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Demand-Side Management in a Micro-Grid with Multiple Retailers: A
Coalitional Game Approach

Fernando Genis Mendoza*, Pablo R. Baldivieso-Monasterios, Dario Bauso and George Konstantopoulos

Abstract— This paper deals with the design and analysis of
a novel on-line pricing mechanism based on coalitional game
theory. The proposed architecture consists of a micro-grid (MG)
where the power demand can be fulfilled by multiple competing
energy retailers trying to attract consumers by announcing a
price in a hierarchical leader-follower structure. The existence
of a Stackelberg equilibrium in such game is shown, leading
to a guaranteed consumption value given a price. The coalition
formation is then extended to a minimum spanning tree game
that affects the rational decision of the players involved. The
stability analysis for the resulting coalitions is performed and
the steps in the game are presented. Simulations provide a com-
parison of the profits generated by the proposed scheme against
a more traditional single retailer scheme, while simultaneously
showing convergence towards steady-state equilibrium.

I. INTRODUCTION

Dynamic pricing schemes in electrical systems constitute
a viable way to optimize and shift consumption during
peak times without compromising generation and distribution
systems [1]. Such schemes can serve as a tool for the retailers
to charge more for their services when demand is high,
and oppositely, a way to let the consumer know when it is
more convenient to utilize such services [2]. An underlying
assumption is that both suppliers and consumers are rational
and desire to maximize their profits, and in consequence,
a price change entails a change in consumption [1], [3].
The advent of the smart grid paradigm has brought changes
to the electricity market; where governments and general
consumers now seek and switch to better providers and that
fulfill custom requirements while being profitable. This has
also brought a higher degree of communication between
consumers and energy retailers, bringing schemes where
these interact and cooperate to optimize their outputs. These
aspects of switch-ability and cooperation are the main focus
of this study, since the literature about coalitional games
applied to smart-grids does not cover scenarios where there
are multiple electricity retailers for the end-users to choose.
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A. Previous Works and State of the Art

This study builds and extends on the pricing scheme in-
troduced in [3], where consumers and suppliers of electricity
maximize their profit in accordance to a Stackelberg-based
game with incentive strategies. The concepts involved with
these types of games and the Stackelberg equilibrium can be
found in [3]–[5] and references therein. The fundamentals
about coalitional game theory are studied in detail in [6]. A
review of the use of coalitional games along with applications
in power networks is carried out in [2], where the types of
cooperation applicable to electrical systems are explained,
together with game theoretic modeling for agents involved.
The formulation of cooperative coalitional games in MGs
was first introduced in [7], where the proposed algorithm
focuses on reducing power losses and costs by coalitioning
neighboring MGs. Similarly, in [8] the coalitions are formed
between MGs in a macro station, where their profits are
distributed using the Shapley value. A similar approach is
used in [9], where a case study is performed. A centralized
algorithm where the MGs trade with the macro station is
studied in [10]. A study of the case where greedy prosumers
do not align with the MG’s decision is presented in [5]. The
problem formulated in [11] minimizes discomfort, which is
modeled as a non-linear function of the power deficit in
the MG. In [12] the coalitions are formed between macro
stations. A game where local micro-grids cooperate without
the participation of a main grid is presented in [13]. In
[14] the introduction of auction theory is used to define the
pairing of micro-grids. The game proposed in [15] divides
the players between consumers and the micro-grid, where the
latter makes its payoff function public. The same author also
proposes the use of evolutionary game theory in conjunction
with coalitions [16]. A bidding system for cooperating pro-
sumers is presented in [17], however constraints on power
capacity and losses are ignored.

From the above, it can be seen that the use of coalitional
games in the subject of micro-grids is a very recent topic,
however, to the best of the authors’ knowledge, most of the
coalitional games proposed in the literature do not address
the end-users as players, and none of them present a scheme
in where these can choose from multiple retailers.

We believe that the latter scenario fits the use of coalitional
games and has to be studied, since this approach matches the
current needs of energy trading platforms, such as [18], [19].

B. Problem Statement and Contributions

We are proposing a dynamic pricing scheme where there
are multiple providers of electricity or retailers. They are
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competing to attract the largest number of consumers inside
a community, in our case represented by a micro-grid.

