2,024 research outputs found

    The General Electric MOD-1 wind turbine generator program

    Get PDF
    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed

    Hazardous Occupations in Agriculture for Boys and Girls 14-16 Years of Age

    Get PDF
    This publication was compiled from safety sections of the 4-H Tractor Program manuals to familiarize youth who are 14 but not yet 16 with tractor safety. Satisfactory completion of this 10-hour course, passing a written examination and demonstrating the ability to safely operate a tractor qualifies the participant for exemption from order no. 5 of Interim Determinations by the Department of Labor

    Support and power plant documentation for the gas turbine powered bus demonstration program

    Get PDF
    The operational experience obtained for the GT404-4 gas turbine engines in the intercity and intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. the Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively, than did the production diesel powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future

    Integrated automotive control:robust design and automated tuning of automotive controllers

    Get PDF

    The Safety and Dynamic Performance of Blended Brake System on a Two-Speed DCT Based Battery Electric Vehicle

    Full text link
    Copyright © 2016 SAE International. Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking. Therefore, a complicated effect on the safety and performance of braking, mainly relating to tyre slips and locks, vehicle body bounces and braking distance will be applied by the blended brake system. In this paper, the brake energy recovery potentials of typical driving cycles are presented. Relevant critical limitations are introduced to define the available brake force distribution range for front and rear axles. Then the distribution strategies are compared and analyzed to achieve a satisfied balance between braking performance, driving comfort and energy recovery rate. Next, the required motor brake force is tuned, according to the response time and efficiency loss in transfer process which obtained in testing bench. At last, solutions for some special cases are proposed, for instance, motor brake torque interruption when downshifting occurs on long downhill. A credible conclusion is gained, through experimental validation of optimized brake force distribution strategy on a two-speed DCT based BEV testing rig, that the selected force distribution strategy help the blended brake system achieve a comfortable and safety braking during all driving conditions

    Improving Computational Efficiency in WEC Design: Spectral-Domain Modelling in Techno-Economic Optimization

    Get PDF
    Wave energy converter (WEC) optimization often underlines incremental and iterative approaches that result in suboptimal solutions, since all the elements that concur with a techno-economical evaluation are optimized separately due to computation constraints. A design process should rely on precise WEC models to ensure high result accuracy while minimizing the computational demand. These conflicting objectives can be addressed with non-linear time-domain models, known to be numerically accurate, and frequency-domain models due to their high computational efficiency. This work pursues the development of an all-encompassing optimization tool for a gyroscopic-type WEC called ISWEC that applies a new modelling technique named spectral-domain technique as a substitution to the complex time-domain model previously employed. In particular, the spectral-domain technique provides accurate and fast performance predictions of the ISWEC system and offers the possibility to model a hydraulic power take-off, not representable in the frequency domain. The article illustrates techno-economic trends associated with an early-stage design of the ISWEC in high-energy sea-sites, where the low-speed and high-torque profiles call for the use of hydraulic transmissions as opposed to the old electro-mechanical transmissions. The design tool proposed could facilitate the development of WEC technologies via efficient and accurate power assessment and via the possibility of carrying out advanced techno-economic optimisation that goes beyond linear models

    Audio-visual aids in the high school driver-education program

    Full text link
    Thesis (Ed. M.)--Boston University, 195

    Model-based control for automotive applications

    Get PDF
    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroën C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods

    Design Principles of a flywheel Regenerative Braking System (f-RBS) for Formula SAE type racecar and system testing on a Virtual Test Rig modeled on MSC ADAMS

    Get PDF
    This thesis presents a flywheel based mechanical regenerative braking system (RBS) concept for a Formula SAE type race car application, to improve the performance and/or efficiency of the racecar. A mechanical system is chosen to eliminate losses related to energy conversion while capturing the rotational braking energy. The Flywheel-Regenerative Braking System (f-RBS) concept consists of a metal flywheel design of truncated cone geometry for the energy storage system (ESS) component and a V-belt CVT with a fixed gear for the transmission component of the RBS system. Racecar lap data and racecar specifications are used for designing/sizing the components. Mathematical models are developed for design, integration and operation of the f-RBS system. It was observed that a maximum of 27 % of energy requirements of the racecar can be supplied by the f-RBS. Also, a Virtual test rig model is created using MSC ADAMS, an advanced dynamics/virtual prototyping software, in order to test the whole f-RBS system for performance, as a preliminary alternative to experimental testing. Initial testing is performed to validate the regenerative braking principle employed, to establish the actual operating limits of the virtual test rig and for an initial analysis of performance improvement by utilization of the f-RBS system. From the results, it was inferred that using the f-RBS concept can have a significant impact in recycling wasteful the braking energy and provide additional energy to the racecar
    • …
    corecore