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Abstract
Manual tuning of applications for heterogeneous parallel systems is tedious and complex.
Optimizations are often not portable, and the whole process must be repeated when moving
to a new system, or sometimes even to a di�erent problem size.

Pattern based parallel programming models were originally designed to provide program-
mers with an abstract layer, hiding tedious parallel boilerplate code, and allowing a focus on
only application specific issues. However, the constrained algorithmic model associated with
each pattern also enables the creation of pattern-specific optimization strategies. These can
capture more complex variations than would be accessible by analysis of equivalent unstruc-
tured source code. These variations create complex optimization spaces. Machine learning
o�ers well established techniques for exploring such spaces.

In this thesis we use machine learning to create autotuning strategies for heterogeneous
parallel implementations of applications which follow the wavefront pattern. In a wavefront,
computation starts from one corner of the problem grid and proceeds diagonally like a wave
to the opposite corner in either two or three dimensions. Our framework partitions and
optimizes the work created by these applications across systems comprising multicore CPUs
and multiple GPU accelerators. The tuning opportunities for a wavefront include controlling
the amount of computation to be o�oaded onto GPU accelerators, choosing the number of
CPU and GPU threads to process tasks, tiling for both CPU and GPU memory structures,
and trading redundant halo computation against communication for multiple GPUs.

Our exhaustive search of the problem space shows that these parameters are very sensitive
to the combination of architecture, wavefront instance and problem size. We design and
investigate a family of autotuning strategies, targeting single and multiple CPU + GPU
systems, and both two and three dimensional wavefront instances. These yield an average
of 87% of the performance found by o�ine exhaustive search, with up to 99% in some cases.
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Lay Summary
Modern computing systems are increasingly becoming hybrid systems consisting of multiple
CPU cores and specialized accelerators such as graphical processing units (GPU) that can
o�oad many intensive operations to o�er higher processing capability than a single core
system. The presence of many CPU and GPU cores allows a large chunk of work to be
partitioned into many smaller chunks that can be computed simultaneously or in parallel.
Parallel computing can be seen in action in almost every field that requires large scale
computation to be carried out as quickly as possible. Its application ranges from handling
millions of transactions concurrently in an on line trading platform to making accurate
weather forecasts that require massive computation power. IBM Deep Blue and Google data
centers are all examples of such systems.

However, programming such hybrid systems is complex. This is because the programmer
now has to decompose serial problems into parts that can be computed in parallel. After
conceptually decomposing the problem, the programmer is then required to become an expert
in multiple, conceptually diverse languages and libraries to implement parallelism, and to
integrate these within single applications. An application programmer would prefer not to
be bogged down by the low level details of problem distribution across systems and rather
focus on the computation. And, even after implementing parallelism, the code needs to run
optimally across di�erent types of hybrid architectures so that the programmer does not
have to expend time on tuning the application for each architecture.

Our work addresses these two issues of implementing parallelism transparently and mak-
ing code performance portable across diverse heterogeneous systems. We provide a frame-
work that lets the programmer write application level code while our framework handles the
distribution of work across multiple CPU cores and GPU devices. We target a specific class
of problems called wavefronts which can be di�cult to parallelise due to their internal de-
pendencies that place restrictions on how the problems can be decomposed and distributed.
After implementing parallelism, our framework automatically selects high performing con-
figurations for the application so that the programmer does not have to manually port each
application to a new system. Our autotuning framework shows promising results based on
numerous trials across three di�erent classes of applications and five diverse systems.
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Chapter 1

Introduction

Parallel computing literally means carrying out computations in parallel, i.e at the same time
and encompasses the hardware aspect of dealing with the type and number of processors,
and the software side of solving problems through computational models like shared memory
or message passing [71].

Parallel computing can be seen in action in almost every field that requires large scale
computation to be carried out as quickly as possible. Its application ranges from handling
millions of transactions concurrently in an on line trading platform to making accurate
weather forecasts that require massive computation power. IBM Deep Blue and Google data
centers are all examples of such systems.

One of the earliest definitions of what constituted a parallel processor was provided by
Almasi [2] who defined it as "a collection of serial processors which can communicate and
cooperate to solve big problems fast". This old world high performance computing (HPC)
landscape that envisioned large clusters of single core processors communicating over net-
works to distribute work and compute in parallel has been extended by heterogeneous archi-
tectures consisting of multicore CPUs and diverse accelerators that have made parallelism
mainstream [6].

Thus the modern parallel landscape can be thought to be composed of three common
forms of parallelism which typically overlap and can be merged in various combinations in
real heterogeneous systems. The first form of parallelism is obtained from integration at
the chip level such as the chip-multiprocessing as seen on Sun’s UltraSPARC T2 Plus 8-core
processor [35]. The next form of multiprocessing capability is obtained through clusters of
workstations, for example the Beowulf Cluster [96] or the Edinburgh Compute and Data
Facility (ECDF) [8] - a high-performance cluster of multicore nodes with 1456 processors
that runs a Batch System where a user submits a job and waits in a queue until the re-
sources it requires are available. Other examples of such multicore cluster systems are the
CRAY XE6 series of supercomputers [41]. The third form of parallelism is seen in special-
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ized accelerator devices including GPGPUs and FPGAs. A three tier form of parallelism
(multicore-cluster-accelerator) can be seen in the system shown in 1.1. The supercomputing
facility Tianhe [9] and the CRAY CS series of supercomputers [40] are examples of such
clusters of accelerator workstations. There are more numerous examples of heterogeneous
systems without the cluster level, such as modern personal computers and Ultrabook laptops
that typically comprise of multicores and multiple GPUs. Our experimental systems also
had two overlapping forms of parallelism - chip level and accelerator level.

Among accelerators, GPUs are increasingly ubiquitous as they have evolved from being
used purely for graphical rendering in computer gaming to being used for non graphical
processing for HPC applications. Taking advantage of the parallelism a�orded by their
hundreds of cores, GPUs have become cost e�ective alternatives to HPC hardware for appli-
cations whose problem structure is inherently data-parallel. Examples of such HPC appli-
cations include quantum chromo-dynamics experiments in physics [10] , gene-sequencing in
bio-informatics [3], competitive game theory problems in financial strategy [104] and incom-
pressible flow computations [97]. However, using these specialized accelerators along with
multicores brings its own challenges, as discussed in the next section.

Figure 1.1: Heterogeneous Computing Architecture, taken from [52]
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1.1 Heterogeneous Parallelism Challenges

The Heterogeneous Computing paradigm o�ers challenges in the form of the twin issues of
problem decomposition-distribution and performance portability.

• Problem Decomposition and Distribution : MultiCore accelerator architectures
pose problems to the application developer and programming and systems tool-chains.
Firstly, the developer has to be able to decompose serial problems into parts that can be
computed in parallel. After conceptually decomposing the problem, the programmer
is then required to become an expert in multiple, conceptually diverse languages and
libraries to implement parallelism, and to integrate these within single applications.

To exploit parallelism, an application programmer would prefer not to be bogged down
by the low level details of handling communication and cooperation between processes
across systems (problem distribution). Instead the primary focus of the programmer
should be the computation task at hand. These twin issues can be addressed by an API
or application programming interface. Besides getting ease of use from this layer of
abstraction, the application programmer would also require this interface to be e�cient
which means, optimally exploiting all the available resources in the system. This brings
up the next issue.

• Performance Portability : Performance tuning of such applications is complex,
and typically much more architecture specific than in simpler, essentially homogeneous
systems. The layer of abstraction that handles problem decomposition and distribution
should ideally perform optimally across heterogeneous systems where the three forms
of parallelism overlap and this performance portability should be transparent to the
end user who should not be tasked with porting an application for each architecture.

Finding a programming methodology and toolchain which can address these challenges
is widely recognized as being of major importance, both academically and industrially [14].

1.2 Contributions of this Thesis

Pattern-oriented parallel programming has experienced a recent upsurge in interest [72], and
o�ers a promising approach to the twin challenges of heterogeneous parallelism mentioned
earlier. Each pattern of interest is abstracted and encapsulated behind an API which re-
quires the programmer to code only application specific aspects. This approach simplifies
the programmers task (there is no parallelization “glue” code to write), and presents the
system with a constrained optimization challenge of choosing between and tuning internal
parameters of a set of pre-existing candidate, heterogeneous parallelizations.
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We present a case study in the application of this approach by employing patterns in
the form of algorithmic skeletons [20]. We chose skeletons because they are flexible and
reusable constructs (skeletons can be nested inside other types of skeletons to create new
patterns and they can be highly abstract or detailed). Skeletons handle the communication-
synchronization mechanism of concurrent operations, thus providing transparent problem
decomposition and distribution. By being architecture-specifically tunable they also allow
performance portability. We have provided background details of skeletons and the advan-
tages of employing skeletons in section 2.3.

Our selected pattern is the wavefront, which captures a specific class of dynamic pro-
gramming problems. We are interested in this pattern because the dependencies inherent
in a wavefront make it challenging to parallelize across hybrid settings of multicore CPU
processors and GPU accelerators (as compared, for example to embarrassingly parallel sten-
cil patterns). A large number of applications exhibit the wavefront pattern across diverse
domains including bio-informatics, financial game theory, particle physics and linear alge-
bra. However, there has as yet been no extensive investigation into the tuning of wavefront
patterns across heterogeneous systems. This means tuning wavefronts in such hybrid sys-
tems is an important area of research. The relevant background details regarding wavefront
dependencies and applications are introduced in detail in subsection 2.5.1.

Our implementation strategy distributes wavefront applications across systems which in-
corporate a multicore CPU and multiple GPU accelerators. In order to better understand
the tuning trade-o�s, and to assist in the evaluation of our heuristics, we have performed
an exhaustive exploration of an interesting fragment of the tuning space, across a collec-
tion of systems comprising a CPU and single or multiple GPUs. Since such an exhaustive
search would be impractical in a production system, we have investigated the application of
machine-learning strategies to reduce the search time. We have experimented across a range
of wavefront applications and heterogeneous systems.

There are two main contributions of this thesis.

Designing tunable high level parallel programming models for wavefront appli-
cations

In many high level parallel programming models employing skeletons, there are several op-
portunities for optimization. In one study of Intel Threading Building Blocks (TBB) [22], it
was reported that increasing the number of cores increases the overhead costs to become as
high as 47 percent of the total per-core execution time on a 32-core system. This highlights
the need to tune the parameters of these models in order to avoid performance penalties.
In this thesis we have identified what parameters can a�ect the runtime of our wavefront
skeleton, and how to tune them.

Demonstrating e�ectiveness of machine learning for optimizing wavefront ab-
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stractions on heterogeneous architecture
Many automated optimizations based on prior learning have been done at the low level for
applications that are dependent on the hardware. However there are few that target high
level parallel programming models. Utilization of these techniques in exploring the parameter
space of wavefronts for heterogeneous architectures has provided empirical data showing how
e�ective machine learning is for tuning a high level model like the wavefront.

1.3 Structure of the Dissertation

The remainder of the thesis is structured as follows

• Chapter 2 provides all the background details related to the need for algorithmic skele-
tons to solve the parallel programming crisis, tuning skeletons through machine learning
to enable performance portability, dynamic programming problems and terminologies
associated with a special case of dynamic programming problem, the wavefront pattern
and its applications.

• Chapter 3 discusses our skeleton or framework implementation strategy for 2D wave-
front application in multicore CPU + single GPU and multicore CPU + multiple GPU
systems. It then provides the details of implementing a 3D wavefront application in
multicore CPU + single GPU systems. It also discusses our experimental setup, perfor-
mance trade-o�s in our framework and how they are tuned by using machine learning
techniques.

• Chapter 4 first delves into the tuning strategy of a 2D wavefront application in a
multicore CPU + single GPU environment. It then discusses the results of our exhaus-
tive search of the tuning space and the evaluation of machine learning strategies for
autotuning.

• Chapter 5 similarly delves into the experimental details of autotuning 2D wavefront
applications in a hybrid multicore CPU + multiple GPU environment. The addition
of another GPU increases the complexity of tuning with more tunable parameters and
decisions to be taken.

• Chapter 6 provides autotuning experience for 3D wavefront applications. The results of
an exhaustive search of optimal performing points are analyzed, and machine learning
results for our autotuner are presented.

• Chapter 7 discusses related work, comparing our autotuning methodology and results
with other similar autotuners.
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• Chapter 8 concludes the thesis with a review of our contributions and discusses future
work.



Chapter 2

Background

This chapter provides background information on topics relevant to our work. These relate
to the opportunities and challenges of parallelism, discussed in section 2.1, followed by details
of common parallel programming paradigms and their drawbacks in section 2.2. The limi-
tations of commonly used parallel models highlight the need for abstractions. We introduce
algorithmic skeletons, their classification, their guiding design principles, and address the is-
sue of performance portability of skeletons in section 2.3. In section 2.4 we explain the need
for predictive modeling based on the curve fitting concept, followed by an overview of some
machine learning models that have been employed in this thesis. Since the wavefront pattern
is a specific class of dynamic programming problem, we provide the necessary background
to dynamic programming problems in section 2.5. This section then provides the conceptual
details of the wavefront abstraction that forms the core of our thesis. The corresponding
wavefront applications used in our work are described in section 2.6. Finally we conclude
this chapter with a discussion of the measurement of parallel processing performance in
section 2.7.

