii) an asynchronous multi-party
communication modality among nodes, subject to constraints, mainly concerning
proximity; (iv) functions to process data; (v) explicit conditional statements. For
brevity, we do not include here encryption and decryption primitives as in LySa.

Syntax. Systems have a two-level structure and consist of a fixed number of la-
belled nodes, hosting a store, control processes, sensors and actuators. The label
` uniquely identifies the node ` : [B] and may represent further characterising
information (e.g. its location or other contextual information). Finally, the op-
erator | describes a node system of nodes obtained by parallel composition. The

6

syntax of nodes is as follows.

N 3 N ::= systems of nodes
0 inactive node
` : [B] single node (` ∈ L, the set of labels)
N1 | N2 parallel composition of nodes

B 3 B ::= node components
Σ` node store
P process
S sensor, with a unique identifier i ∈ I`
A actuator, with a unique identifier i ∈ J`
B ‖ B parallel composition of node components

We impose that in ` : [B] there is a single store Σ` : X ∪ I` → V, where
X ,V are the sets of variables and of values, respectively. Our store is essentially
an array of fixed dimension, so intuitively a variable is the index in the array
and an index i ∈ I` corresponds to a single sensor (no need of α-conversions).
We assume that store accesses are atomic, e.g. through CAS instructions [13].
The other node components are obtained by the parallel composition of control
processes P , and of a fixed number of (less than #(I`)) sensors S, and actuators
A (less than #(J`)). The syntax of processes is as follows

P 3 P ::= control processes
0 inactive process
〈〈E1, · · · , Ek〉〉 . L. P asynchronous multi-output L⊆ L
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)
E?P : Q conditional statement
h iteration variable
µh. P tail iteration
x := E.P assignment to x ∈ X
〈j, γ〉. P output of action γ to actuator j

The prefix 〈〈E1, · · · , Ek〉〉 . L implements a simple form of multi-party com-
munication among nodes: the tuple E1, . . . , Ek is asynchronously sent to the
nodes with labels in L and that are “compatible” (according, among other at-
tributes, to a proximity-based notion). The input prefix (E1,· · ·, Ej ;xj+1,· · ·, xk)
is willing to receive a k-tuple, provided that its first j elements match the input
ones, and then binds the remaining store variables (separated by a “;”) to the
corresponding values (see [6,2] for a more flexible choice). Otherwise, the k-tuple
is not accepted. A process repeats its behaviour, when defined through the tail
iteration construct µh. P , where h is the iteration variable.

A sensor can perform an internal action τ or store the value v, gathered from
the environment, into its store location i. An actuator can perform an internal
action τ or execute one of its action γ, possibly received from its controlling
process. Both sensors and actuators can iterate. For simplicity, here we neither

7

provide an explicit operation to read data from the environment, nor to de-
scribe the impact of actuator actions on the environment. Sensors and actuators
(uniquely labelled) have the form:

S 3 S ::= sensors A 3 A ::= actuators
0 inactive sensor 0 inactive actuator
τ.S internal action τ.A internal action
i := v. S store of v ∈ V (|j, Γ |). A command for actuator j

by the ith sensor γ.A triggered action (γ ∈ Γ)
h iteration var. h iteration var.
µh . S tail iteration µh . S tail iteration

The syntax of terms follows.

E 3 E ::= terms
v value (v ∈ V)
i sensor location (i ∈ I`)
x variable (x ∈ X)
f(E1, · · · , En) function on data

The term f(E1, · · · , En) is the application of function f to n arguments; we
assume given a set of primitive functions, typically for aggregating or comparing
values, be them computed or representing data in the environment.

Operational Semantics. Our reduction semantics assumes the following struc-
tural congruence ≡ on nodes, processes and sensors. It is standard except for the
last rule that equates a multi-output with no receivers to the inactive process.

− (N/≡, |, 0) and (B/≡, ‖, 0) are commutative monoids
− µh .X ≡ X{µh .X/h} for X ∈ {P,A, S}
− 〈〈E1, · · · , Ek〉〉 : ∅. 0 ≡ 0

We have a two-level reduction relation defined as the least relation on nodes
and its components, denoted by→, satisfying the set of inference rules in Table 1.
We assume the standard denotational interpretation [[E]]Σ for evaluating terms.