A finite number of coalitions equal to the number of
competing providers can be formed. When consumers choose
to be provided by a particular retailer, they join the provider’s
coalition. It is understood that coalitions between providers
cannot be formed since they are quarrels and therefore
competing against each other. Another underlying assump-
tion is that both consumers and providers are price-taking
rational agents that look forward to increase their profits.
Both evaluate the price of energy in their respective profit
functions. The ways in which a retailer gains a consumer
is by announcing his price for electricity accompanied by
an incentive. Every determined period of time, the retailers
adjust their prices, which in consequence will cause them
to lose or gain consumers, and at the same time, adjust the
demand and supply of energy in the MG.

The main contributions of this paper can be summarized
as follows:
• We propose a scheme in which there are multiple

competing retailers in a MG; represented in a coalitional
game framework. To the best of the author’s knowledge,
this is a novel problem setup in MG literature.

• We perform a stability analysis covering the coalitions
formed by our proposed game. We also demonstrate the
existence of the equilibrium points in the game, namely
the guaranteed existence of a consumption value given
a price.

• We illustrate numerically the ways in which the profits
of the consumers are improved by comparing it to an
scenario where there is a fixed retailer.

This paper is organized as follows, in Section II the
models and concepts employed in our study are presented.
In Section III the coalitional approach, the game, and a
stability analysis for the coalitions and equilibrium points
are presented. In Section IV an example comparison between
single retailer and multiple retailer scenarios is performed.
Section V streamlines conclusions and future directions of
this work.

II. SYSTEM MODEL DEFINITION AND PRELIMINARIES

In this section we introduce the ways in which both re-
tailers and consumers are modeled, we also review concepts
from Stackelberg games and graph theory that will be useful
for the rest of this study.

A. Sets and Coalitions Definition

To study the coalitional behaviour of our scheme, we recur
to a game-theoretic framework. Let us define the universe of
players in the MG as N which contains N players, this is
partitioned into two non-overlapping sets: the set of retailers
R ⊂ N and the set of consumers B ⊂ N ; whereR∪B = N .
For simplicity we have defined that R ∩ B = ∅, namely
a consumer cannot be a retailer and vice versa. Such sets
are composed as R := {r1, . . . , rp} and B := {b1, . . . , bl},
where p + l = N . Besides this partition, we seek a pairing
between a retailer and a subset of consumers.

Definition 1 (Retailer’s coalition): A coalition Si ⊂ N is
given by assigning k consumers to a single retailer ri ∈ R,

Si := {ri, b1, . . . , bk},∀i ∈ R. (1)
For the case where a retailer ri does not succeed to attract any
consumer, its coalition is reduced to a singleton, Si = {ri}.
In our problem, due to the nature of our market setup, there
are underlying assumptions that need to be addressed.

Assumption 1: Each consumer bj ∈ B has to be assigned
to one retailer at all times. As a consequence, the union of
all coalitions ⋃

i

Si = N , ∀i ∈ R. (2)

However, each consumer can decide to have zero consump-
tion, this will be the case according to its profit function,
as it will be explained in Section II-B. Coalitions that have
more than one retailer or that share consumers are considered
infeasible, this is formalized as follows.

Assumption 2: The coalitions comply with the conditions:
1) Two or more retailers cannot be allocated to the same

coalition and are considered quarrels:

Si ∩R \ ri = ∅, ∀Si ∈ N . (3)

2) Coalitions are non-overlapping, a consumer cannot be
assigned to more than one coalition:

Si ∩ Sj = ∅, ∀Si, Sj ∈ N . (4)
With the above, all coalitions are guaranteed to be feasible.