2.1 Parallel Computer Architecture

2.1.1 Opportunities and Challenges of Parallelism

From late 20th century (1970 onwards), CPU processing capability has been steadily im-
proving at exponential rates and is expected to continue until 2020 [85]. This observation
is referred to as Moore’s law which states transistor counts in integrated circuits double
approximately every two years. The resulting increase in clock rates enables single-threaded
code to execute faster on every new generation of processors with no modification. However,
in 2005 Moore noted that transistors would eventually reach the limits of miniaturization at
atomic level [86], i.e. transistor scaling would saturate owing to limited gate metals, limited
options for channel material and limited material solutions for reducing source to drain leak-
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age. Meanwhile, new computing prototypes such as quantum computing are at experimental
stages and are a long way from becoming mainstream [38].

There is also the economic cost to increasing miniaturization. Rock’s law states the
capital cost of setting up a semiconductor fabrication plant increases exponentially with
every new generation of chips [90]. Another constraint to Moore’s law of adding more
transistors to conventional CMOS chip is related to energy and power dissipation [30]. This
is because increased transistor density leads to increased internal processor heat that results
in overheating and excess energy use. Recent work in addressing this includes [30], that
explores a design space of matching supply voltage with threshold voltage of the transistor
to enable energy saving. This design however su�ers from performance loss, as measured
by the fanout-of-four inverter delay or F04 metric, which is 10 times slower compared to
conventional supply voltage design.

It should also be noted that merely doubling CPU capacity does not automatically im-
prove performance. Memory bandwidth also plays a crucial role based on Von Neumann’s
limit [81]. So sequential computational performance is subject to the available memory band-
width. The graph below underscores the increasingly expensive sequential memory access
cost.

Figure 2.1: The Memory Gap, taken from [52]

One solution to the costly process of manufacturing faster chips that are energy e�cient
design and have improved memory bandwidth is to employ parallelism. The overall time
taken to compute a large task can be quicker with multiple cheaper, but relatively slower,
processors working on parts of the problem rather than one fast expensive processor com-
puting the whole task. Based on our previous discussion of three tiers of parallelism in
chapter 1, we discuss how each tier of parallelism can outperform sequential processing and
also compare their relative strengths and weaknesses.
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2.1.1.1 Multiple Node Architecture

In the traditional HPC parallelism, clusters of nodes form a distributed address space. The
distribution of large tasks and chunks of data across nodes reduces the memory load on
individual nodes and overcomes sequential bottlenecks. This performance is limited by the
network speed but with high speed connections (Infiniband/Ethernet) the traditional HPC
based parallelism can outperform sequential processing, subject to Amdahl’s law.

2.1.1.2 Shared Memory Architecture

Next we look at shared memory systems consisting of a single node but multiple processing
cores that share a single address space. The immediate benefit over a sequential single core
system is the greater computing capacity a�orded by the multiple cores present on a chip.
Compared to traditional HPC clusters, they also do not su�er from network bottlenecks of
distributed systems. However, shared memory systems incur the additional architectural
overhead of maintaining cache coherency and the programmers are also burdened with un-
derstanding the intricacies of relaxed consistency memory models needed for cache coherent
(CC) systems. The time and memory cost of scaling the number of cores on a CC system
quickly grows beyond a point at which additional cores are not useful in a single parallel
problem. This is referred to as the Coherency Wall [70].

2.1.1.3 Manycore Architecture

We now look at many core computing or massively multi-core systems which refer to systems
having processors numbering hundreds to thousands, with the exception of the traditional
distributed systems. These include shared memory systems with high processor counts and
accelerator based (GPU, FPGA) systems.

An example of such a shared memory many core system is the 48 core Intel Single Chip
Cloud platform [80] which internally implements message passing between its cores and can
be considered to possess a hybrid address space.

Accelerator based heterogeneous architectures consist of one or more GPGPUs or FP-
GAs. Due to the availability of hundreds of compute units on GPUs, these systems can
outperform sequential processing. They also do not su�er from network bottlenecks of dis-
tributed systems but global memory contention and data transfer overheads. These systems
are also limited to SIMD parallelism (discussed later in subsection 2.2.3) and are constrained
by bandwidth limitations of PCI-E. Improvements to PCI-E layout in [68] helps reduce this
bandwidth overhead. [16] demonstrates heterogeneous GPGPU parallelism wins over sequen-
tial memory access bottlenecks by adding memory layout remapping that takes advantage
of concurrent GPU operations while overlapping with PCI-E memory transfer.
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2.2 Parallel Programming Paradigms

The benefit of parallelism is obtained after problem decomposition has been carried out.
This is subject to Amdahl’s constraint of parallelism being limited by the sequential parts
of the code [53]. Both problem decomposition and the subsequent work load distribution
are challenging tasks, but the performance gains with a parallel system are often many
times higher than the single core system. Keeping the need for parallelism in mind we now
delve into the many conceptually distinct programming models that address parallelism,
to illustrate how challenging it is to integrate or port to these very di�erent models. We
address those di�erences by first discussing the two leading programming paradigms for
systems based on clusters and multicores - Message Passing (MP) and Shared Address Space
(SAS) [92]. Then we discuss the accelerator programming languages for GPUs - CUDA and
OpenCL.

2.2.1 Message Passing Paradigm

We begin with the message passing model which gives each process its own address space.
The task is to distribute data across these address spaces and provide communication between
processes by sending and receiving messages.

In the world of Message Passing, MPI has been enjoying the position of de facto stan-
dard since its inception [51]. Even recent programming systems like MPJ Express that
target multi-core processors are, nevertheless MPI hybrids having MPI-like libraries [91]. As
a distributed memory programming model, MPI is based on explicit control parallelism as
defined by the MPI standard [15], making it a language independent communications proto-
col. It supports point to point communication that involves two processes in a process group
and collective communications that involve all processes in a process pool. MPI subroutines
can be called from any language that is able to interface with its libraries since MPI uses
language independent specifications for calls. Hence there are C/C++, Fortran, Java and
Python implementations of MPI.

A sample point to point MPI operation for sending data is as follows : MPI _Send
(start, count, datatype, destination, tag, communicator) in which the message bu�er has a
starting address, the number of elements in the count and the size of each element as per
the datatype. The target process rank (a number between 0 and MPI _COMM _SIZE -1
where the latter is the total number of processes in the global MPI communicator) is given
by destination and tag can be used to obtain status information or send any additional data.

Figure 2.2 shows both point to point communication in the form of MPI _Send, MPI
_Receive and the collective operation MPI Broadcast among three nodes in a cluster. MPI
_Send enables a process to send a message to another process which receives the sent message
through MPI _Receive. The Send-Receive operations can be blocking or asynchronous non



2.2. Parallel Programming Paradigms 11

Figure 2.2: The MPI model : 3 nodes communicating over a high speed interconnect using point
to point communication like MPI_Send from Node 1, MPI_Recv to Node 3, and the MPI_BCAST
collective communication from Node 2 to Nodes 1 and 3.

blocking. In MPI collective communications like MPI_BCAST, every process including the
receiver processes of Node 1 and Node 3, have to participate by calling the broadcast routine
which has a parameter specifying the root or the sender process (Node 2 in the figure).

MPI _Bcast call takes data from one node and sends it across all other nodes in the pro-
cess group. The data transferred during these operations can be predefined MPI datatypes
like MPI _INT, MPI_CHAR or custom defined ones. A key feature of MPI is its dynamic
process management, which establishes connection between MPI processes that have been
independently spawned. MPI is thus well suited to task parallel applications such as the Task
Farm where worker nodes can independently start working on chunks of work and return
results to a master node.

2.2.2 Shared Address Space (SAS) Paradigm

The shared address space model allows threads or lightweight processes to directly interact
through shared memory locations. This model raises the issue of memory consistency i.e.,
when and in what order should updates to memory made by one processor become visible
to other processors. There are also race conditions to be dealt with, where threads compete
against each other for access to the shared resource.

C’s POSIX threads or Pthreads [11] form the standard for thread programming in which
the main thread/process can start, synchronize and stop other threads of activity within its
address space. Pthreads is a standardized model for interleaving the execution of sub-tasks
partitioned from a main task. Parallelism is achieved as each thread begins the execution
of a given function, which either terminates upon that function’s exit or is terminated by
another thread. A sample Pthread flow is shown in figure 2.3 where the main thread creates



12 Chapter 2. Background

three di�erent threads to work on three sub tasks using pthread _create. This method is of
the form

pthread_create(thread,attr,start_routine,arg) (2.1)

thread refers to a unique identifier for new threads. attr deals with various properties like
scheduling policy, parameters and contention, stack size, address etc. The start_routine
is basically a C function pointer. arg deals with arguments to the subroutine, passed by
reference as pointer cast of type void. To synchronize the execution of the spawned threads,
the main thread calls pthread_join , which suspends the main caller thread until the spawned
thread exits. Once all three subtasks are completed, the caller thread resumes execution.
Since all three threads access the same memory location, entry to the critical section is
restricted to one thread at a time through mutexes that enforce mutual exclusion with
mutex lock and unlocks.

Figure 2.3: Three threads being spawned through pthread _create to work on 3 subtasks independently,
using a mutex to safely access the shared memory location and update shared variables, before being
joined to the main spawning thread using the pthread _join synchronization mechanism

The Pthreads standard specifies concurrency, meaning tasks defined by the programmer
can occur before or after another or in parallel, depending on the operating system and the
hardware they run on. Thus Pthread programs can run on both single cores and multicores.

The OpenMP [24] application program interface (API) is popular for the SAS paradigm,
particularly for multi cores. It is a portable programming interface in C/C++ or Fortran
and supports multi-platform parallel programming on all architectures.

OpenMP implements multi-threading by spawning a specified number of worker threads
from a master thread and divides tasks among them. The threads run concurrently and are
allocated to di�erent processors by the runtime environment. This is illustrated in Figure 2.4
In OpenMP threads are created using the pragma directive omp parallel. OpenMP provides
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Figure 2.4: Master thread forking worker threads using pragma omp parallel directive and tasks
assigned to threads, which are themselves bound to di�erent processors by the runtime. These worker
threads synchronize into the master thread without the need for explicit join statments as in pthreads.

work-sharing loop constructs like omp for and omp do that partition loop iterations among
threads. Shown below is a code listing that demonstrates loop splitting among 10 threads
using parallel for. Each element in an array of size 10 creates a task which is assigned to
implicit OpenMP threads that independently squares that element.

// example of loop construct : omp parallel for

#include <omp.h>

void main(int argc, char *argv[]) {

const int NUM_THREADS = 10;

int i, demo[NUM_THREADS];

#pragma omp parallel for

for (i = 0; i < NUM_THREADS; i++)

demo[i] = i * i;

}

Unlike Pthreads, here the programmer does not have to worry about explicitly creating and
synchronizing the spawned threads. However, OpenMP provides synchronization clauses
like static scheduling where threads are allocated loop iterations before executing or dy-
namic scheduling where smaller number of threads dynamically fetch new iterations after
completing their initial allocated iterations. OpenMP also provides data sharing attribute
clauses, such as shared data region which is accessible by all threads or private data region
where each thread have their own local copies of variables.

Intel’s Threading Building Blocks (TBB) [31] is also becoming a popular alternative. It
provides easy to use thread safe container classes and templates that abstract out low level
details such as multiple thread synchronization and load balancing among processes. Unlike
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the low level threading API Pthreads, the TBB library provides high level abstractions in
the form of algorithms. Like OpenMP, TBB provides loop templates such as parallel_for,
parallel_reduce, parallel_do etc. These loop templates are powered by its runtime engine
called the task scheduler. TBB operations are treated as tasks that are allocated to multi-
core processors dynamically by the library’s run time engine which e�ciently utilizes the
CPU cache. Thus, TBB employs logical tasks instead of the usual logical threads that map
onto the physical threads of hardware, which are lightweight compared to logical threads.
The time taken to spawn and terminate a task has been measured at 18 times faster than the
thread creation and termination in Unix systems, and on Windows system the ratio exceeds
100 [69]. The reason for this is logical threads require a local copy of register state, stack and
a process identifier (in Linux). TBB tasks in contrast, are small routines which can not be
preempted at task level. Besides, thread schedulers typically distribute time slices in a fair
round robin fashion as this is a safe strategy that does not require high level understanding
of the program structure. Since TBB provides abstractions mapped to algorithms, the
tasks have some higher level information which allows the task scheduler to employ a greedy
work-stealing algorithm resulting in higher e�ciency. The tasks are executed respecting their
internal graph dependencies and the scheduler assigns tasks to the underlying threading API
(Pthreads in Posix systems), providing e�cient load balancing. TBB also provides atomic
operations and built in atomic template classes that provide better performance compared
to manually enforcing atomicity in OpenMP [28]. A sample parallel_for is shown in the
below code listing.

#include "tbb/tbb.h"

void ParallelApplyFoo( float a[], size_t n ) {

parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a));

}

The entire iteration space 0 to n-1 represented by the blocked _range construct is divided
into subspaces for each processor by the parallel _for loop template. ApplyFoo is the functor
(whose implementation is not shown for sake of brevity), that is applied to each resulting
sub-range of the array of floats ‘a’. With this discussion we conclude the subsection on shared
address spaces and move on to the accelerator programming paradigm.

2.2.3 Accelerator Programming Paradigm

While scaling complex CPU cores to hundreds or thousands is hard, there are already thou-
sands of simpler RISC based cores working in a SIMD fashion [61] inside GPUs. Early
GPUs were used for graphic processing activities like rendering images, but with heteroge-
neous computing becoming mainstream, general purpose GPU computing has increased in
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usage. However, due to the single instruction multiple thread limitation of GPU architec-
tures where a single instruction executes on multiple work-items, having any kind of control
flow like if ≠else blocks means all work-items execute the if block first and then all of them
execute the else block. This contrasts with pthreads in CPU multi-cores that operate in
SPMD (single program multiple data) fashion. A pthread can be assigned to the if block
and another to else block and both will execute simultaneously.