The first two rules implement the (atomic) asynchronous update of shared
variables inside nodes, by using the standard notation Σ{−/−}. According to
(S-store), the ith sensor uploads the value v, gathered from the environment, into
the store location i. According to (Asgm), a control process updates the variable
x with the value of E. The rules (Ev-out) and (Multi-com) drive asynchronous
multi-communications among nodes. In the first a node labelled ` willing to send
a tuple of values 〈〈v1, ..., vk〉〉, obtained by the evaluation of 〈〈E1, ..., Ek〉〉, spawns
a new process, running in parallel with the continuation P ; its task is to offer
the evaluated tuple to all its receivers L. In the rule (Multi-com), the message
coming from `1 is received by a node labelled `2. The communication succeeds,
provided that (i) `2 belongs to the set L of possible receivers, (ii) the two nodes
are compatible according to the compatibility function Comp, and (iii) that
the first j values match with the evaluations of the first j terms in the input.

8

(S-store)

Σ ‖ i := v. Si ‖ B → Σ{v/i} ‖ Si ‖ B

(Asgm)
[[E]]Σ = v

Σ ‖ x := E.P ‖ B → Σ{v/x} ‖ P ‖ B

(Ev-out) Vk
i=1 vi = [[Ei]]Σ

Σ ‖ 〈〈E1, · · · , Ek〉〉 . L. P ‖ B → Σ ‖ 〈〈v1, · · · , vk〉〉 . L.0 ‖ P ‖ B

(Multi-com)

`2 ∈ L ∧ Comp(`1, `2) ∧
Vj
i=1 vi = [[Ei]]Σ2

`1 : [〈〈v1, · · · , vk〉〉 . L. 0 ‖ B1] | `2 : [Σ2 ‖ (E1, · · · , Ej ;xj+1, · · · , xk).Q ‖ B2]
→

`1 : [〈〈v1, · · · , vk〉〉 . L \ {`2}. 0 ‖ B1] | `2 : [Σ2{vj+1/xj+1, · · · , vk/xk} ‖ Q ‖ B2]

(Cond)
[[E]]Σ = bi

Σ ‖ E?P1 : P2 ‖ B → Σ ‖ Pi ‖ B
where b1 = true, b2 = false

(A-com)
γ ∈ Γ

〈j, γ〉. P ‖ (|j, Γ |). A ‖ B → P ‖ γ.A ‖ B

(Act)

γ.A → A

(Int)

τ.X → X

(Node)
B → B′

` : [B] → ` : [B′]

(ParN)
N1 → N ′

1

N1|N2 → N ′
1|N2

(ParB)
B1 → B′

1

B1‖B2 → B′
1‖B2

(CongrY)
Y ′

1 ≡ Y1 → Y2 ≡ Y ′
2

Y ′
1 → Y ′

2

Table 1. Reduction semantics, where X ∈ {S,A} and Y ∈ {N,B}.

Moreover, the label `2 is removed by the set of receivers L of the tuple. The
spawned process terminates when all its receivers have received the message (see
the last congruence rule). The role of the compatibility function Comp is crucial
in modelling real world constraints on communication. A basic requirement is
that inter-node communications are proximity-based, i.e. that only nodes that
are in the same transmission range can directly exchange messages. This is easily
encoded here by defining a predicate (over node labels) yielding true only when
two nodes are in the same transmission range. Of course, this function could
be enriched in order to consider finer notions of compatibility expressing various
policies, e.g. topics for event notification. Note that if Comp varies along time, we
recover a simple way of expressing dynamic network topologies. According to the
evaluation of the expression E, the rule (Cond) says that the process continues
as P1 (if [[E]]Σ is true) or as P2 (otherwise). A process commands the jth actuator
through the rule (A-com), by sending it the pair 〈j, γ〉; γ prefixes the actuator, if

9

it is one of its actions. The rule (Act) says that the actuator performs the action
γ. Similarly, for the rules (Int) for internal actions. The last rules propagate
reductions across parallel composition ((ParN) and (ParB)) and nodes (Node),
while the (CongrY) are the standard reduction rules for congruence.

