98 research outputs found

    Coalitional Game Theory in Power Systems: Applications, Challenges, and Future Directions

    Full text link
    Game theory-based approaches have recently gained traction in a wide range of applications, importantly in power and energy systems. With the onset of cooperation as a new perspective for solving power system problems, as well as the nature of power system problems, it is now necessary to seek appropriate game theory-based tools that permit the investigation and analysis of the behavior and relationships of various players in power system problems. In this context, this paper performs a literature review on coalitional game theory's most recent advancements and applications in power and energy systems. First, we provide a brief overview of the coalitional game theory's fundamental ideas, current theoretical advancements, and various solution concepts. Second, we examine the recent applications in power and energy systems. Finally, we explore the challenges, limitations, and future research possibilities with applications in power and energy systems in the hopes of furthering the literature by strengthening the applications of coalitional game theory in power and energy systems.Comment: Presented in Texas Power and Energy Conference (TPEC) 202

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System

    Get PDF
    Transaction-based energy (TE) management and control has become an increasingly relevant topic, attracting considerable attention from industry and the research community alike. As a result, new techniques are emerging for its development and actualization. This paper presents a comprehensive review of TE involving peer-to-peer (P2P) energy trading and also covering the concept, enabling technologies, frameworks, active research efforts and the prospects of TE. The formulation of a common approach for TE management modelling is challenging given the diversity of circumstances of prosumers in terms of capacity, profiles and objectives. This has resulted in divergent opinions in the literature. The idea of this paper is therefore to explore these viewpoints and provide some perspectives on this burgeoning topic on P2P TE systems. This study identified that most of the techniques in the literature exclusively formulate energy trade problems as a game, an optimization problem or a variational inequality problem. It was also observed that none of the existing works has considered a unified messaging framework. This is a potential area for further investigation

    Demand-Side Management in a Micro-Grid with Multiple Retailers:A Coalitional Game Approach

    Get PDF
    This paper deals with the design and analysis of a novel on-line pricing mechanism based on coalitional game theory. The proposed architecture consists of a micro-grid (MG) where the power demand can be fulfilled by multiple competing energy retailers trying to attract consumers by announcing a price in a hierarchical leader-follower structure. The existence of a Stackelberg equilibrium in such game is shown, leading to a guaranteed consumption value given a price. The coalition formation is then extended to a minimum spanning tree game that affects the rational decision of the players involved. The stability analysis for the resulting coalitions is performed and the steps in the game are presented. Simulations provide a comparison of the profits generated by the proposed scheme against a more traditional single retailer scheme, while simultaneously showing convergence towards steady-state equilibrium

    Coalitional Game Theory based Value Sharing in Energy Communities

    Get PDF
    This paper presents a coalitional game for value sharing in energy communities (ECs). It is proved that the game is super-additive, and the grand coalition effectively increases the global payoff. It is also proved that the model is balanced and thus, it has a nonempty core. This means there always exists at least one value sharing mechanism that makes the grand coalition stable. Therefore, prosumers will always achieve lower bills if they join to form larger ECs. A counterexample is presented to demonstrate that the game is not convex and value sharing based on Shapley values does not necessarily ensure the stability of the coalition. To find a stabilizing value sharing mechanism that belongs to the core of the game, the worst-case excess minimization concept is applied. In this concept, however, size of the optimization problem increases exponentially with respect to the number of members in EC. To make the problem computationally tractable, the idea of clustering members based on their generation/load profiles and considering the same profile and share for members in the same cluster is proposed here. K-means algorithm is used for clustering prosumers’ profiles. This way, the problem would have several redundant constraints that can be removed. The redundant constraints are identified and removed via the generalized Llewellyn’s rules. Finally, value sharing in an apartment building in the southern part of Finland in the metropolitan area is studied to demonstrate effectiveness of the method
    • …
    corecore