Software implementations for programming GPUs are based on either the CUDA pro-
gramming language, which is specific to NVIDIA graphic cards or OpenCl programming
language [34] which is platform agnostic. Another implementation of heterogeneous com-
puting is the Asymmetric Distributed Shared Memory (ADSM) programming model that
“maintains a shared logical memory space for CPUs to access objects in the accelerator phys-
ical memory but not vice versa” [45]. This allows for light weight implementation, reduced
programming e�ort and increased portability.

OpenCL and CUDA are the two dominant GPU programming languages and our auto
tuning framework is built on OpenCL as it is more portable compared to CUDA. It should
be noted that CUDA and OpenCL programming models are SIMT or Single Instruction
Multiple Thread which is more flexible than SIMD with some additional costs. SIMT has
scalar syntax instead of vector syntax, so the code is written for a single thread using standard
arithmetic operators, instead of assembly-like opcodes in SIMD loops.

An example of an OpenCL kernel or computation function which is executed inside the
GPU is shown below.

__kernel void constant_add_gpu (const int num,

__global const float* src_a,

__global float* res

)

{

/* get_global_id(0) returns the ID of the thread in execution */

const int id = get_global_id(0);

/* Now each work-item performs the corresponding computation of adding num to

itself */

res[id] = src_a[id] + num;

}

SIMT allows a single instruction to be applied to multiple addresses enabling indirect
memory access in the form of a[b[i]] where the index for array a is computed from b[i]. Finally
SIMT allows flow divergence. This is explained in the code listing below.

__kernel void constant_apply_even (const int len,
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__global const float* src_vector,

__global float* res

)

{

/* get_global_id(0) returns the ID of the thread in execution */

const int id = get_global_id(0);

/* Now only even work items will compute */

if(id%2==0) //Flow Divergence

res[id] = src_vector[id] + id

}

In a GPU, the work item is the smallest entity of execution (analogous to a thread)
which has an ID to distinguish the data being computed by it. The programmer specifies
the number of work items to be spawned upon launching the kernel and each work item
executes the same piece of kernel code. Work items can be synchronized inside work-groups
that allow the work items to communicate and cooperate as shown in figure 2.5.

Figure 2.5: Spawned work items organized into a 2D grid of work groups. The number of work groups
are specified by the NDRangeKernel which enqueues a command to execute a kernel on a GPU or even
CPU device, adopted from [44]

The programmer has to manage transferring data to and from the GPU and firing o�
GPU kernels on available GPU device on appropriate GPU supporting platforms. These
actions form part of the host code which is executed on the CPU. An example of host code
listing is shown below.

#include <CL/cl.h>
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...

/*1. Get the Platform */

clGetPlatformIDs(1, platforms, &platforms_count);

/*2. Get the GPU devices, max 10*/

clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 10, devices, &devices_n);

/*3. Create the CL context inside which compute devices will be available*/

clCreateContext(NULL, devices_count, devices, &pfn_notify, NULL, &_err)

/*4. Create a command queue which will queue kernel calls */

command_queue = clCreateCommandQueue(context, device_id,CL_QUEUE_PROFILING_ENABLE,

&ret);

/

/*5. Create a program from the kernel source */

cl_program program = CL_CHECK_ERR(clCreateProgramWithSource(contexts, 1,

(const char **)&source_str, (const size_t *)&source_size, &ret));

/*6. Build the program */

clBuildProgram(program, devices_count, devices, "", NULL, NULL);

/*7. Create the OpenCL kernels */

cl_kernel sum_kernel= clCreateKernel(program, "constant_add_gpu", &ret);

/*8.Create memory buffers on the device for the vector */

cl_mem lmv_mem_obj=clCreateBuffer(context, CL_MEM_READ_WRITE,

(global_item_size)* sizeof(float), NULL, &ret);

/*9. Load data into the memory buffer*/

float lmv[global_item_size];

initialize(lmv);

clEnqueueWriteBuffer(command_queue lmv_mem_obj, CL_TRUE, 0,

global_item_size* sizeof(float), lmv, 0, NULL, &buffer_completion);

/*10. Set kernel Arguments - num value */

int myNum=10;

clSetKernelArg(sum_kernel, 0, sizeof(int), &myNum));

/* 11. Now execute the kernel by enqueuing it on the NDRange ! */

clEnqueueNDRangeKernel(command_queue,sum_kernel, 1, &start_offset,

&global_item_size,NULL,0,NULL,&kernel_completions);

/*12. Wait for computations to be over*/

clWaitForEvents(1, &kernel_completions);

/*13. Load the results back to CPU after GPU computation is over */

clEnqueueReadBuffer(command_queue, lmv_mem_obj, CL_TRUE, 0,

global_item_size*sizeof(float), lmv], 0, NULL, &readEvent);

/*14. Finally clean the cl buffers*/

clReleaseCommandQueue(command_queue); ....

As seen from the code listing, a lot of boiler plate code dealing with loading data to and
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from the GPU and executing the actual computation kernel needs to be written on the host
side (steps 1 to 10 and 12 to 14).

In the case of simultaneous CPU-GPU processing, it is usual for the sequential control
intensive tasks of an application to be executed on the CPU while the data parallel tasks
of the application that need to be operated in a SIMT manner are executed by the GPU or
accelerator.

2.2.4 Current Parallel Programming Model Advantages and Limitations

We now look at the comparative advantages and limitations inherent in these existing mes-
sage passing, shared memory and accelerator models.

2.2.4.1 Message Passing

Advantages
Most high performance computing codes are written in the message passing paradigm.

The advantages of employing message passing are :

• Distributed systems require explicit message passing models and the overall cost of
building such clusters is less compared to large shared memory systems.

• Message passing models like MPI are more portable across systems as they can be
utilized on both shared memory and distributed architectures

• Message passing models provide better safety because each process has its local copy of
variables on which it operates. This prevents any kind of race condition or unexpected
change of local variable state.

Limitations
MPI is a low level distributed programming model that has its share of drawbacks as

mentioned in [94]. These are as follows:

• It places the entire burden on the programmer for being responsible for many low level
implementation details, ranging from setting the communication among processes to
resolving any deadlocks that may arise.

• The programmer alone has a global view of the problem as the processes themselves
are only able to read and write data to their respective local memory. This data is
copied and communicated to local memory locations of the processes through method
calls making global operations expensive.

• Finally making the programmer responsible for all low level decisions increases the
scope for adding bugs to programs.
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2.2.4.2 Shared Address Space Programming

Advantages

• Shared address space models are easier to program and understand due to readily
available loop parallelization constructs that require few lines of code to implement.
This also allows maintainability and easier debugging.

• Shared address space models like OpenMP provide flexible parallel coding due to incre-
mental parallelization obtained by adding directives over loops or blocks. The parallel
parts of the code can run sequentially on a single core with no modification.

Limitations
In case of the Shared Address Space paradigm the ease of programming comes with some

drawbacks. They are as follows:

• SAS systems face performance limitations due to poor spatial locality and high protocol
overhead. This was observed in [92], where the GeNIMA SVM protocol was used for
SAS on a cluster of eight, 4-way SMPs and it was found that using this in place of
MPI gave roughly a factor-of-two deterioration in performance for many applications.

• While MPI has extra work upfront, optimization and debugging is easier compared to
multi-threaded shared memory systems. So project time to solution can be longer in
SAS [70].

• Unlike message passing systems, shared address systems need to deal with race con-
ditions which can be challenging. For example, proving that a shared address space
problem using semaphores will be race free, is an NP-complete problem [70].

2.2.4.3 Accelerator Programming

Advantages

• Accelerator programming languages like CUDA and OpenCL provide the only means
to program GPUs for general purpose computing and o�er optimized solutions for
exploiting the concurrency from hundreds of GPU cores.

Limitations

• Accelerator programming languages su�er from the drawback of being very low level
with the application programmer responsible for transforming data based on the mem-
ory layout of the accelerator device and handling data transfer between host and ac-
celerator devices.
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• The programmer has to learn domain specific libraries that target particular architec-
tures. For example CUDA programming is aimed at NVIDIA based accelerators only.
OpenCL is more generic than CUDA but it requires a lot more boiler plate setup code
in comparison to CUDA as discussed in subsection 2.2.3.

• The SIMT programming model of CUDA and OpenCL provides flexibility in the way
of expressive scalar syntax but has the drawback of maintaining registers to store
redundant data items. The indirect memory access is also limited to registers so a[b[i]]
can scale to tens of elements, not tens of thousands of elements. This is because indirect
memory access is unfeasible at the DRAM level (which is farthest from GPU cores,
sitting outside the chip, see figure 1.1 ) since random access is not e�cient and even
within shared memory random access is slowed by bank contentions[61].

• Divergent flow leads to randomizing of memory access and unlike the SPMD (Single
Program Multiple Data) model only one path is executed at a time forcing idle threads
to wait for the active thread to complete execution. This makes multiple if ≠ else

branches expensive and contrasts with pthreads whose SPMD model allows concurrent
execution of multiple branches.

2.2.5 Summary

The drawbacks found in current parallel programming models suggest the need for a model
that provides a layer of abstraction to handle low level operations while allowing the pro-
grammer to concentrate on the problem at hand. Also, the very existence of a multitude of
parallel programming models makes integrating them to address heterogeneous parallelism
a challenging task. This motivates the case for algorithmic skeletons.

2.3 Algorithmic Skeletons

A skeleton is essentially a second order function which accepts functions instead of simple
data types as its arguments, and returns functions that accept the details of a specific
problem as its results. The arguments passed to a skeleton are methods which are specific
to a problem, while the structure of the skeleton would be the overall computation pattern
that needs to be applied to the methods passed to it.

Advantages

• Algorithmic skeletons address the two fundamental issues of any parallel program-
ming model, i.e. of problem decomposition, which is the identification of parallelism,
and distribution, which is the physical implementation of the parallelism identified by
decomposition.
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• The distribution and manipulation of data across the processors based on the hardware
topology is also handled implicitly by the skeleton. The application programmer has
to be only concerned with supplying the arguments and may not even be aware of
the implicit parallelism built into the skeleton. The system implementer creates the
general computational structure of the skeleton.

• The fragmented programming nature of skeletons allows independent skeletons to co-
exist, di�erentiating them from other systems that are either too highly abstract to
implement any specific solution, or are restricted to function optimally in a particular
hardware setting.

Limitations

• There is a restriction placed at the highest level of the structure of the skeleton re-
garding what computation it can perform. Since the programmers are not aware of the
underlying parallel implementation (and they do not have access to it), they are re-
stricted to exploiting parallelism o�ered by the skeletons without being able to modify
the skeletons.

• The restricted structure of skeletons means they are generally not portable across
di�erent architectures without tuning some of their components. This is elaborated
later in section 2.3.3.

2.3.1 Classifying Skeletons

Poldner et al. [54] have classified Skeletons as either Task Parallel or Data Parallel depending
on the kind of parallelism used. Task Parallel skeletons are responsible for dynamically
setting up the communication among processes and distributing tasks using the concept
of nesting. They include the farm or pipeline skeletons [20] among others. Task parallel
skeletons, like atomic processes, accept a sequence of inputs and produce a sequence of
outputs. This allows them to be nested in any manner. A concrete example of the task
parallel skeleton, the Task Farm is shown in figure 2.6. The farmer node distributes tasks to
worker nodes in a demand driven manner and then collects results from the workers. Task
Farms can have multiple farmer nodes handling many workers, and computation involves an
iterative process of the farmer distributing a large task across idle worker nodes, receiving
results and assigning the next piece of task and so on, until all tasks are complete. The Data
Parallel Skeletons, in contrast to the task parallel ones, perform the same task or operation
across a bulk data structure such as an array. Examples of this type of skeleton are Map,
Fold, Rotate [25] and the wavefront which will be discussed later in section 2.5.1.

Abstractions are also provided by Intel’s Threading Building Blocks (TBB) [31]. This
has become popular for multi-core processors by providing easy to use thread safe container
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Figure 2.6: The Basic Task Farm, taken from [54]

classes and templates, that abstract out low level details such as multiple thread synchro-
nization and load balancing among processes. In Threading Building blocks skeletons are
found in the algorithm templates like pipeline and parallel _do.

With this overview of di�erent types of algorithmic skeletons we now focus on some
practical guiding principles for the design and development of skeletal systems.

2.3.2 Guiding Principles for Skeleton System Design

Research into design patterns for high performance computing stresses the advantages of
Object Oriented (OO) languages for implementing skeletons [21]. The convergent experiences
of design pattern based and skeleton based systems necessitate sound software engineering
principles and motivate four principles which we will follow in our design.

• Minimal conceptual disruption - Skeletal programming is neither a completely
abstract declarative system based on functional programming nor is it a fully object-
oriented one. It should not be restricted to these two concepts rather it should be a
bridge to the de facto standard for parallel programming.

• Integrate ad-hoc parallelism - Since we cannot expect skeletons to provide com-
plete parallelism, the system should have a well defined process to allow integration of
skeletons with ad-hoc parallelism.

• Accommodate diversity - The system should not be restricted by its own specifica-
tion. For example, a pipeline specification requiring each stage to produce one output
for each input is too restrictive, as it excludes algorithms that have stages where one
input generates many outputs or none at all.