B. Consumer and Retailer Profit Functions

In our problem setup, both consumers and retailers
have the objective of maximizing their profits; which is
captured by their profit functions Π(·). Such functions
represent the remaining amount of money after produc-
ing/consuming electricity and after covering the underlying
production/consumption fees. For the retailer ri this is

Πi = Λix− C(x), i ∈ R (5)

where C(·) is a function which corresponds to the cost
of producing x quantity of electricity and Λi is the price
announced by the retailer which will be applied to its
coalition. Similarly, every consumer bj that has decided to
consume from ri calculates its profit with

Πj = U(x)− Λix, j ∈ B, i ∈ R (6)

where U(·) is the monetary equivalent to the utility from
consuming x quantity of electricity. We assume that such
utility and costs functions are monotonically increasing,
while being concave and convex respectively [1]. The ra-
tionale of both players is represented by two maximization
problems, the output of such is the price Λi for the retailer
and a quantity of power consumption P dbj for the consumer;
these are obtained as

Λi = arg max
λ∈[λ,λ̄]

λ·(
∑
bj∈Si

P dbj − P
loss
i )− C(P gi ), (7)

P dbj = arg max
ζ∈[ζ,ζ̄]

U(ζ)− Λiζ, (8)
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where λ and ζ are the maximization argument variables for
the retailer’s price and power used by each consumer respec-
tively, P gi is the power generated by the retailer and P lossi

equals to the power losses incurred by the individual retailer
in the MG transmission lines. In essence, the retailers try to
maximize their profits by announcing a price which in turn
is formulated as a function from the expected demand, and
the consumers consume as much as possible with the given
price to also maximize their profits. Such tension between
leader (retailer) and followers (consumers) is captured by
the maximization problems (7)-(8). When both leader and
followers select their optimal outputs, it is said that the game
is at an equilibrium.

The consumer is expected to evaluate all the prices Λi
announced by all retailers ri in the MG. This will determine
its decision on picking a retailer, namely what coalition to
join. By adding consumers to its coalition, the retailer also
has to take into account the constraint on its own power
capabilities:

|
∑
bj∈Si

P dbj + P lossi | ≤ |P gi |. (9)

C. Network Systems Review

Each provider knows the cost of connection for every
consumer in the MG; these can be delineated by a graph
where the weight of each edge represents a cost. These
non-physical cost edges vary from consumer to consumer
depending on various factors like the physical position rel-
ative to each supplier, plausible power losses or fees from
regulatory agencies. The topology of each cost network is
represented by a connected, undirected and weighted graph
Gi(V, E), where V is the set of nodes (vertices); in it we find
a retailer and a number of consumers V = {ri, bj , . . . , bk}.
The set of edges E ⊆ V × V is the set of unordered pairs
{i, j} where the value (weight) of each one represents a cost.
The out-degree δk of a node refers to the number of edges
that connect to a certain node k. The minimum spanning tree
(MST) of a graph refers to the subset of edges that connect
all the nodes in the network, with the minimum total edge
weight. In order to get from a supplier to a consumer, a
certain path can be followed. This path is described by the
succession of edges in the network that can be used to reach
a consumer. The absence or presence of certain consumers
in the provider’s network can affect the path and result on
higher or lower costs by adding the edge weights.

III. COALITIONAL GAME WITH MULTIPLE RETAILERS

In this section we formally present the rules of the game
and the ways in which the coalitions are formed. We also
perform a stability analysis in the coalitional games sense.

A coalitional game is defined by the tuple 〈N , v〉, where
v : 2N → R is a function that assigns a value to every
coalition Si ⊂ N . In our case this is the savings that
the consumers in a coalition achieve by choosing the same
retailer. To define the value function v(Si) for any coalition
Si ⊂ N the costs inferred by each consumer relative to all
available retailers has to be defined.

A. Cost Definition and MST Problem

Given a coalition Si, each retailer ri has knowledge on
how much it costs to provide electricity to a consumer bj
in the retailer’s coalition, i.e. a connection fee to be paid by
the consumer. We refer to it as direct connection cost and
can be denoted as c({(ri, bj)}) which is represented by the
weight of edge (ri, bj) in a network. Such cost c({(ri, bj)})
is equal to the cost for having bj ∈ B as the only client of
ri ∈ R, namely, for Si = {ri, bj}, c(Si) = c({ri, bj}).
The retailer also allocates different aggregate connection
costs that are enabled depending on the consumers in the
coalition, namely the cost for connecting consumer bj if
bi is already in the coalition; denoted by c({(bi, bj)}) and
represented in a network as edges connecting consumers. The
existence of the latter is subject to various exogenous factors
such as geographical location, high costs, etc. The paths
and edges are defined in a way that yields higher savings
for the consumers when more consumers join the coalition.
However, a consumer has to be able to join whatever retailer
it wants in accordance to its individual objectives. In the
present manuscript we will refer to this kind of network
as retailer’s cost network. We are now ready to present the
definition below.