4 Control Flow Analysis

Our CFA aims at safely approximating the abstract behaviour of a system of
nodes N . The analysis follows the same schema of that for LySa [4], and for
the time being we only conjecture that computing its results requires the same
low polynomial time complexity. Here, we track the usage of sensor values inside
the local node where they are gathered and their propagation in the network of
nodes both as raw data or processed via suitable functions. We resort to abstract
values for sensor and functions on abstract values, as follows, where ` ∈ L:

V̂ 3 v̂ ::= abstract terms
>` special abstract value denoting cut
i` sensor abstract value (i ∈ I`)
v` node abstract value
f `(v̂1, · · · , v̂n) function on abstract data

Since the dynamic semantics may introduce function terms with an arbitrar-
ily nesting level, we have new special abstract values >` that denote all those
function terms with a depth greater that a given d. In the clauses defining our
analysis, we will use b−cd to keep the maximal depth of abstract terms less or
equal to d, defined as expected. Note that, once given the set of functions f
occurring in a node N , the abstract values are finitely many.

The result of our CFA is a triple (Σ̂, κ,Θ) (a pair (Σ̂, Θ) for terms E, resp.),
called estimate for N (for E, resp.), that satisfies the judgements defined by the
rules of Tables 3 and 2. For this we introduce the following abstract domains:

– abstract store Σ̂ =
⋃
`∈L Σ̂` : X ∪ I` → 2V̂ where each abstract local

store Σ̂` approximates the concrete local store Σ`, by associating with each
location a set of abstract values that represent the possible concrete values
that the location may store at run time.

– abstract network environment κ : L → L ×
⋃k
i=1 V̂i (with V̂i+1 = V̂ × V̂i

and k maximum arity of messages), that includes all the messages that may
be received by the node labelled `.

– abstract data collection Θ : L → 2V̂ that, for each node labelled `, approx-
imates the set of values that the node computes.

For each term E, the judgement (Σ̂, Θ) |=
`
E : ϑ, defined by the rules in Table 2,

expresses that ϑ ∈ V̂ is an acceptable estimate of the set of values that E may
evaluate to in Σ̂`. A sensor identifier and a value evaluate to the set ϑ, provided
that their abstract representations belong to ϑ. Similarly a variable x evaluates
to ϑ, if this includes the set of values bound to x in Σ̂`. The last rule analyses

10

i` ∈ ϑ ⊆ Θ(`)

(Σ̂, Θ) |=` i : ϑ

v` ∈ ϑ ⊆ Θ(`)

(Σ̂, Θ) |=` v : ϑ

Σ̂`(x) ⊆ ϑ ⊆ Θ(`)

(Σ̂, Θ) |=` x : ϑVk
i=1 (Σ̂, Θ) |=` Ei : ϑi ∧

∀ v̂1, · · · , v̂k :
Vk
i=1 v̂i ∈ ϑi ⇒ bf `(v̂1, · · · , v̂k)cd ∈ ϑ ⊆ Θ(`)

(Σ̂, Θ) |=` f(E1, · · · , Ek) : ϑ

Table 2. Analysis of terms (Σ̂, Θ) |=` E : ϑ.

the application of a k-ary function f to produce the set ϑ. Recall that the special
abstract value >` will end up in ϑ if the depth of the abstract functional term
exceeds d, and it represents all the functional terms with nesting greater than
d. To do that (i) for each term Ei, it finds the sets ϑi, and (ii) for all k-tuples of
values (v̂1, · · · , v̂k) in ϑ1×· · ·×ϑk, it checks if the abstract values f `(v̂1, · · · , v̂k)
belong to ϑ. Moreover, in all the rules for terms, we require that Θ(`) includes
all the abstract values included in ϑ. This guarantees that only those values
actually used are tracked by Θ, in particular those of sensors.