• Show the payback - As per the cost benefit analysis, the benefits of adopting a
new technology should outweigh the costs. The skeletal programs must outperform
conventional implementations with equivalent investment of e�ort in developing them
and they should be easily ported to new architectures with minimal changes to source
and with sustained performance.
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We have followed these guidelines in designing our wavefront framework. We provide
minimal conceptual disruption by providing a C++ library with method and parameter dec-
larations in wavefront terminology (explained in subsection 2.5.2). These can be overridden
with custom defined data structures and kernel functions. The methods can also be plugged
into existing code, allowing ad-hoc parallelism. We accommodate diversity by providing
support for 2D and 3D wavefronts, along with choice of dependent elements up to two pre-
ceding diagonals. The payback is demonstrated from the performance gains of employing
our autotuning framework.

With this brief discussion of the guiding principles behind designing and implementing
skeletons, we now look at the limitation of skeletons regarding performance portability.

2.3.3 Tuning of Skeletons

Skeletons solve the challenge of problem decomposition and distribution but they don’t
readily address the issue of performance portability when moving from one architecture to
another. This can be illustrated by the task parallel Task Farm. In a task farm, there are
several opportunities for optimizations that include

• Choosing the correct number of tasks to transfer in a single farmer-worker interaction,
i.e. chunks of tasks being communicated.

• Selecting the correct number of workers to prevent bottleneck at either the farmer or
worker’s end, depending on the size of task.

• Adjusting the size of the data that is being communicated for each task to minimize
communication overhead.

• Choosing between single and multiple distributed farmers.

All these parameters may have some impact upon the overall performance by reducing
the e�ect of bottlenecks. They have di�erent optimal settings for di�erent combinations of
architecture and the farmed application. These combinations of various input features can,
and do produce an enormous number of possibilities.

One approach to exploring this space e�ciently is to apply machine learning [74] which
is introduced in next section.

2.4 Machine Learning

Machine Learning refers to the field of study in computer science and statistics of algorithms
that improve from experience without any explicit programming instructions. A formal
definition of machine learning in operational terms is provided by Tom Mitchell [74] as “A
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computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.” Based on this definition we can say the purpose of a machine learning
algorithm is to improve performance on new unseen tasks after experiencing tasks from a
training data set. This training data set consist of values of input features or attributes that
define a problem and is representative of the space of occurrences of those problem instances.
The learning model trained on this data has to be then general enough to predict desired
output values for unseen problem instances with high accuracy.

Machine learning algorithms are classified on the basis of the type of input feature set
available during training and the type of desired outcome. When training instances are
labeled and the objective is to infer a function by analyzing the instances, it is called su-
pervised learning. For evaluating the accuracy of a supervised learning model, the predicted
values are either validated against known best values of the unseen instances or cross vali-
dated against a subsection of the training data, called the test validation set, which contains
instances that were not part of training. We have used supervised learning techniques in
our thesis and examples of those will be discussed in detail in 2.4.3. On the other hand,
in unsupervised learning there are no labeled instances of training data since the objective
is to find patterns in data or the underlying hidden structure. This also means there is no
known solution against which error or reward signals can be used for validation. Examples
of unsupervised learning include k-means clustering [49] and hidden Markov chains [103]. If
clustering algorithms create meaningful classification, then evaluation can be done through
creation of external data sets by manual hand-labeling and validating the accuracy. Thus
they can be evaluated using internal metrics information on the computed clusters when the
clusters are clearly demarcated or by using external metrics that carry statistical testing on
the structure of the data [49].

2.4.1 Need for Machine Learning

The two conventional alternatives to machine learning are hand tuning and analytic model-
ing. One advantage of hand tuning is the greater level of optimization typically possible since
the code is written to exploit specific architecture and application. However it is very time
consuming and hand tuned code is unlikely to be performance portable. Analytic models
(some of which are explored in section 7.2 and section 7.4) can provide an alternative to
machine learning based tuning. These use mathematical equations consisting of application
and architecture specific variables that are easily ported across systems. However, coming
up with a good analytic solution that can cover a wide range of system and application
variations while providing high accuracy is quite challenging. Besides, when the source code
is not accessible to the end user, such as when using a third party library, the analytic model
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cannot be constructed. For such black box systems, autotuning by learning from experience
is often the only solution.

2.4.2 Machine Learning in Program Optimization

We present an example which illustrates how machine learning can be useful in software op-
timization. Let us consider image processing. It is very hard to manually write a program to
recognize a particular image or a face. Instead, we can collect many samples that correspond
to the correct image for a given set of input features such as texture, color, sharpness etc. A
machine learning algorithm can take these example image instances and produce a program
that predicts the correct image for a set of input features, to some degree of accuracy.

Similarly, machine learning techniques can be applied to a simple task farm skeleton with
a single farmer and multiple workers to predict the correct number of workers for numer-
ous combinations of farm input features that result in optimal e�ciency. Like the image
processing example, it is not possible to tune the parameters of our farm without having
prior knowledge or obtaining the prior inductive bias [99] from lots of training instances that
are subsequently fed to machine learning methods. Inductive bias refers to the assumptions
made in a machine learning model to predict outputs for previously unseen input data.

Figure 2.7: Learning as Curve Fitting

In general, we can conceptually define machine learning as a sophisticated form of curve
fitting where the inputs are characteristics of the program, and architecture and the outputs
are the optimization function we are interested in, such as runtime of the program. After
fitting the learning model to the data consisting of known values of input and output pa-
rameters, the model can predict the value of desired output parameters such as the number
of workers in a task farm skeleton. These values must then be cross validated to check the
accuracy of the prediction. Once the model is defined, we predict future behavior and find
the best optimization for a set of input features.

Having made the case for using machine learning, we now provide an overview of the
specific learning models that we have used.
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2.4.3 Machine Learning Models in Supervised Learning

Machine learning applications can range from predicting discrete labels, i.e. - classification
tasks [37] such as classifying stars or recognizing handwritten/spoken words, recognizing
ham from spam in emails etc, to predicting real numbers such as predicting future stock
prices or exchange rates and monitoring credit card transactions among others. We are
specifically interested in supervised learning [37] which deals with predicting an output y

depending on an input x as in y = f(x). Supervised learning creates this predictor f(x) from
training data D on the basis of some prior bias. The importance of bias can be summarized
from Mitchell’s statement [74] as “a learner that makes no a priori assumptions regarding
the target concept has no rational basis for classifying any unseen example.” This bias is
inductive as generalizations are made about the form of f(x) based on instances of di�erent
supervised learning methods corresponding to di�erent inductive biases. The ones used in
our thesis include the Linear Regression model, SVM and M5 pruned decision tree (M5P)
[37].

The general structure of such supervised learning methods given by Hand et al [26] is

• Define the task - in our case it is predicting a whole number (we round decimals to
nearest whole numbers)

• Decide on the model structure - the choice of inductive bias (mentioned in subsec-
tion 2.4.2), we have used Linear regression, SVM and M5P.

• Decide on the score function to judge the quality of our curve fitting - for example,
squared error used in Linear Regression and so on

• Decide the optimization/search method to optimize the score function.

Now we discuss the three models used in our work starting with Linear Regression.

2.4.4 Linear Regression

Linear Regression models the relationship between a scalar output variable and one or more
input variables using linear functions. The simplistic curve fitting model (figure 2.7) stated
earlier in this section is an example of this. Linear regression is used to fit a predictive model
to an observed data set of y and X values where X = x1,x2, ...,xn, i.e. set of input features.
After developing this model, for an additional value of X, the model predicts the value of y.
The score function here is the squared error or likelihood given by the equation

E(w) =
nÿ

i=1
(yi ≠f(xj ;w))2 (2.2)

where w represents the weight associated with each input attribute.
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Figure 2.8: Support Vector Machines - Mapping the points in 2D to 3D in-order to be separated by a
hyperplane for classification

2.4.5 Support Vector Machines

The next model is the Support Vector Machine (SVM) which maps the input data into a
higher-dimensional space and then finds a hyper-plane in this space which separates the data.
This is because while the original problem may be stated in a finite dimensional space, it
may not be possible to linearly separate the points in that space into di�erent sets. However,
if the original space is mapped onto a much higher-dimensional space as illustrated in figure
2.8 then the points can be separated for classification, regression or any other task.

Figure 2.9: The Support Vector Machine model, adopted from [32].

This mapping can be done either using a kernel function or a radial basis function. There
are two parameters, gamma and cost, that control the SVM’s behavior and tune its accuracy.

If we consider a two class example (+1 and -1) with linearly separable training data, we
can select two hyper-planes that separate the data such that there are no points between
them. We then try to maximize their distance. The region bounded by them is the "margin".
Mathematically, if the perpendicular distance from a hyperplane in the bounded region to
the nearest +1 class point is d+ and similarly d≠ for the nearest -1 class point, the margin is
defined as min(d+,d≠). We want to find the maximum-margin hyperplane that divides the
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+1 class points from the -1 class points. The support vector machine algorithm looks for
this maximum margin, i.e. choosing a hyperplane so that d+ = d≠ as shown in Figure 2.9.

The hyperplanes themselves are described by the equations

w ·x ≠ b = 1 (2.3)

and
w ·x ≠ b = ≠1 (2.4)

This way of separating data makes SVM a discriminative learning model which focuses
on class boundaries. The linear SVM usually performs better than the linear regression
model owing to its default policy of normalizing training data and, apart from polynomial
kernels it can also use radial basis functions to handle non linearity,

Figure 2.10: The Multi layer Perceptron Model, adopted from [32]

2.4.6 Multi Layer Perceptron

Multi Layer Perceptrons (MLPs), illustrated in Figure 2.10, are a form of artificial neural
networks [37]. They consist of multiple layers of nonlinear activation functions that transform
the data input to obtain the output. Linear activation functions can be used to make a
regression model, whereas a logistic activation function such as

g(z) = 1/(1+e

≠z) (2.5)

or the Gaussian function can be used to solve classification programs. There can be an
arbitrary number of hidden layers and each unit in the first hidden layer computes a non-
linear function of the input x. Each unit in a higher hidden layer computes a non-linear
function of the outputs of the layer below.
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MLP is a powerful function approximator but it incorporates overfitting due to repeated
back propagation of errors resulting in small training error but large validation error. Tech-
niques to improve generalization in multilayer perceptrons are discussed in [88]

2.4.7 Decision Trees

Decision Trees can be used for either supervised classification or regression. A decision tree
is composed of the root node that branches out into subsequent parent nodes that terminate
at leaf nodes. In the case of classification, the leaves represent class labels and branches
represent conjunctions of features that lead to those class labels. Thus each non leaf node
represents a condition based on which decisions are taken leading to further nested conditions
or termination at leaf nodes which represent outcomes. This is illustrated in figure 2.11 where
the conditions are Outlook=Overcast, Humidity=Normal and Wind=Weak.

Figure 2.11: The classification Decision Tree, adopted from [74]

For regression, each leaf node calculates a real number which is the predicted outcome
of the output attribute. All non leaf nodes are conditions against which real valued input
attributes are tested and based on the result, each non leaf node branches into subsequent
nodes or it terminates at a leaf node. We use Ross Quinlan’s M5 algorithm [87] which is a
regression tree algorithm where linear regression equations on the leaves calculate values of
the output attribute we are interested in. Moreover, the M5P algorithm allows the generation
of pruned or unpruned trees. Pruning is required because, as with MLP, decision-tree learners
can create over-complex trees that do not generalize well from the training data leading to
over-fitting. Increasing the number of training instances and applying techniques like k-fold
cross validation improves accuracy of prediction as k-fold cross validation combats overfitting
[78]. However, there is a limit to improving the accuracy of tree based learners through
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increased numbers of training examples. This can be seen from Figure 2.12 where increasing
the number of examples increases the tree based learners accuracy up to a limit while a naive
bayes learner actually overtakes the tree learner.

Figure 2.12: This figure illustrates how the naive bayes outperforms the tree based learner whose
accuracy saturates after a threshold amount of examples is reached, adopted from [29]

In the context of our work, once a learning model has been trained to a su�cient level of
accuracy, it can be utilized after compile time profiling of a program to automatically tune
the skeleton feature space. Tuning would lead to an improvement in run time performance
and reduction in parallel cost.

Having made the case for applying machine learning we now provide the background
details of the data parallel skeleton that forms the core of our thesis, the wavefront. We
begin with a general introduction to Dynamic Programming Problems [13] as the wavefront
pattern belongs to this class.

2.5 Dynamic Programming Problems

Dynamic Programming is the process of dividing complex problems into manageable overlap-
ping sub-problems, whose solutions are reused to solve other sub-problems. The wavefront
pattern is a class of Dynamic Programming problems. A Dynamic Programming problem
is expressed as a functional equation which is a recursive equation that represents the solu-
tion, with the left side being the unknown quantity to be computed and the right side being
an aggregate function such as a min, max, average etc [13]. Each Dynamic Programming
problem can be classified by its properties as :

• Monadic : The functional equation contains one recursive term per subproblem.

• Polyadic : The functional equation contains multiple recursive terms per subproblem.

• Serial : The sub problems depend on previously computed results from only the im-
mediately preceding stage.
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• Non-Serial : The sub problems depend on previously computed results from many
previous stages.

Thus dynamic programming problems belong to one of the four categories which we
briefly discuss with examples for each case.