Definition 2 (Cost of a coalition): Given a coalition Si
with an associated graph Gi, the value of its cost function
c(Si) is given by the MST of Gi.
Conceptually, the MST contains all the nodes and the mini-
mum possible total edge weight, that is, the smallest possible
sum of all weights. With the cost of a coalition, its value
function can be obtained by turning the consumer’s cost
game into a costs-saving game. The value function of any
Si is expressed as:

v(Si)=


∑
j∈Si

c ({(ri, bj)})−c (Si) if Si is feasible

0 if ri1 , ri2 ∈ Si
0 if rk /∈ Si ∀k ∈ R

,

(10)
where the value equals the sum of savings of all individual
consumers. Having defined the ways in which the savings
are obtained through v(·), the following straightforward
assumption is formulated.

Assumption 3: Given a coalition Si of a retailer ri and
two or more consumers bj , the following condition holds:

v({ri, bj}) ≤ v(Si), ∀j ∈ Si. (11)
The purpose of the costs-saving game is to use it as a tool
to incentivize consumers for joining a retailer’s coalition, by
aiding to increase the consumers’ profits with such savings.

B. Savings Imputation via Shapley Value

Given a coalition Si, the savings produced by the con-
sumers of retailer ri have to be distributed fairly. We recur
to the Shapley value to do so since it is a well known and
standard solution [4]. A few concepts have to be introduced,
such as the marginal value which determines how valuable
a player can be when joining a coalition. Assuming that
the consumers enter in a certain sequence σ to an already
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defined Si (e.g. σ = {ri, b6, b8, ..., bk}), where the ordering
number of a buyer bj is given by σ−1(bj) (in the example
σ−1(b8) = 3), the set of predecessors of consumer bj is
defined as

ρσbj := {bl ∈ Si | σ−1(bl) < σ−1(bj)}. (12)

From this, the marginal value for bj given an arbitrary
sequence σ can be defined as

mσ
bj (v) = v(ρσbj ∪ {bj})− v(ρσbj ), (13)

the marginal value for each sequence can be stored in vector
form as

mσ(v) = {mσ
bj (v), bj ∈ Si}. (14)

Finally, the Shapley value is then calculated as the average
of the marginal vector over all permutations of sequences,
namely

Φ(v) =
1

k!

∑
σ

mσ(v), (15)

where k is the total number of consumers in the coalition.
The resulting vector outputs the corresponding portion of
savings imputed to each consumer bj ∈ Si.

C. Price, Consumption and Coalition Formulations
The coalitional game is introduced to the cost functions

by including directly into the cost of the retailer the term
v(Si), which is equal to the consumer savings that will be
rewarded back via imputation. The consumers also include
the individual base payment −c({ri, bj}) since it has to be
paid regardless of the prospective savings. The retailers also
announce a potential subsidy κriδ

ri
bj

to the consumer. Where
δribj is the degree of the node represented by bj in the cost
network relative to ri. The scalar κri is a positive constant
to adjust the potential subsidy proportionally to the number
of connections in the cost network. The subsidy term is an
equivalent to the Bahnzaf power index employed in coopera-
tive games which dictates how pivotal is a players’ presence
in a coalition [20]. The potential subsidy is announced by the
retailer to the consumer as means to incentivize the latter to
join the retailer’s coalition, since in MST games the players
with more connections in a network potentially hold more
value [4]. We have defined such functions as

C(P gi , Si) = αri ·(ΛiP
g
i )2 + v(Si), ∀i ∈ R (16)

U(P dbj ) = αbj ·(P dbj )
1
6 + κriδ

ri
bj
− c({ri, bj}),
∀ri ∈ R, bj ∈ B (17)

where, due to the respective quadratic and radical terms,
it is clear that the functions are monotonically increasing
and convex and concave respectively. The constant αri
is a scalar associated to the costs of operating/generating
the power corresponding to retailer ri. Analogously, αbj
represents each consumer’s interest in consuming power. The
inclusion of (16)-(17) to the profit functions (7)-(8), yields
the maximization problems:

Λi = arg max
λ∈[λ,λ̄]

λ·(
∑
bj∈Si

P dbj − P
loss
i ) +

∑
j∈Si

c({(ri, bj)})

− αri ·(λP
g
i )2 − v(Si), (18)

P dbj = arg max
ζ∈[ζ,ζ̄]

αbj·(ζ)
1
6 + κriδ

ri
bj
− c({ri, bj})−Λiζ, (19)

for each ri ∈ R and bj ∈ B respectively.
The process of consumer bj selecting a coalition Si is

done by evaluating all prices Λi ∀i ∈ R, base payments
c({ri, bj}) ∀i ∈ R and the value of the potential subsidies
κriδ

ri
bj

announced by all the retailers into its profit function
as in (19) and taking the one yielding the largest profit:

Si←Si∪{bj}⇐⇒ i= arg max
i

{
Πbj

(
Λi, κiδ

ri
bj
, c({ri, bj})

)
,

i∈R
}
, (20)

the consumption is then optimized in (19) by selecting its
own quantity of power P dbj . In the case where the con-
straint (9) does not hold for Si, retailer ri will have to reject
the consumers that generate the least profit in its coalition
until the constraint is fulfilled, leaving the rejected consumers
to re-evaluate (20) without the former selected retailer. The
actual savings value (subsidy) per consumer in the coalition
is obtained and added back by calculating the Shapley value
Φ(v) as explained in Section III-B.

D. Stability of the Coalitional Game
From the game proposed in Section III-A and Assump-

tion 2, we conclude that the grand coalition value v(N ) = 0
since by definition, it would include uncooperative retailers.
This, in consequence, renders conventional cooperative game
stability analysis [4], [17] unusable. We recur to the notion
of stable partitions first introduced in [21], more specifically
Dhp-stability, where the defection function D(Si) is defined
in a way that it outputs collections of players that can leave
Si to form homogeneous partitions. A coalition is D-stable
when no group of players is interested in leaving it.

Definition 3 (Dhp stability): A coalition Si =
{ri, bj , . . . , bk} is Dhp-stable if the following is satisfied:

1) given a collection {Pi1 , . . . , PiL} resulting from an
arbitrary partition of Si, such that ∪Lj=1Pij = Si:

v(Si) ≥
L∑
j=1

v(Pij ), ∀i ∈ R, (21)

2) given the coalitions Si in the subset T ⊆ {1, . . . ,K},
where i ∈ T and K ≤ p:∑

i∈T
v(Si) ≥ v(

⋃
i∈T

Si), (22)

Theorem 1: Given the coalitional game with multiple en-
ergy retailers 〈N , v〉. The coalitions Si formed by such are
Dhp stable.

Proof: For a fixed i ∈ R and associated coalition Si ⊂
N , consider a partition {Pi1 , . . . , PiL}. It follows that ri ∈
Pij for some ij ∈ {1, . . . , L} which implies v(Pij ) ≥ 0,
and v(Pik) = 0 for the rest. The cost associated with Pij
satisfies c(Si) ≥ c(Pij ) since the MST of Pij is contained
in the one corresponding to Si. Condition (21) follows from

v(Si)− v(Pij ) ≥ c(Si)− c(Pij )

since c({ri, bik}) > 0 for all ik ∈ Si \ Pij . For the second
condition, it can be inferred from (3)-(4) that v(∪i∈T Si) = 0.
From the value formulation for a coalition (10), it is true that
v(Si) ≥ 0. From the above, it is trivial that (22) holds.
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TABLE I
PARAMETERS FOR RETAILERS AND CONSUMERS.

Retailer αri κri λi λi P g
i

r1 1e-4 $
1
2 65 $ 0.01 $/W 4 $/W 30 kW

r2 7e-5 $
1
2 64 $ 0.01 $/W 2 $/W 30 kW

r3 5e-5 $
1
2 63 $ 0.01 $/W 3.5 $/W 30 kW

Consumer αbj P
drated
bj

ζ
bj

ζbj
b1 1800 W6 3 kW 0 kW 6 kW
b2 150 W6 3.5 kW 0 kW 7 kW
b3 140 W6 2.8 kW 0 kW 5.6 kW
b4 100 W6 4 kW 0 kW 8 kW
b5 1600 W6 1.5 kW 0 kW 3 kW

E. Stackelberg Equilibrium

Having fully formulated the maximization problems in-
volved in our proposed game, we present the following result
that guarantees the existence of a Stackelberg equilibrium.