In the analysis of nodes we focus on which values can flow on the net-
work and which can be assigned to variables. The judgements have the form
(Σ̂, κ,Θ) |= N and are defined by the rules in Table 3. The rules for the inactive
node and for parallel composition are standard. Moreover, the rule for a single
node ` : [B] requires that its component B is analysed, with the further judgment
(Σ̂, κ,Θ) |=

`
B, where ` is the label of the enclosing node. The rule connecting

actual stores Σ with abstract ones Σ̂ requires the locations of sensors to contain
the corresponding abstract values. The rule for sensors is trivial, because we are
only interested in who will use their values, and so is that for actuators. The
rules for processes are in Table 3, and all require that an estimate is also valid for
the immediate sub-processes. The rule for k-ary multi-output (i) finds the sets
ϑi, for each term Ei; and (ii) for all k-tuples of values (v̂1, · · · , v̂k) in ϑ1×· · ·×ϑk,
it checks if they belong to κ(`′ ∈ L), i.e. they can be received by the nodes with
labels in L. In the rule for input the terms E1, · · · , Ej are used for matching
values sent on the network. Thus, this rule checks whether (i) these first j terms
have acceptable estimates ϑi; (ii) the two nodes can communicate (Comp(`′, `));
and whether (iii) for each message (`′, 〈〈v̂1, · · · , v̂j , v̂j+1, . . . , v̂k〉〉) in κ(`) (i.e. in
any message predicted to be receivable by the node with label `) the values
v̂j+1, . . . , v̂k are included in the estimates for the variables xj+1, · · · , xk. The
rule for assignment requires that all the values v̂ in ϑ, the estimate for E, belong
to Σ̂

`
(x). The rule for µh. P reflects our choice of limiting the depth of function

applications: the iterative process is unfolded d times. The remaining rules are
as expected.

To show our analysis at work, consider again the example in Sect. 2 and the
process Pcp = µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}. h. Every valid CFA

11

(Σ̂, κ,Θ) |= 0

(Σ̂, κ,Θ) |=` B

(Σ̂, κ,Θ) |= ` : [B]

(Σ̂, κ,Θ) |= N1 ∧ (Σ̂, κ,Θ) |= N2

(Σ̂, κ,Θ) |= N1 | N2

∀ i ∈ I`. i` ∈ Σ̂`(i)

(Σ̂, κ,Θ) |=` Σ (Σ̂, κ,Θ) |=` S (Σ̂, κ,Θ) |=` AVk
i=1 (Σ̂, Θ) |=` Ei : ϑi ∧ (Σ̂, κ,Θ) |=` P ∧

∀v̂1, · · · , v̂k :
Vk
i=1 v̂i ∈ ϑi ⇒ ∀`

′ ∈ L : (`, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(`′)

(Σ̂, κ,Θ) |=` 〈〈E1, · · · , Ek〉〉 . L. PVj
i=1 (Σ̂, Θ) |=` Ei : ϑi ∧ Comp(`′, `) ∧

∀(`′, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(`) :
Vk
i=j+1 v̂i ∈ Σ̂`(xi) ∧

(Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` (E1, · · · , Ej ; xj+1, · · · , xk). P

(Σ̂, Θ) |=` E : ϑ ∧
∀ v̂ ∈ ϑ ⇒ v̂ ∈ Σ̂`(x) ∧ (Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` x := E.P

(Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` 〈j, γ〉. P

(Σ̂, Θ) |=` E : ϑ ∧ (Σ̂, κ,Θ) |=` P1 ∧ (Σ̂, κ,Θ) |=` P2

(Σ̂, κ,Θ) |=` E?P1 : P2

(Σ̂, κ,Θ) |=` 0

(Σ̂, κ,Θ) |=` bµh. P cd
(Σ̂, κ,Θ) |=` µh. P (Σ̂, κ,Θ) |=` h

Table 3. Analysis of nodes (Σ̂, κ,Θ) |= N , and of node components (Σ̂, κ,Θ) |=` B.

estimate must include at least the following entries (assuming d = 4):