• Serial Monadic : The 0/1 Knapsack problem belongs to this class. Given a knapsack
of capacity C and weight of each of n objects being wi, the goal is to maximize the sum
of the knapsack profit pi subject to the constraint of capacity of knapsack. Objects
inside the knapsack are denoted by vi = 1 and those outside the knapsack have vi = 0.
This can be expressed mathematically as

nÿ

i=1
wi úvi Æ C (2.6)

max(
nÿ

i=1
pi úvi) (2.7)

These conditions are realized in the functional equation where the unknown quantity
in the left hand side F [i,x] is the maximum profit for a knapsack of capacity x using
objects 1,2, ..., i. The solution is realized as

F [i,x] =

Y
_____]

_____[

0, x Ø 0, i = 0

≠Œ, x Æ 0, i = 0

max(F [i≠1,x],(F [i≠1,x≠wi]+pi)) 1 Æ x Æ n

In the first case maximum profit for a knapsack of some capacity is 0 if there are no
objects available. The second case excludes a knapsack of negative capacity. The third
case recursively maximizes the profit at position [i,x] by selecting the maximum profit
from the preceding level where inclusion of an object i with weight wi reduces capacity
by that amount and increases profit by pi.

There is only one recursive term in the equation, making it monadic, and as seen from
figure 2.13, each node depends on two subproblems at preceding level only, thus making
it serial.

• Non Serial Monadic : The functional equation of the Longest Common Subsequence
or Smith Waterman algorithm [95] belongs to the Non Serial Monadic variety. It is
a string alignment problem in bio-informatics that finds the global maximum of the
longest matching sub-strings between any two genetic sequences. Given any two DNA
sequences A =< T,A,T,G,A,C, ... > and B=< G,C,A,T,G,A, ... > of size m and n
respectively, the goal is find the longest sequence that is subsequence of both A and B

(here it is < A,T,G,A >). The functional equation is given below where F [i, j] is the
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Figure 2.13: Serial Monadic Dynamic Programming problem with one recursive term and dependent
on subproblems at preceding level only, adopted from [48]

length of the longest common subsequence for the first i elements of A and the first j

elements of B. The goal is to determine F [m,n], i.e. find the longest subsequence over
the entire lengths of A and B.

F [i, j] =

Y
_____]

_____[

0, i = 0, j = 0

F [i≠1, j ≠1]+1 i, j Ø 0;xi = yi

max(F [i, j ≠1],F [i≠1, j]) i, j Ø 0;xi ”= yi

Here there are two recursive terms but it is monadic as they are in di�erent sub-
problems. Each node in a diagonal depends on two subproblems in the preceding level
(west and north of the element) and one subproblem two levels earlier (north-west
position), making it non serial. This is shown in figure 2.14.

• Serial Polyadic : Floyds all pair shortest path algorithm[56] is an example of serial
polyadic dynamic programming problem. It has the two recursive terms in the second
sub-problem making it polyadic and each node depends only on the preceding level
sub-problems being computed making it serial. Its functional equation is shown below

d

k
i,j =

Y
_]

_[

ci,j k = 0

min(dk
i,j ,(dk≠1

i,k +d

k≠1
k,j )) 0 Æ k Æ n≠1

The dependency relation can be seen in figure 2.15

• Non Serial Polyadic : The Optimal Matrix Parenthesization problem [48] belongs
to this class of problems since its functional equation has two recursive terms in each
sub-problem making it polyadic and each node depends on previously computed sub-
problems from more than the preceding stage, making the problem non serial. The
dependency relation can be seen in figure 2.16
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Figure 2.14: Non Serial Monadic Dynamic Programming problem with one recursive term but depen-
dent on two subproblems at preceding level and one problem two levels up, adopted from [48])

Figure 2.15: Serial Polyadic Dynamic Programming problem with two recursive terms (C and D) and
dependent on two subproblems at preceding level, adopted from [56])
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Figure 2.16: Non Serial Polyadic Dynamic Programming problem with two recursive terms and de-
pendent on subproblems which are located further than the preceding level, adopted from [48])

C[i, j] =

Y
_]

_[

0, j Ø 0,0 Æ i Æ n

miniÆkÆj(C[i,k]+C[k +1, j]+ ri≠1rkrj) 1 Æ i Æ j Æ n≠1

The Non Serial Monadic class of Dynamic Programming problems form the basis of our
research, with the wavefront patterns being the prime examples. We earlier examined one
example of the wavefront - the longest common subsequence application. Other examples
of wavefront applications are discussed in detail in section 2.6. In the next subsection we
introduce the wavefront and discuss the general terminology associated with it.

2.5.1 Wavefront

The wavefront pattern [4] abstracts computations which evaluate a class of multi-dimensional
recurrence relations. The values of the relation are computed into a multidimensional array.
Figure 2.17 gives a graphical representation of a two-dimensional wavefront in which com-
putation starts from a corner of the grid at position (0,0). This computation propagates to
neighboring elements in a series of diagonal bands, resulting from the dependencies inherent
to this pattern. This wave-like sweep of computation gives the pattern its name. All elements
in a diagonal can be computed simultaneously allowing scope for parallel computation as
they only depend on their previous diagonals being computed. In figure 2.17, the number of
elements that can be computed in parallel grows from 1 in iteration 0 to a maximum of 4 for
elements in position (3,0),(2,1),(1,2),(0,3) in iteration 3, positions (3,1),(2,2),(1,3),(0,4)
in iteration 4 and positions (3,2),(2,3),(1,4),(0,5) in iteration 5. It then decreases to 1 by
iteration 8. Thus in a wavefront pattern, the maximum number of elements that can be
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Figure 2.17: (a) Waveflow for a two dimensional instance of size 4 x 6 (b) The number of concurrently
computable elements increases from iteration 0 until maximum parallelism is achieved at iterations 3,4
and 5. Part (b) of the figure is inspired by [1].

computed in parallel are found in the middle of the computation grid, narrowing down as
we move away from the longest diagonals. We now present terminology associated with the
wavefront pattern.

2.5.2 Wavefront Terminology

For our purposes, the key characteristics of a wavefront instance are as described in table
2.1.

The number of rows in the array are represented by dim. For simplicity we assume
square arrays, but this restriction could be lifted straightforwardly. The granularity of the
computation at each point in the array, which we assume to be regular as is typically the
case, is captured by tsize. The number of floating point data items at each point in the
array, providing a measure of data granularity, is represented by dsize. The neighboring
elements of each point being computed are referred by their relative positions such as north,
west, northwest and top. These characteristics form the input parameters to our autotuning
framework. Their experimental values are discussed later in chapter 4, chapter 5 and chap-
ter 6. In the next section we discuss the various wavefront applications that form part of
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Table 2.1: Input Parameters

Parameter Description

dim Overall problem size expressed as width of the ar-
ray. For simplicity, we deal with 2D square ma-
trices or 3D cubes.

tsize Measure of granularity of the task that accounts
for the time taken per element computation. In
our experiments, low values (<10) indicate per
element computation is in milliseconds while high
values (>5000) indicate per element computation
takes few seconds

dsize Measure of element data granularity that is based
on the number of floating point data types and
has implication for time spent in transferring data
between accelerators and CPU cores.

north In a 2D wavefront, north is the element at (i-1,j)
position for an element at position (i,j)

west In a 2D wavefront west is the element at (i,j-1)
position , for an element at position (i,j)

northwest In a 2D wavefront northwest is the element at
(i-1,j-1) position , for an element at position (i,j)

top In a 3D wavefront, top is the element at (i,j,k-1)
position for an element at position (i,j,k)
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our experimental setup.

2.6 Wavefront Applications

For our research we selected two applications that are 2D wavefronts and one 3D appli-
cation. Our criteria for choice were based on contrasting size, task and data granularity.
We also chose these applications because they have uses across diverse domains, ranging
from finance to nuclear physics. One 2D application, the Longest Common Subsequence,
is computationally fine grained with per element computation taking few microseconds and
the amount of data transferred limited to a few bytes. It also has the largest problem size
among all three wavefront applications. This application is relevant in bio-informatics for
gene sequence matching. The second 2D wavefront application is the Nash Equilibrium. It
is a coarse grained with per element computation in the range of hundreds of milliseconds
to few seconds and the data transferred being tens of bytes, but its problem instances are
smaller in size. This application is relevant to financial game theories. The 3D wavefront
application is a modified subroutine from the Lower-Upper Triangulation application which
is an important linear algebra problem. It has granularity that lies in between the 2D ap-
plications but has a higher number of data elements. The contrasting attributes of these
applications provide interesting test cases for our auto-tuning framework and are represen-
tative of a range of wavefront application classes. We now discuss these applications in
detail.

2.6.1 Nash Equilibrium

In game theory, a group of players in zero-sum game are in equilibrium if each player takes
the best decision taking into account decision of every other player. This can be applied to
a game of market share of a product in a zero sum game, where increase in market share
of one company results in decrease of its competitors. Such a case involves a company
taking the best decision by taking into account the marketing strategies of other companies
manufacturing that product. Thus in a a non-cooperative game involving two or more
players, if each player is assumed to know the equilibrium strategies of the other players,
and no player has anything to gain by changing only their own strategy, then they are in
Nash Equilibrium [104].

Nash Equilibria also exists in coordination games. A simple example is the stag hunt
game in which two players may choose to hunt a stag that provides more meat (4 utility units)
or a rabbit (1 utility unit) with the limitation that if one player hunts a stag while other hunts
a rabbit, the stag hunter gets 0 utility units. However, if both hunt stag, the payo� is split
evenly between both (2 utility units each). Thus Nash Equilibrium exists at (stag,stag).
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Table 2.2: Payo� Matrix for a Cooperation game in Nash Equilibrium

Player 1 hunts Stag Player 1 hunts rabbit
Player 2 hunts Stag (2,2) (1,0)
Player 2 hunts Rabbit (0,1) (1,1)

Even (rabbit,rabbit) which is less than the optimal payo�, is at Nash Equilibrium. Here
neither player has any incentive to change strategy due to a reduction of payo� from 1 to 0.
The payo� matrix is shown in table 2.2.

A formal definition of Nash Equilibrium is provided in [66]. In a game let i = 1,2,3...I

be the set of players. Let S = S1 ◊ S2 ◊ ...Sn, be the set of strategies for all players that
fully specify all possible actions and ui be the payo� function for each player. Let ‡i be the
strategy profile of player i. Similarly let ‡≠i be the strategy profile of all players except i.
Then, a strategy profile (‡1, ...,‡I) is a Nash equilibrium if no unilateral deviation in strategy
by any single player is profitable for that player, that is

’i,si œ Si : ui(‡i,‡≠i) Ø ui(si,‡≠i) (2.8)

The Nash Equilibrium application is characterized by small instances but computation-
ally demanding kernel.

2.6.2 Longest Common Sub-sequence

This is essentially a string alignment problem from Bioinformatics [95] called the Smith-
Waterman algorithm. It performs local sequence alignment for determining similar regions
between two strings representing nucleotide or protein sequences. Instead of looking at the
whole sequence, the Smith-Waterman algorithm compares segments of all possible lengths
and optimizes the similarity measure. This problem is characterized by very large instances
and very fine-grained kernels, varying with detailed comparisons made. This application was
earlier discussed as an example of the Non Serial Monadic category in section 2.5

2.6.3 Lower Upper Triangulation

In linear algebra, triangulation is a process of finding a lower or upper triangular matrix
whose product is a given matrix [101].
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A lower triangular matrix or left triangular matrix has the form

L

ú =

S

WWWWWWWWWWU

l1,1 0 . . . . . . 0

l2,1 l2,2
...

l3,1 l3,2
. . . ...

...
... . . . . . . ...

ln,1 ln,2 . . . ln,n≠1 ln,n

T

XXXXXXXXXXV

(2.9)

and analogously an upper triangular matrix or right triangular matrix has the form

U

ú =

S

WWWWWWWWWWU

u1,1 u1,2 u1,3 . . . u1,n

... u2,2 u2,3 . . . u2,n

... . . . . . . ...

... . . .
un≠1,n

0 . . . . . . . . . un,n

T

XXXXXXXXXXV

(2.10)

The application consists of a technique called successive over relaxation (SSOR) which
is a variant of the Gauss-Seidel method for solving a linear system of equations with fast
convergence. SSOR can be understood with an example of a square system of n linear
equations with unknown x. If these linear equations are represented as

Ax = b (2.11)

A can be decomposed into a diagonal component D, strictly lower component L and strictly
upper triangular U .

A = D +L+U (2.12)

The strictly lower-upper triangular matrices di�er from those in equations 2.9 and 2.10
respectively with elements at their diagonals set to zero, i.e. if L

ú
i=j = 0 and U

ú
i=j = 0 then

L = L

ú and U = U

ú. The diagonal component is given by

D =

S

WWWWWWU

a11 0 · · · 0
0 a22 · · · 0
...

... . . . ...
0 0 · · · ann

T

XXXXXXV
(2.13)

The system of linear equations may be rewritten as:

(D +ÊL)x = Êb≠ [ÊU +(Ê ≠1)D]x (2.14)

for a constant Ê > 1, called the relaxation factor. By taking advantage of the triangular form
of (D +ÊL), the elements of x

(k+1) are computed using forward substitution:

x

(k+1)
i = (1≠Ê)x(k)

i + Ê

aii

Q

a
bi ≠

ÿ

j<i

aijx

(k+1)
j ≠

ÿ

j>i

aijx

(k)
j

R

b
, i = 1,2, . . . ,n. (2.15)
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which is a recurrence relation of the Non Serial Monadic variety of dynamic programming
problem. The SSOR kernel used in our experiments comprises multiple sweeps until the
solution converges to the desired value. The subroutine itself is composed of a Jacobian
stencil operation followed by the lower-upper triangulation, which is the wavefront operation.
There are also a significant amount of residual computations outside the SSOR computation.