Theorem 2: There exists an equilibrium point (Λ∗i , P
d∗
bj

)∈
R2,∀ri, bj ∈ Si for the Stackelberg game (18)-(19).

Proof: Let ri and bj be in the same coalition, where
they maximize (18) and (19) respectively. The maximum
of both profits is obtained by taking the derivative of both
functions and equaling to zero:

∂Πri

∂Λi
=P dbj − P

loss
i − 2αriP

g
i

2
Λi = 0, (23)

∂Πbj

∂P dbj
=
αbj
6

(P dbj )−
5
6 − Λi = 0, (24)

following the procedure to obtain the equilibrium point
in a two-player Stackelberg game [3], [4]. From (24) an
expression for the consumer’s demand as a function of price
is obtained

P dbj =
1

6 5
√

6

( Λi
αbj

)− 6
5 , (25)

substituting (25) in (23), yields the following expression:
1

6 5
√

6

Λi
αbj

− 6
5

− 2αriP
g
i

2
Λi − P lossi = 0, (26)

substituting parameter values in (26) and solving for Λi,
equals a real positive value which corresponds to Λ∗i . Sub-
stituting it into (25) results in P d∗bj , thus yielding both
equilibrium values.

IV. SIMULATIONS

To demonstrate the ways in which retailers calculate new
prices according to demand as well as how consumers react
to a change of prices in the MG, we have formulated two
scenarios. The first consists of a MG that contains five
consumers B = {b1, b2, b3, b4, b5} that are supplied with
power by only one retailer R = {r1}. The second consists
of the same consumers supplied by two additional retailers
R = {r1, r2, r3}. The parameters for all players are listed
in Table I, the cost networks for the different retailers are
defined as in Fig. 1. We show the response along ten time
periods, where at the end of each, the game is played.

From Fig. 2, it can be seen that the rationality of the
players has been captured, namely that the consumers tend

b3
b4

b5

b1
b2

r1

550

475

535300
280

245

540

455

b3
b4

b5

b1

b2
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495 525 230
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340

540
250

500

b3
b4

b5

b1
b2
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520
515

425
225

350

365
510

525

Fig. 1. Cost networks defined by each retailer for the same set of
consumers.

to consume more (less) given a lower (higher) price, and
that the retailers tend to lower (raise) their price when the
consumption is low (high). This is more evident in the
single retailer scenario, where is also demonstrated that the
game eventually converges to a Stackelberg equilibrium [3],
[4]. Also Fig. 2 shows that there are instances where the
game yields zero consumption to certain coalitions, leaving
retailers without consumers for a period of time due to
their decisions. The individual consumptions are captured in
Fig. 3, it is clear that all the consumers are able to consume
more in the multiple retailer scenario; where the consumption
converges above the rated values for all consumers, even with
those that do not prioritize consumption as much (lower αbj ).
Nonetheless, the advantage of the multiple retailer scheme
is evident from Fig. 4; where by comparing the total sum
of profits of the consumers in the problem, the one in the
multiple retailer case is significantly larger. The decision
made by each consumer on what coalition to join in the
second scenario is delineated by the plots in Fig. 5, where
the consumers do not stay fixated with one retailer in their
effort to take the one that gains them the largest profit.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have proposed an on-line pricing scheme that en-
compasses the concepts of a hierarchical structure with the
Stackelberg game and coalitional games where there are
competing players. The definitions and steps for the game
have been established and the stability of the game has been
demonstrated. A comparison between single and multiple
retailer scenarios has been shown numerically, demonstrating
the advantages of the latter from an economic point of
view. Future directions of this work dwell in the analysis
of the computational burdens that our setup entails, the
implementation of the present scheme integrated with the
physical MG dynamics, together with a stability analysis, the
inclusion of disconnection penalties, quality of the service,
among others.
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