(a) Σ̂`cp
(z) ⊇ {1`cp} (b) Σ̂`cp

(z′) ⊇ {noiseRed`cp (1`cp), 1`cp}
(c)Θ(`cp) ⊇ {1`cp , noiseRed

`cp (1`cp)} (d)κ(`a) ⊇ {(`cp, 〈〈noiseRed
`cp (1`cp)〉〉)}

Indeed, all the following checks must succeed:

– (Σ̂, κ,Θ) |=
`cp

µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}.h because
– (Σ̂, κ,Θ) |=

`cp
(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}, that in turn holds

– because (i) 1`cp is in Σ̂`cp(z) by (a) ((Σ̂, Θ) |=
`

1 : ϑ 3 1`cp); and because
(ii) (Σ̂, κ,Θ) |=

`cp
(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}, that in turn holds

– because (i) noiseRed
`cp (1`cp) is in Σ̂`cp

(z′) by (b) since
(Σ̂, Θ) |=

`cp
noiseRed(z) : ϑ 3 noiseRed`cp(1`cp); and because

(ii) (Σ̂, κ,Θ) |=
`cp
〈〈z′〉〉 . {`a} that holds because (`cp, 〈〈noiseRed

`cp (1`cp)〉〉)
is in κ(`a) by (d).

12

Correctness of the analysis. Our CFA respects the operational semantics. The
proof of this fact benefits from an instrumented denotational semantics for ex-
pressions, the values of which are pairs 〈v, v̂〉. Consequently, the store (Σi

` with a
⊥ value) and its updates are accordingly extended (the semantics used in Table 1
is [[v]]i↓1 , the projection on the first component of the instrumented one).

Just to give an intuition, we will have [[v]]i
Σi

`
= (v, v`), and the assignment x :=

E will result in the updated store Σi
`{(v, v`)/x}, where E evaluates to (v, v`).

Clearly, the semantics of Table 1 is [[v]]i↓1 , the projection on the first component
of the instrumented one. In our example, the assignment z′ := noiseRed(z) of
the process Pcp stores the pair (v, noiseRed`cp(1`cp)) made of the actual value v
and of its abstract counterpart.

Since the analysis only considers the second component of the extended store,
it is immediate defining when the concrete and the abstract stores agree:Σi

` ./ Σ̂`
iff w ∈ X ∪ I` such that Σi

`(w) 6= ⊥ implies (Σi
`(w))↓2 ∈ Σ̂`(w).

The following theorems establish the correctness of our CFA and the existence
of a minimal estimate. Their proofs have the usual schema.

Theorem 1 (Subject reduction).
If (Σ̂, κ,Θ) |= N and N → N ′ and ∀Σi

` in N it is Σi
` ./ Σ̂`, then (Σ̂, κ,Θ) |= N ′

and ∀Σi
`
′ in N ′ it is Σi

`
′
./ Σ̂`.

Theorem 2 (Existence of estimates).
Given N , its estimates form a Moore family that has a minimal element.

The following corollary of subject reduction justifies the title of this paper: we
do track the ingredients of IoT data. The first item makes it evident that our
analysis determines whether the value of a term may indeed be used along the
computations of a system, and clarifies the role of the component Θ; the second
item guarantees that κ predicts all the possible inter-node communications.

Corollary 1.
• Let N

E1,...,En−−−−−−→` N
′ denote a reduction in which all Ei are evaluated at node

`. If (Σ̂, κ,Θ) |= N and N
E1,...,En−−−−−−→` N

′ then ∀k ∈ [0, n] it is ([[Ek]]i
Σi

`
)↓2 ∈ Θ(`).

• Let N
〈〈v1,...,vn〉〉−−−−−−−→`1,`2 N

′ denote a reduction in which the message sent by node

`1 is received by node `2. If (Σ̂, κ,Θ) |= N and N
〈〈v1,...,vn〉〉−−−−−−−→`1,`2 N

′ then it holds
(`1, 〈〈v̂1, . . . , v̂n〉〉) ∈ κ(`2), where v̂i = vi↓2 .

Back again to our example, we have that 1`cp ∈ Θ(`cp), where ([[1]]1
Σ1

`cp

)↓2 = 1`cp ,

and where v is the actual value received by the first sensor. Similarly, we have
that (`cp, 〈〈v̂〉〉) ∈ κ(`a), where v̂ = v↓2 .