2.7 Parallel Computing Metrics

For homogeneous parallel computing systems it is conventional to measure judge performance
in terms of cost, speed-up and e�ciency.

The cost of a parallel algorithm is the product of its run time Tp and the number of
processors p. This cost translates into the real world financial cost of purchasing and main-
taining hardware (nodes). Thus a small speed-up, achieved at higher cost, might not be
attractive to the user.

For cost optimality, its cost must match the run time of the best known sequential
algorithm for the same problem given by Ts. The relative speed up o�ered by a parallel
algorithm is then the ratio of the run time of the sequential algorithm to that of the parallel
algorithm. The equation for relative speedup is given by :

S = Ts/Tp (2.16)

Linear speedup or ideal speedup is obtained for S = p. In an algorithm with linear speedup,
doubling the number of processors doubles the speed. But ideal speedup in a parallel program
is limited by Amdahl’s law [53] , i.e. by the time needed for the sequential fraction of the
program.

Another metric of performance is the e�ciency E, given by the ratio of the speedup to
the number of processors used.

E = S/p = Ts/(púTp) (2.17)

However, these definitions of cost, speed-up and e�ciency are specific to homogeneous
systems and measuring performance by these metrics is problematic for heterogeneous sys-
tems of the type we employ. Our most complex systems involve multiple CPU cores, and
also multiple GPU accelerators, each with multiple cores of fundamentally di�erent capa-
bilities and clock speed from the CPU. Rather than generating more complex speed-up and
e�ciency definitions, we proceed as follows: for each application and system, we find the
best absolute performance point (i.e. tuning) obtained by a multicore CPU implementation
alone, which may involve one or more cores, and compare the execution time of other het-
erogeneous implementations to this, and to the best performance point found in the whole
heterogeneous search space. This allows us to see how much we are gaining by introducing
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heterogeneity, and to understand how close to optimal (with respect to our entire search
space) our heuristics are.

2.8 Conclusion

In this chapter we discussed the necessary background information related to the need for
algorithmic skeletons to address the parallel programming crisis. We then provided back-
ground details regarding tuning of skeletons through machine learning to enable performance
portability

We described the wavefront pattern which forms the basis of our work, and introduced a
number of wavefront structured applications. We concluded with a brief overview of parallel
computing metrics.





Chapter 3

Wavefront Implementation Strategy

3.1 Introduction

In keeping with the principles of pattern-oriented parallelism, our wavefront framework sim-
ply requires the programmer to specify the types required to describe the data, initialization
of any boundary values, and the core computational kernel which calculates a data-point
as a function of its neighbors. The kernel is written in the OpenCL compliant subset of
C. All other code, including parallelization, creation, initialization and distribution of data
structures and all OpenCL machinery is hidden and tuned by our framework.

Our parallel wavefront execution strategy includes support for multi-core CPU paral-
lelism, CPU tiling, GPU tiling, and the use of multiple GPUs. We first investigate the
two dimensional wavefront implementation for single GPU and dual GPU architectures in
subsection 3.2.1 and subsection 3.2.2. Their corresponding performance is evaluated later in
chapter 4 and chapter 5. We then describe the implementation strategy for 3D wavefront
applications in a single GPU system in section 3.3 which is evaluated later in chapter 6. We
conclude this chapter with a discussion of various tuning trade-o�s in section 3.4.

3.2 2D Wavefront Implementation

3.2.1 Single GPU Implementation and Tuning Points

The waveflow in figure 3.1 (a) illustrates the potential for parallel execution within wavefronts
where the maximum potential parallelism occurs at the longest diagonal (in the figure the
longest diagonal elements are shaded and numbered 4). In a naive implementation a data
point can be evaluated as soon as its dependencies are satisfied. More pragmatically, when
the problem size is large, it is a common optimization to partition the space into rectangular
tiles, computing all points in a tile sequentially. The dependency pattern between tiles is
identical to that between the original points, but with coarser granularity as shown in figure

43
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Figure 3.1: (a) Waveflow for a two dimensional instance of size 4 x 4 with maximum potential paral-
lelism at 4th diagonal (b) The 4x4 grid now has 2x2 tiles with points inside the tile computed sequentially.
Granularity is now coarser as two elements are now being computed in parallel, as opposed to 4, in the
2nd diagonal.

3.1 (b). Optimal selection of tile size is machine and problem dependent [60, 89]. For
small problem instances, or very fine grained computations, it may even be the case that no
parallelism can be usefully exploited. In such cases it can nevertheless be beneficial to tile
the sequential evaluation order, to benefit from cache re-use.

E�ective application of GPU acceleration is characterized by a need for regular computa-
tion (since the architectural building tiles of GPUs are Single Instruction Multiple Thread or
SIMT (see section 2.2.3)), and su�cient granularity to amortize the costs of transferring data
to and from the device and of initializing execution. In wavefront applications, there is clear
scope for GPU parallelism across each successive diagonal, particularly since typical data
point kernels are largely data-independent in structure, and hence SIMT-like collectively.
Equally, it is intuitively clear that this will only be beneficial for diagonals of su�cient size
and/or computational weight to outweigh the transfer overheads. This presents another
machine and application dependent tuning point.

Our overall parallel implementation strategy therefore has three phases. In the first
phase, tiled parallel computation proceeds using all cores of the CPU. In the second phase,
execution switches to the GPU where it proceeds diagonal by diagonal. In the third phase,
computation reverts to the CPU and is completed in tiled parallel fashion. The second
phase, or in principle the first and third phases, may be null. This strategy is captured in
our library code, using Threading Building Blocks [31] to control CPU phases and our own
OpenCL harness to control communication with and execution upon the GPU.

As noted, within a diagonal, computation of each data point is independent, hence overall
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Figure 3.2: Dependency Array representation adopted from [28] for a 2D 4x4 wavefront. When the
cell values of the dependency matrix decrease to zero, the requirement of the north and west elements
having been computed is satisfied and threads are spawned.

diagonal computation is data parallel. The SIMT constraints of the GPU architecture are
thus satisfied by the diagonal major representation of data and successive diagonals can be
o�oaded onto a GPU. For the remaining data points, CPU computation is preferable.

CPU threads are spawned for either each cell (no CPU tiling) or a block of cells (tiled
CPU) in the data grid, only after their respective dependencies are satisfied. This can be
seen in figure 3.2 which explains the dependency array representation of a 2D grid. Tiling
within a GPU [1], reduces global memory access within the GPU and leads to local cache
reuse, besides invoking fewer kernel calls from the host CPU. GPU tiles map to work-groups
in OpenCL and the elements within the tile map to work-items or GPU threads. Within a
work group, the work items have to be synchronized to follow the wavefront pattern. This
introduces an overhead. The GPU tile size (our ‘gpu-tile’) tunable parameter is restricted
by hardware and problem size.

Our single-GPU parallel implementation strategy therefore has three phases as previously
noted, and three tunable parameters - number of diagonals to o�oad onto a GPU (or ‘band’)
and the tile size of CPU and GPU(‘cpu-tile’ and ‘gpu-tile’). This implementation strategy
is illustrated in the figure 3.3.

In our autotuning experiments for this scheme we first automatically determine whether
to use parallelism, then autotune values for the tile size and for the number of diagonals
to compute on the GPU, if any. The details of these tunings will be discussed in the later
chapters.

3.2.2 Multiple GPU Implementation

The presence of multiple GPUs as explained in chapter 5 introduces two further tuning pa-
rameters. We must decide how many GPUs to exploit (tuning parameter gpu-count). Fur-
thermore, partitioning data among multiple GPUs is non trivial and communication among
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Figure 3.3: Implementation strategy showing three phase computation for 20 x 20 grid. Phase 1 and
3 have CPU tiles of size 4x4 and phase 2 is GPU consisting of its 1D work groups, with each kernel call
corresponding to one diagonal. The straight and dashed lines to the right correspond to the number of
concurrently computed elements in CPU and GPU respectively
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Figure 3.4: The partitioning of three diagonals among two GPUs with subsequent halo regions. The
grid view in (a) shows partitioning of data among two GPUs with the three largest diagonals shaded.
In (b) the three largest diagonals are represented as three horizontal bars

GPUs is expensive. Wavefront dependencies force data in the border regions (or ‘halo’) of
partitioned diagonals to be shared among the GPUs. This is shown for two GPUs in figure
3.4. As successive partitioned diagonals within each GPU get computed, their border data
becomes stale. This necessitates halo exchanges (or ‘swaps’) between the neighboring GPUs,
depending on the extent of overlap or halo size. Each time this happens, data elements have
to be first transferred to the host (CPU) memory and then transferred to respective destina-
tion GPUs. The overhead from data communication mandates minimizing communication
between GPUs. However increasing halo size causes more redundant computation. Thus
halo size is our fifth tunable parameter.

Table 3.1: Tunable Parameters

Parameter Description

cpu-tile side length of the square tiles for CPU tiling
band number of diagonals on each side of the main di-

agonal, to be computed on the GPU
gpu-count number of GPU devices to use
gpu-tile the GPU equivalent of CPU tiling
halo size of the halo for dual GPUs

To summarise, the tunable parameters in our implementation strategy are as listed in
table 3.1. These will be the targets of our autotuning framework. In the next section we
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Figure 3.5: The planar waveflow. In a single sweep, all cells with coordinates i + j + k = m lie on the
mth plane diagonal, and can be processed concurrently. Shown in grey are the elements lying in the 3rd
plane diagonal, i.e. i + j + k = 3

discuss tuning trade-o�s for heterogeneous systems with multiple GPUs. The tunable three
phase strategy itself is captured in our library code as stated earlier.

3.3 3D Wavefront Implementation

In this section we describe our implementation strategy for 3D wavefront applications. The
waveflow for 3D computation grids contrasts with the diagonal traversal seen in 2D matrices.
Now all elements that lie on a plane are computed simultaneously. Computation starts at
position (0,0,0) and propagates to neighboring elements in a series of diagonal planes. For
simpler analysis, we consider cubic datagrids of size n ◊ n ◊ n. This results in planar wave
flows for a cube of dimensions (i, j,k) with all elements lying on the m

th plane having
coordinates i + j + k = m. An example of such simultaneous computation on plane 3 is
shown in figure 3.5.

Similarly, the dependency array for a 2D wavefront becomes a 3D dependency array. Fig-
ure 3.6 shows the dependency arrays associated with the planar waveflow of a 3D wavefront.
As observed, in most cases computation of an element depends on its north, west and top
elements. This leads to the following dependency relationship.

• ’xi,j,k,(i > 0, j > 0,k > 0), dependency = 3

• ’xi,j,k,(i > 0, j = 0,k > 0)‚ (i = 0, j > 0,k > 0), dependency=2
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Figure 3.6: The dependency graph for the planar flow. Each cell depends on the left, right and top
elements. Once the dependency decreases to 0 from a maximum of 3, the cell is processed.

• ’xi,j,k,(i = 0, j = 0,k > 0), dependency=1

Taking these into consideration we discuss our implementation strategy for the 3D case.
Due to the addition of another dimension, the GPU-CPU partition strategy has to be modi-
fied. More specifically, the definition of band used previously in table 3.1 has to be modified
to refer to planar diagonals. The longest diagonal of a 2D matrix consists of elements with
coordinates i + j = m + 1 for an m ú m square matrix. In a 3D grid the longest planar diag-
onal consists of elements with coordinates i+ j +k = n where n is the maximum number of
elements that can be computed in parallel. For an m ú m ú m cubic data grid, the values of
n for even and odd cases are shown in Equation 3.1 and Equation 3.2 respectively.

n = 3ú (m≠1)ú0.5+1 m : ÷k œ N,m = 2k (3.1)

n = 3ú (m≠1)ú0.5 m : ÷k œ N,m = 2k +1 (3.2)

Like the 2D wavefront, we linearize the successive planar diagonals to be o�oaded onto
the GPU. These are then computed in a SIMT diagonal major fashion, with each kernel call
corresponding to a plane diagonal of concurrently computed elements. However, unlike the
2D case where o�set computation for north and west elements was simple, here computing
the position of north, west and top elements is quite complex. This can be seen from figure
3.7 which shows the linearized versions of the 3D and 2D cases. In the 2D case, there is
regular increase in number of elements until the main diagonal and after that there is a
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regular decrease. This index computation for north and west elements is computed taking
into account the o�set values for positions on or before and after the main diagonal.

In the 3D case o�set calculation is complex, requiring a computation that checks di�erent
conditions that include the following :

• Diagonal plane position, i.e., is it after or before the main plane diagonal (as observed
for diagonal plane 3 in Figure 3.7 (a));

• Number of elements in the current diagonal plane, as even and odd number of elements
require di�erent o�set calculation strategies;

• Whether the current diagonal plane is the main plane diagonal (as observed in Fig-
ure 3.7 (b))

• Number of elements in previous diagonal plane. In the 2D case this was not needed
because there is a simple unit increase in number of elements until the main diagonal,
followed by unit decrease post main diagonal.

The SIMT constraints of a GPU for multiple if-else conditions (see subsection 2.2.3 ) makes
such an algorithm costly. Thus for index computation of north, west and top elements, we
have chosen to use an additional helper array containing the (i, j ,k) coordinates of each
element from the linear diagonal major array which was o�oaded onto the GPU. Since the
transfer of this auxiliary array is done only once, the overhead of additional data is easily
o�set from the gains made by avoiding the complex computation that would be needed for
index calculation inside the GPU. The performance benefits of this strategy are evaluated
in subsection 6.4.1.

