1,468 research outputs found

    Parallel Implementation of a Real-Time High Dynamic Range Video System

    Full text link
    Abstract. This article describes the use of the parallel processing capabilities of a graphics chip to increase the processing speed of a high dynamic range (HDR) video system. The basis is an existing HDR video system that produces each frame from a sequence of regular images taken in quick succession under varying exposure settings. The image sequence is processed in a pipeline consisting of: shutter speeds selection, capturing, color space conversion, image registration, HDR stitching, and tone mapping. This article identifies bottlenecks in the pipeline and describes modifications to the algorithms that are necessary to enable parallel processing. Time-critical steps are processed on a graphics processing unit (GPU). The resulting processing time is evaluated and compared to the original sequential code. The creation of an HDR video frame is sped up by a factor of 15 on the average

    CompF2: Theoretical Calculations and Simulation Topical Group Report

    Full text link
    This report summarizes the work of the Computational Frontier topical group on theoretical calculations and simulation for Snowmass 2021. We discuss the challenges, potential solutions, and needs facing six diverse but related topical areas that span the subject of theoretical calculations and simulation in high energy physics (HEP): cosmic calculations, particle accelerator modeling, detector simulation, event generators, perturbative calculations, and lattice QCD (quantum chromodynamics). The challenges arise from the next generations of HEP experiments, which will include more complex instruments, provide larger data volumes, and perform more precise measurements. Calculations and simulations will need to keep up with these increased requirements. The other aspect of the challenge is the evolution of computing landscape away from general-purpose computing on CPUs and toward special-purpose accelerators and coprocessors such as GPUs and FPGAs. These newer devices can provide substantial improvements for certain categories of algorithms, at the expense of more specialized programming and memory and data access patterns.Comment: Report of the Computational Frontier Topical Group on Theoretical Calculations and Simulation for Snowmass 202

    Visual Analysis Algorithms for Embedded Systems

    Get PDF
    Visual search systems are very popular applications, but on-line versions in 3G wireless environments suffer from network constraint like unstable or limited bandwidth that entail latency in query delivery, significantly degenerating the user’s experience. An alternative is to exploit the ability of the newest mobile devices to perform heterogeneous activities, like not only creating but also processing images. Visual feature extraction and compression can be performed on on-board Graphical Processing Units (GPUs), making smartphones capable of detecting a generic object (matching) in an exact way or of performing a classification activity. The latest trends in visual search have resulted in dedicated efforts in MPEG standardization, namely the MPEG CDVS (Compact Descriptor for Visual Search) standard. CDVS is an ISO/IEC standard used to extract a compressed descriptor. As regards to classification, in recent years neural networks have acquired an impressive importance and have been applied to several domains. This thesis focuses on the use of Deep Neural networks to classify images by means of Deep learning. Implementing visual search algorithms and deep learning-based classification on embedded environments is not a mere code-porting activity. Recent embedded devices are equipped with a powerful but limited number of resources, like development boards such as GPGPUs. GPU architectures fit particularly well, because they allow to execute more operations in parallel, following the SIMD (Single Instruction Multiple Data) paradigm. Nonetheless, it is necessary to make good design choices for the best use of available hardware and memory. For visual search, following the MPEG CDVS standard, the contribution of this thesis is an efficient feature computation phase, a parallel CDVS detector, completely implemented on embedded devices supporting the OpenCL framework. Algorithmic choices and implementation details to target the intrinsic characteristics of the selected embedded platforms are presented and discussed. Experimental results on several GPUs show that the GPU-based solution is up to 7× faster than the CPU-based one. This speed-up opens new visual search scenarios exploiting entire real-time on-board computations with no data transfer. As regards to the use of Deep convolutional neural networks for off-line image classification, their computational and memory requirements are huge, and this is an issue on embedded devices. Most of the complexity derives from the convolutional layers and in particular from the matrix multiplications they entail. The contribution of this thesis is a self-contained implementation to image classification providing common layers used in neural networks. The approach relies on a heterogeneous CPU-GPU scheme for performing convolutions in the transform domain. Experimental results show that the heterogeneous scheme described in this thesis boasts a 50× speedup over the CPU-only reference and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%

    Distributed texture-based terrain synthesis

    Get PDF
    Terrain synthesis is an important field of Computer Graphics that deals with the generation of 3D landscape models for use in virtual environments. The field has evolved to a stage where large and even infinite landscapes can be generated in realtime. However, user control of the generation process is still minimal, as well as the creation of virtual landscapes that mimic real terrain. This thesis investigates the use of texture synthesis techniques on real landscapes to improve realism and the use of sketch-based interfaces to enable intuitive user control

    Autotuning wavefront patterns for heterogeneous architectures

    Get PDF
    Manual tuning of applications for heterogeneous parallel systems is tedious and complex. Optimizations are often not portable, and the whole process must be repeated when moving to a new system, or sometimes even to a different problem size. Pattern based parallel programming models were originally designed to provide programmers with an abstract layer, hiding tedious parallel boilerplate code, and allowing a focus on only application specific issues. However, the constrained algorithmic model associated with each pattern also enables the creation of pattern-specific optimization strategies. These can capture more complex variations than would be accessible by analysis of equivalent unstructured source code. These variations create complex optimization spaces. Machine learning offers well established techniques for exploring such spaces. In this thesis we use machine learning to create autotuning strategies for heterogeneous parallel implementations of applications which follow the wavefront pattern. In a wavefront, computation starts from one corner of the problem grid and proceeds diagonally like a wave to the opposite corner in either two or three dimensions. Our framework partitions and optimizes the work created by these applications across systems comprising multicore CPUs and multiple GPU accelerators. The tuning opportunities for a wavefront include controlling the amount of computation to be offloaded onto GPU accelerators, choosing the number of CPU and GPU threads to process tasks, tiling for both CPU and GPU memory structures, and trading redundant halo computation against communication for multiple GPUs. Our exhaustive search of the problem space shows that these parameters are very sensitive to the combination of architecture, wavefront instance and problem size. We design and investigate a family of autotuning strategies, targeting single and multiple CPU + GPU systems, and both two and three dimensional wavefront instances. These yield an average of 87% of the performance found by offline exhaustive search, with up to 99% in some cases

    Parallel Computation of Nonrigid Image Registration

    Get PDF
    Automatic intensity-based nonrigid image registration brings significant impact in medical applications such as multimodality fusion of images, serial comparison for monitoring disease progression or regression, and minimally invasive image-guided interventions. However, due to memory and compute intensive nature of the operations, intensity-based image registration has remained too slow to be practical for clinical adoption, with its use limited primarily to as a pre-operative too. Efficient registration methods can lead to new possibilities for development of improved and interactive intraoperative tools and capabilities. In this thesis, we propose an efficient parallel implementation for intensity-based three-dimensional nonrigid image registration on a commodity graphics processing unit. Optimization techniques are developed to accelerate the compute-intensive mutual information computation. The study is performed on the hierarchical volume subdivision-based algorithm, which is inherently faster than other nonrigid registration algorithms and structurally well-suited for data-parallel computation platforms. The proposed implementation achieves more than 50-fold runtime improvement over a standard implementation on a CPU. The execution time of nonrigid image registration is reduced from hours to minutes while retaining the same level of registration accuracy

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015
    • 

    corecore