Extending the analysis For simplicity, above we have presented a CFA that only
tracks the ingredients of the data handled by IoT nodes. Now, we sketch a few
possible extensions.

13

As it is, our analysis tracks the actual usage of sensor data through the
component Θ. It is straightforward to also detect which actions of actuators are
actually triggered. The result might suggest to use a simpler actuator if some of
its actions are never exercised, or even to remove it if it is never used. Technically,
a new analysis component α suffices, that for every actuator j collects the actions
γ triggered by the control process in the node `. Then, one has only to change
the rule for the command to the actuator, as follows:

γ ∈ α`(j) ∧ (Σ̂, κ, α,Θ) |=
`
P

(Σ̂, κ, α,Θ) |=
`
〈j, γ〉. P

To improve the precision of our CFA, we can refine the abstract store by replac-
ing it with the pair Σ̂in, Σ̂out, similarly to the treatment of side effects in [19].
This extension is more invasive, because it requires modifying the rules for accu-
rately handling the store updates. We can obtain a further improvement of the
precision by making the analysis more context-sensitive. In particular, an addi-
tional component can record the sequence of choices made in conditionals while
traversing the node under analysis. One can thus obtain better approximations
of the store or detect causal dependencies among the data sent by sensors and
the actions carried out by actuators, as well as casuality among nodes.

5 Conclusions

This paper is a first step towards a formal design framework for IoT, which
will support the definition of techniques and tools for certifying properties of
IoT applications. We proposed the process calculus IoT-LySa, with primitive
constructs to describe the activity of sensors and of actuators, and suitable prim-
itives for managing the coordination and communication capabilities of smart
objects. We equipped our calculus with a CFA that statically predicts the inter-
actions among nodes, how data spread from sensors to the network, and how data
are put together. We sketched how the result of the analysis can be exploited as
the basis for checking and certifying various properties of IoT systems.

Besides the extensions mentioned at the end of Sect. 4, we plan to accurately
investigate the exact complexity of the analysis and to implement it. We intend
to address with our analysis security and privacy “since IoT deals not only with
huge amount of sensitive data (personal data, business data, etc.) but also has
the power of influencing the physical environment with its control abilities” [14].
In particular, we can assign specific confidentiality levels to sensors and nodes
and by inspecting the result of the analysis, we can detect if nodes with a lower
level can access data of entities with a higher level. Also, we will enrich our
design framework with security policies, e.g. for access control. By tracking the
actions of actuators as suggested in Sect. 4, one can predict if an actuator is ma-
liciously triggered by an attacker, as happened in the recent attack performed
through a vehicular infotainment network (http://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/). For brevity, we neglected here the

14

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

cryptographic primitives LySa offers natively, although both the current opera-
tional semantics and the static analysis can easily be extended to cover them. An
analysis that identifies where encryption and decryption are really needed would
be very useful for designers of IoT systems, because cryptography is expensive
since many smart devices have limited battery power. Beneficial to such an anal-
ysis may be the preliminary work on an enhanced version of IoT-LySa [5] that
estimates costs of cryptographic primitives. Finally, in the IERC words: “there
is still a lack of research on how to adapt and tailor existing research on auto-
nomic computing to the specific characteristics of IoT” [14]. To contribute to
these issues, we plan to extend our calculus with linguistic mechanisms and a
verification machinery to deal with adaptivity in the style of [9].

To the best of our knowledge, only a limited number of papers addressed
the specification and verification of IoT systems from a process calculi perspec-
tive, within the formal methods approach. The IoT-calculus [15] is one of the
first proposals in this setting. It explicitly includes sensors and actuators, and
smart objects are represented as point-to-point communicating nodes of het-
erogeneous networks. Differently from ours, their interconnection topology can
vary at run time. The authors propose two notions of bisimilarity that capture
system behaviour from the point of view of end-users and of the other devices.
The timed process calculus CIoT [8] specifies physical and logical components,
addresses both timing and topology constraints, and allows for node mobility.
Furthermore, communications are either short-range or internet-based. The fo-
cus of this paper is mainly on an extensional semantics that provides a fully
abstract characterisation of the proposed contextual equivalence.