3.4 Performance Tuning Trade-O�s

Parallel Computing becomes feasible when there is enough parallelism to be exploited. This
is especially true for the wavefront where computation starts from a corner with only one
element that can be computed to many elements in the center diagonals and back to one
element in the opposite corner. This diamond shaped number of parallel elements means
it is vital to select the diagonals with enough parallel elements that can be o�oaded onto
an accelerator like the GPU to overcome communication costs while the remaining elements
are computed in CPU. In the diagonal major representation of the computation grid, the
elements of the first diagonal o�oaded onto the GPU belong to the start diagonal and the
last diagonal before computation switches to CPU is the end diagonal. This is shown in
Figure 3.8.

Thus there are two important considerations for going parallel in a wavefront pattern.
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Figure 3.7: The 3D compute grids of size 4 ◊ 4 ◊ 4 featuring even number of elements and of size
3 ◊ 3 ◊ 3 featuring odd number of elements are linearized into diagonal major arrays in (a) and (b)
respectively. Their shapes make index computation complex and costly inside the GPU. This contrasts
with the regular shapes of linearized diagonal major representation for the 2D compute grids of size (c)
4 ◊ 4 and (d) 3 ◊ 3 grids which makes index computation simple.
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Figure 3.8: Diagonal major representation of a 2D wavefront, with all elements between the Start and
End Diagonals o�oaded onto GPU (shown in grey). Remaining elements are computed on the CPU.

• The problem size (dim) should be large enough, since smaller sized problems can be
computed quicker in the faster CPU cores

• The granularity of task (tsize) should be high enough so that computation dominates
over the cost of starting a GPU and the communication overhead of transferring data
between GPU and CPU.

This communication cost naturally increases when data size (dsize) being transferred in-
creases. Another factor that increases communication cost is the number of GPUs employed.
While with a single GPU data is transferred from/to CPU only twice, dual GPUs have the
additional overhead of exchanging neighboring data between themselves every few iterations
(halo swapping). This overhead becomes more expensive if the data size is large as more
time is spent in swapping halos. A reduction in halo swaps is obtained by increasing the
halo size.

The diagonal major structure of the problem grid in the GPU restricts this halo size to
a maximum of the length of the start/end diagonal. Even at maximum size, the advantage
gained from fewer swaps has to be traded against redundant computation, which starts
a�ecting performance with increasing granularity of task.

Communication cost is also a�ected by tiling (gpu-tile) the GPU since this reduces the
number of kernel calls required but incurs the additional cost of synchronizing work items
within each work group. If computation dominates over communication anyway, time spent
in kernel calls no longer matters and tiling would then prove to be counter productive.

System characteristics a�ect performance: a fast GPU coupled to a slow CPU means
data will mostly be o�oaded to the GPU (unless bandwidth is the bottleneck) leading to
higher values of band. In such a system, CPU tiling will have negligible e�ect as most of
computation is carried out in the GPU. Likewise, in fast CPU-fast GPU systems, good band
values will be correspondingly lower.
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3.5 Summary

In this chapter we looked at the implementation details of our framework. We first discussed
the single GPU implementation then the multi-GPU implementation. Then we discussed
the enhancements to the 2D wavefront tuning framework to support a 3D wavefront. All
these implementations are transparent to the user and auto-tuning takes place o�ine based
on profiling specific to the architecture and application. We concluded this chapter with an
overview of the various tuning trade-o�s that are expected to a�ect overall execution speed
of the applications.





Chapter 4

Single GPU Autotuning : 2D
Wavefronts

4.1 Introduction

In this chapter we discuss the autotuning strategy for 2D wavefront applications and analyze
the results from our exhaustive search and machine learning models.

We begin with a discussion of the tuning methodology for single GPU heterogeneous
systems followed by a brief overview of the 2D wavefront applications deployed on our sys-
tems in section 4.2. We then analyze the results of our autotuner for those applications by
comparing them against the best performing configurations found from an exhaustive search
in subsection 4.3.1. We repeat this process across three contrasting heterogeneous systems
in subsection 4.3.3 - subsection 4.3.5. We summarize our findings in section 4.4.

4.2 Autotuning Strategy

Our goals are to understand the relationship between settings of the internally tunable
implementation parameters (sequential or parallel, tiling, CPU-GPU partitioning) and per-
formance, and to use machine learning techniques to control the automatic setting of these
parameters.

To address the first goal, we conduct an exhaustive evaluation of a problem space covering
our three applications, across a range of settings for four key parameters. dim and tsize
represent the problem size and kernel task granularity respectively. For simplicity we assume
“square” problems, so dim is a single integer. The underlying unit of granularity is the time
taken to execute a single instance of the kernel function on a single CPU core. However since
this di�ers by many orders of magnitude across our problem set, we choose, for presentational
purposes, to report on tsize in terms of an application specific normalized multiple of this
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Figure 4.1: (a)Tuning Strategy for Universal Tuner (b) Tuning Strategy for Class Specific Tuners

underlying value. We stress that this normalization is not present in the raw data used for
machine learning. dim and tsize are inputs to the tuning heuristic. tile and band describe
the tunable parameters. As discussed earlier in subsection 3.2.1, tile is the side length of the
square tiles for CPU tiling and band captures the number of diagonals, on each side of the
main diagonal, to be computed on the GPU. Thus a band of n means that 2n +1 diagonals
in total are assigned to the GPU (so a band of -1 means that the GPU is not to be used). To
address the second goal, we first build a binary SVM based predictor to decide whether or
not to exploit parallelism. For those cases in which parallelism is predicted to be beneficial
we then apply and evaluate two machine learning heuristics, based on Linear Regression and
SVM regression respectively [37]. Background information relating to these techniques has
been provided in subsection 2.4.4 and subsection 2.4.5.
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In our initial auto-tuning experiments we derived a single model for each learning tech-
nique, using training data drawn from all three applications. We refer to these models as
universal tuners as shown in Figure 4.1(a). Subsequently we experimented with models de-
rived from training sets drawn exclusively from each application in turn. We refer to these
as class-specific, as tuners shown in Figure 4.1(b). These tuners are interesting because they
incorporate prior domain knowledge about the application and should perform better than
the universal tuners. We compare the performance of these two approaches. Of course, to
apply the class-specific approach in a deployed system would involve a further application
classification phase.

In all cases, training sets are created by sub-setting the exhaustive search space as fol-
lows: firstly a subset of the problem instances (i.e., by dim and tsize) are selected by regular
sampling. This is to ensure the training examples are separate from the evaluation examples.
Then, the best five performance points for these instances (by tile, band and sequential/-
parallel decision values) are added to the training set. Our choice of best five is a heuristic
based on empirical observation of the prediction accuracy of our learners for the number of
training samples. The intuition is that these should be representative of the good decisions
we wish to embed in our models. We repeat this procedure independently for each system,
in line with a scenario which would see the software trained “in the factory”.

To assess the quality of our learned models, we apply them to a range of problem instances
which were not in the training set, as would happen after deployment in a real scenario. We
compare the performance obtained by our heuristically generated tunings with the best
performance found for the same problem instances during exhaustive search.

4.2.1 Application Suite and Platforms

4.2.1.1 Applications

We have conducted our experiments with three wavefront applications, and a set of instances
distinguished by an adjustable internal parameter for two of these applications, which im-
pacts upon the granularity of the kernel. By varying this parameter we can explore a very
wide range of wavefront instances. This is also beneficial during machine learning, easing
generation of synthetic training data. Two of our applications, the Nash Equilibrium and
Biological Sequence Comparison have already been discussed in detail in section 2.6. We
provide a recap of these two applications followed by an explanation of the synthetic appli-
cation.
Nash Equilibrium [104] : a game-theoretic problem in Economics, characterized by small
instances but a very computationally demanding kernel. The internal granularity parameter
controls the iteration count of a nested loop.
Biological Sequence Comparison [95] : a string alignment problem from Bioinformatics,
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characterized by very large instances and very fine-grained kernels, varying with detailed
comparisons made. This application does not have an internal granularity parameter.
Synthetic application : Noting the contrast in typical problem size and granularity be-
tween our first two applications, we created a third, synthetic application to facilitate ex-
periments in the “mid-range”. The code is based on the Gauss-Seidel iterative solver which
is a technique for solving linear system of equations of the form Ax = b. The equations
are solved one at a time in sequence, using previously computed results as soon as they are
available. It is defined by the iteration

Lx(k+1) = b≠Ux(k) (4.1)

where L is the lower triangular matrix and U is the strictly upper triangular matrix(see
section 2.6.3). The solution for equation 4.1 by forward substitution is given by
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Our synthetic application is derived from this iterative solver, and carries out compu-
tation in a wavefront pattern based on data from the north, west and north-west elements.
The synthetic application allows us to simulate a range of real world applications whose
task granularity lies between that of the fine grained Sequence Comparison and the coarse
grained Nash Equilibrium application. The granularity of the tasks is controlled by an in-
ternal iterator which carries out per element computations repeatedly to simulate coarse
grained computations. The synthetic application thus provides useful training data for our
autotuner by simulating mid-range wavefront applications. It is a strength of the pattern-
oriented approach that such an approach is feasible, removing the need to find real mid-range
granularity applications for the training phase.

4.2.1.2 Systems

Our experiments were conducted across the three systems described in table 4.1. These
contrasting systems were selected to be representative of the range of heterogeneous systems
available today. The i3-540 is an example of a slow CPU with 1.2 Ghz clock speed, coupled
to a relatively fast GPU GTX 480. The i7-990 has a faster GPU, GTX 580, and fast i7 CPU
cores with 1.6 GHz. It has the highest number of CPU cores and memory size among our
systems. The i7-3280 has fewer cores than the i7-990 but has the fastest clock speed at 3.6
GHz and a fast GPU, the HD 7970. Contrasting the two i7 systems, computation would be
faster on the i7-3280 while more data can be loaded onto the i7-990.

We measure runtime of the whole program execution using wall clock timers in the host
program, averaging across three runs. We observed extremely low variance in the region of
few hundred milliseconds.
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Figure 4.2: Exhaustive search results for the Nash application on three systems. Maps illustrate the
potential performance speed-up factor of the best hybrid solution against the best parallel CPU only
solution, the same for tiled against non-tiled solutions, and the band and tile values at the best points. In
all maps the x-axis is tsize, indicating kernel task granularity and the y-axis is dim, indicating problem
size.
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Table 4.1: Experimental Systems

System CPU
Speed
(Ghz)

Cores
(HT)

Mem
(GB)

GPU Speed
(Mhz)

Mem
(GB)

i3-540 1.2 4 4 GTX 480 700 1.6
i7-990 1.6 12 12 GTX 580 772 1.6
i7-3280 3.6 8 8 HD 7970 925 3.0

4.3 Results and Analysis

We present the results of our exhaustive search of the problems spaces across all applications
and architectures in subsection 4.3.1. Then, in subsection 4.3.2, we investigate our autotun-
ing strategies followed by detailed inspection of autotuning results for nash application, syn-
thetic application and sequence comparison application in subsection 4.3.3, subsection 4.3.4
and subsection 4.3.5 respectively.

4.3.1 Exhaustive Search Results

Nash Application
We first investigate the Nash application results for all three systems. Figure 4.2 presents

a set of four performance maps for each system, with all maps having tsize and dim as axes.
In each set of four, the first map compares runtime (rtime) of the best tiled parallel CPU-
only setting with performance on the best tiled and banded parallel CPU+GPU combination
(“Hybrid” in the figure). This is expressed as the ratio of the best tiled parallel CPU-only
rtime to that of the CPU+GPU combination, so values < 1 indicate the CPU-only version
being faster, while values > 1 indicate the potential benefits of correct band tuning. The
second map captures the impact of tile selection which is similarly expressed as the ratio of
best untiled (i.e. 1x1 tile) rtime to best tiled (i.e > 1x1) rtime. Thus, values > 1 indicate
that tile size of more than 1x1 led to better rtime. The third and fourth maps for each system
respectively indicate the band and tile values at the best CPU-GPU combination. Inspection
of this data allows us to understand interesting characteristics of the problem space.

For the i3-540, o�oading almost all of computation onto the GPU from dim=500 onwards
leads to improvement in rtime as seen from 4.2(a). The band value is uniform across all values
of tsize, meaning it is una�ected by granularity. CPU tiling o�ers little benefit, as the GPU
dominates and most of the computation is o�oaded onto the GPU.

Results for the i7-990 show that the dim at which to start using the GPU comes later
(at dim=1400 in 4.2(e) vs dim=250 in 4.2(a) for tsize=25). Fractional values for rtime in
4.2(e) until dim=1200 for tsize=[4, 9, 16, 25] and the corresponding band=-1 (CPU only) in
4.2(f) show the faster CPU cores of the i7-990 dominate performance until problem sizes are
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Figure 4.3: Exhaustive search results for the synthetic application on the i3-540. Maps illustrate the
potential performance speed-up factor of the best hybrid solution against the best parallel CPU only
solution, the same for tiled against non-tiled solutions, and the band and tile values at the best points. In
all maps the x-axis is tsize, indicating kernel task granularity and the y-axis is dim, indicating problem
size.

su�ciently large to o�oad computation onto the GPU. Tiling is vital for cache reutilization
when tsize=1 as seen in 4.2(f), unlike the i3-540 in 4.2(b), but tile values vary arbitrarily
from 2 to 8 as seen in 4.2(h).