Many design choices of the above-discussed proposals are similar to ours. The
main difference is that our coordination model is based on a shared store à la
Linda instead of a message-based communication à la π-calculus. Furthermore,
differently from [15,8], we are here mainly interested in developing a design
framework that includes a static semantics to support verification techniques
and tools for certifying properties of IoT applications.

The calculi above and ours are built upon those previously introduced for
wireless, sensor and ad hoc networks ([16,20,18] to cite only a few). In particular,
the calculus in [18] is designed to model so-called broadcast networks, with a
dynamically changing topology. It presents some features very similar to ours:
an asynchronous local broadcast modality, while intra-node communication relies
on a local tuple space. Also, the analysis of the behaviour of broadcast networks
is done by resorting to a multi-step static machinery.

References

1. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The Spi calculus.
In: Procs. of the 4th ACM Conference on Computer and Communications Security.
pp. 36–47. CCS ’97, ACM (1997)

2. Bodei, C., Brodo, L., Focardi, R.: Static evidences for attack reconstruction. In:
Programming Languages with Applications to Biology and Security. LNCS, vol.
9465, pp. 162–182. Springer (2015)

15

3. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Automatic valida-
tion of protocol narration. In: Computer Security Foundations Workshop (CSFW-
16 2003). pp. 126–140. IEEE Computer Society (2003)

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

5. Bodei, C., Galletta, L.: Securing IoT communications: at what cost? In:
Procs. HotSpot 2016 (V. Cortier, Ed.) (2016), http://www.loria.fr/~cortier/
HotSpot2016/HotSpot2016-proceedings.pdf

6. Buchholtz, M., Nielson, H.R., F. Nielson, F.: A calculus for control flow analysis
of security protocols. International Journal of Information Security 2(3), 145–167
(2004)

7. Carriero, N., Gelernter, D.: A computational model of everything. Commun. ACM
44(11), 77–81 (2001)

8. Castiglioni, V., Lanotte, R., Merro, M.: A semantic theory for the internet of things.
CoRR abs/1510.04854 (2015)

9. Degano, P., Ferrari, G.L., Galletta, L.: A Two-Component Language for Adapta-
tion: Design, Semantics, and Program Analysis. IEEE Transactions on Software
Engineering TSE. In press (2016)

10. Elejoste, P., Perallos, A., Chertudi, A., Angulo, I., Moreno, A., Azpilicueta, L.,
Astrain, J., Falcone, F., Villadangos, J.E.: An easy to deploy street light control
system based on wireless communication and led technology. Sensors 13(5), 6492–
6523 (2013)

11. Escolar, S., Carretero, J., Marinescu, M., Chessa, S.: Estimating energy savings in
smart street lighting by using an adaptive control system. IJDSN 2014 (2014)

12. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

13. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

14. IERC: The Internet of Things 2012 – New Horizons (2012), http://www.

internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf

15. Lanese, I., Bedogni, L., Felice, M.D.: Internet of things: a process calculus approach.
In: Procs of the 28th Annual ACM Symposium on Applied Computing, SAC ’13.
pp. 1339–1346. ACM (2013)

16. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. Theor. Comput. Sci. 411(19), 1928–1948 (2010)

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

18. Nanz, S., Nielson, F., Nielson, H.R.: Static analysis of topology-dependent broad-
cast networks. Inf. Comput. 208(2), 117–139 (2010)

19. Nielson, H.R., Nielson, F.: Flow logic: A multi-paradigmatic approach to static
analysis. In: The Essence of Computation, Complexity, Analysis, Transformation.
LNCS, vol. 2566, pp. 223–244. Springer (2002)

20. Singh, A., Ramakrishnan, C.R., Smolka, S.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

16

http://www.loria.fr/~cortier/HotSpot2016/HotSpot2016-proceedings.pdf
http://www.loria.fr/~cortier/HotSpot2016/HotSpot2016-proceedings.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf

	Where do your IoT ingredients come from?