For the i7-3280 the e�ect of the raw GPU performance advantage is apparent from the
30 times peak rtime speedup potential against 5 times speedup for the i3-540. The fast CPU
cores mean GPU benefits appear later (at dim=650 in 4.2(i) for tsize>16). Tiling is crucial
when most computation is carried out in its fast CPU cores as seen for tsize=1 in 4.2(j).
Synthetic Application

For the synthetic application, a tiled sequential implementation was found to be best in
(i) dim=[10,50], all tsize values (ii) dim=100, tsize=[1,4,25]. For parallel cases, the results of
i3-540 are shown in figure 4.3. Tiling is more e�ective than o�oading computation onto the
GPU in cases where tsize and dim is small. For tsize=1, the CPU cores profit from tiling as
seen from a peak of more than twice the speedup in rtime in 4.3(b). When tsize is increased,
o�oading computation to the GPU is beneficial. Unlike Nash, tile size of 8x8 was usually
best.

For the i7-3280, band value at the best rtime was consistently -1 as illustrated in Fig-
ure 4.4 (c), meaning for best performance all computation should be carried out in the CPU
cores without o�oading onto the GPU. Since all computation was carried out in the CPU,
the speedup from parallel CPU only phase (phase 1 of hybrid computing using Threading
Building Blocks, refer to subsection 3.2.1) over serial computation is shown in Figure 4.4(a).
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Figure 4.4: Exhaustive search results for the synthetic application on the i7-3280 and i7-990 systems.
Since the best points are CPU only and the GPU plays no role, here maps illustrate the potential
performance speed-up factor of the best parallel CPU only solution against the serial solution, the same
for tiled against non-tiled solutions, and the band and tile values at the best points. In all maps the
x-axis is tsize, indicating kernel task granularity and the y-axis is dim, indicating problem size.
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Figure 4.5: Exhaustive search results for the Sequence Comparison application on the i3-540, i7-990
and i7-3280 systems. Since the best points are CPU only with the GPU playing no role, here the maps
illustrate the potential performance speed-up factor of the best parallel CPU only solution against the
serial solution, the same for tiled against non-tiled solutions, and the band and tile values at the best
points. In all maps the x-axis is system (i3, i7-990 and i7-3280), and the y-axis is dim, indicating problem
size. It should be noted that the sequence comparison application has constant tsize, hence there is no
variation for this parameter.

The tile sizes were also generally 8x8 for dim>1200 across all tsize values, as observed from
Figure 4.4(d). Similar band and tile results were also obtained for the i7-990 as illustrated
in Figure 4.4 (g), (h).

The fast i7 CPU systems are a�ected by tiling with tile sizes > 1 leading to almost 7
times higher speedup in the i7-3280 for all instances from dim>2400 across all tsize values.
Tiling is less e�ective in the i7-990 which possesses a slower CPU compared to the i7-3280.
The tiling impact factor in both systems contrasts with the i3 system where it is < 1.2
for all configurations of dim-tsize when band>-1. This is explained by the dominance of
the relatively fast GPU versus slow CPU in the i3 system, where it makes sense to o�oad
computation onto the GPU, rendering CPU tiling irrelevant in those parts of the optimization
space.

We also note the tiling impact factor of the i7 systems for this “mid-range” application is
larger than the same for the coarse grained Nash application, as illustrated in Figure 4.2 (f)
and (j). This is because computation is dominated by communication overheads resulting in
band values of -1 with tiling a�ecting rtime, while in Nash application the reverse is true for
most parts of the optimization space.
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Sequence Comparison Application
For Sequence Comparison, the best results were usually obtained by the tiled CPU-only

parallelism, except for the i7-990 where the tiled serial version in dim=1000 was typically a
few percent faster due to spawning overhead as illustrated in Figure 4.5. Since band=-1 across
all systems, the hybrid impact factor is measured as the speedup of parallel CPU phase over
sequential phase, similar to the synthetic application. This hybrid impact factor is however,
quite low with a maximum value of 1.8, compared to being almost 30 for the synthetic
application. This is due the low task granularity of the sequence comparison application
which makes spawning new threads expensive.

4.3.2 Autotuning Experiments

Our autotuning experiments are carried out using two learning models - Linear Regression
and Support Vector Machines (SVM). Linear Regression is the simplest predictive model
with a squared error score function, and is fast to train. So this was our first choice to
investigate the relationship of our tunable band and tile parameters and input features.
Then we investigate the tuning performance from using SVM which can partition the search
space on higher dimensions and provide potentially better results.

Our first tuning decision is whether or not to exploit parallelism at all. The Binary SVM
predictor was a universal tuner with an average accuracy of 97% across all systems during
cross validation on the training set. For our test set it correctly predicted in all cases except
for dim=[700,900] in the Sequence Comparison application, in i7-990.

For parallel implementations the exhaustive search of the optimization space highlighted
the need for choosing optimal values for band and tile parameters. Since we may have
dependence between these parameters, we investigate two models, Linear Regression and
SVM Regression (using a polynomial kernel with a linear exponent) to tune our output
parameters. Figure 4.6 gives an example of the type of models generated by these methods,
illustrating the predicted dependence between band and tile values.

Figure 4.6: Sample models of tile and band relationships as predicted by (a) Linear Regression (b)
SVM Regression.
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The key advantage of autotuning over exhaustively searching for best performing points
is the significant reduction in tuning time. While it took a long time to collect exhaustive
search results which were in the order of few days, it took only a few hours to train our
learning models. Once the learners were trained, validating against a test set was even
quicker, in the magnitude of tens of minutes. Finally, tuning decisions for new wavefront
applications (using trained learners) were made instantaneously.

In the next subsections we will illustrate autotuning performance through a series of heat
maps. For each system we have a pair of maps, one for Linear Regression and one for SVM
regression. In each pair, the first map compares the performance of our tuned implementation
with that of the best implementation found during the exhaustive search for the same problem
instance. This is expressed as the improvement in performance from autotuned to best
exhaustive as percentage of runtime of the best exhaustive runtime (abbreviated to ber
below). Thus, positive values indicate that autotuning outperformed exhaustive search.
This is possible because the tuner may select band or tile values which were not tried during
exhaustive search. The second map in each pair indicates the percentage di�erence between
autotuned and best exhaustive band values at the same points.

4.3.3 Autotuning Results for Nash Application

Autotuning results for the Nash application on each of our three systems are presented in
Figure 4.7, Figure 4.8, and Figure 4.9.

Figures 4.7(a) and 4.7(b) show results for the i3-540 by the universal tuner, which per-
formed as well as the class specific tuner. Both Linear and SVM Regression models predicted
values close to optimal values. The class specific tuner fares better than the universal one as
observed from higher rtime improvement, up to a maximum of 60% in 4.7(c) and up to 30%
in 4.7(d). Here the SVM tuner performed better on average because it was accurate over
most dim-tsize values. This is observed from 4.7(d) having a higher number of points with
0% di�erence between best band and predicted band values in comparison to 4.7(c). The
rtime values are slightly di�erent from exhaustive search due to di�erence in predicted tile
values.

The universal tuner fared poorly for the i7-3280, with predicted values increasing rtime
by an average of 120% against ber. This is because in the faster i7 CPU systems, the best
band values are generally -1. In relative terms, the Linear Regression based tuner fared
better than the Support Vector one. This is illustrated from heatmaps in figures 4.8(a)
and 4.8(b). In 4.8 (a) the Linear Regression tuned performance is almost 300% worse at
points where the predicted band values are more than 50% apart from the best band values.
However in 4.8(b) the SVM regression tuned performance is nearly 3000% worse at some
points where band values di�er by more than 60%. The rtime is a�ected by band values more
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Figure 4.7: Autotuner performance for the Nash application on i3-540 for class-specific tuners. Each
pair of maps shows autotuned performance against the best performance from exhaustive search, and
the di�erence in band values used at these points. In all maps the x-axis is tsize and the y-axis is dim.
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Figure 4.8: Autotuner performance for the Nash application on i7-3280 for class-specific tuners. Each
pair of maps shows autotuned performance against the best performance from exhaustive search, and
the di�erence in band values used at these points. In all maps the x-axis is tsize and the y-axis is dim.
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Figure 4.9: Autotuner performance for the Nash application on i7-990 for class-specific tuners. Each
pair of maps shows autotuned performance against the best performance from exhaustive search, and
the di�erence in band values used at these points. In all maps the x-axis is tsize and the y-axis is dim.
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at higher dim-tsize. Linear Regression tuner predicts inaccurate band values at lower values
of dim-tsize compared to Support Vector Machine (SVM) based tuner, which is why it fares
better than the SVM model.

The poor performance of both universal tuners in the i7 systems led us to experiment
with class specific tuners, as shown in figures 4.8(c) and 4.8(d). There was a high penalty for
not being able to predict band=-1, leading to an average rtime increase by 40% for Linear
Regression and by 50% for the SVM model. The class specific tuner also fared better than
the universal tuner for the i7-990 and results are shown in figures 4.9(c) and 4.9(d). The
Linear Regression model correctly predicted band=-1 for tsize=1, dim=[700, 900]. Overall
average rtime increased by 59% using Linear model vs 136% for SVM model.

4.3.4 Autotuning Results for Synthetic Application

The autotuning results for the synthetic application across all systems are presented in
Figure 4.10, Figure 4.11 and Figure 4.12. For the universal tuner on the i3-540 system,
Linear Regression in 4.10(a) performs better than SVM in 4.10(b) as the former manages to
predict band=-1 where needed and it also has fewer number of points with high di�erence
between predicted and best band values. Conversely, in the case of class specific tuning, the
SVM tuner of 4.10(d) performs slightly better than the Linear Regression tuner of 4.10(c).

In the i7 systems, there are no Support Vector learner results for class specific tuning.
This is because the training data in the Synthetic Application for i7 systems has constant
band value of ≠1.

For the i7-990 system, the class specific Linear Regressor correctly predicts band=≠1, so
the di�erence in band values is 0 across all configurations in 4.11(d). Any variation in rtime
improvement in 4.11(c) is due to cpu-tile size.

As before, the Universal tuner fares poorly with the Linear Regression predictor, per-
forming up to 300% worse than the best exhaustive runtime (ber) in 4.11(a) and for SVM it
goes further down to being 2000% worse in 4.11(b). This is because the best band value is -1
in all cases and the universal tuners predict some band>-1 which a�ects the rtime. Linear
Regression fares better as its predicted band values are -1 until dim=1500 while for SVM only
dim=700, tsize=1 had a predicted band value of -1. Similar results were also observed across
the i7-3280 system with the universal tuner faring poorly in figures 4.12(a) and 4.12(b), and
the class specific Linear Regression tuner correctly predicting band=-1 in 4.12(d). Thus class
specific tuning of i7 system performs well for both i7-3280 and i7-990, with an average rtime
improvement of 1.38% and 5.5% respectively over ber.
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Figure 4.10: Autotuner performance for the synthetic application on the i3-540, using the universal
tuner and the class specific tuner. Each pair of maps shows autotuned performance against the best
performance from exhaustive search, and the di�erence in band values used at these points. In all of our
maps the x-axis is tsize and the y-axis is dim.
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Figure 4.11: Autotuner performance for the synthetic application on the i7-990, using the universal
tuner and the class specific tuner. For the universal tuner, each pair of maps shows autotuned perfor-
mance against the best performance from exhaustive search, and the di�erence in band values used at
these points for Linear and Support Vector Predictors. For class specific tuner, only Linear Regressor is
used as discussed in 4.3.4 In all of our maps the x-axis is tsize and the y-axis is dim.
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Figure 4.12: Autotuner performance for the synthetic application on the i7-3280, using the universal
tuner and the class specific tuner. For the universal tuner, each pair of maps shows autotuned perfor-
mance against the best performance from exhaustive search, and the di�erence in band values used at
these points for Linear and Support Vector Predictors. For class specific tuner, only Linear Regressor is
used as discussed in 4.3.4. In all of our maps the x-axis is tsize and the y-axis is dim.
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Table 4.2: Optimal speed-up across applications and systems

System Optimal Speedup Tuner Model % of Optimal

i3-540 6.34x
Universal

SVM 87.18%
LR 85.80%

Class Specific
SVM 95.4%
LR 94.5%

i7-990 7.13x
Universal

SVM 40.18%
LR 57.61%

Class Specific
SVM N/A
LR 89.5%

i7-3280 37x
Universal

SVM 39.07%
LR 48.23%

Class Specific
SVM N/A
LR 91.7%

4.3.5 Autotuning Results for Sequence Comparison Application

The autotuning perfomance of the Sequence Comparison application is presented in Fig-
ure 4.13. The universal tuner fared poorly in all cases and the SVM Regression tuner was
worse than the Linear Regression tuner, with the former on average performing 24 times
worse than the best points and the latter being 12 times worse on average.

None of the systems had class specific SVM predictor because the training data in the
Sequence Comparison application had constant band value of ≠1. The class specific Linear
Regression tuners predicted band=-1, which was correct across all systems. Thus rtime
depended on accurately predicted tile values. For the i7-3280, rtime averaged only 4.7%
more than ber and in both i7-990 and i3-540, rtime averaged 7% more than ber.

4.3.6 Summary

Table 4.2 shows, for each system and autotuning strategy, the average speed-up across all
applications found by exhaustive search, and the percentage of this achieved by the auto-
tuner. SVM class-specific tuners for i7 systems were not relevant for non Nash applications
as the band values were constant at -1 in all case. This trivial case causes SVM to fail but
would be easy to screen out in a production system.

4.4 Conclusion

In this chapter we discussed our autotuning strategy for 2D wavefront applications and the
performance of our autotuner. We first explored the runtime performance of each application
across three di�erent systems for various combinations of input parameter values. Then we
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Figure 4.13: Autotuner performance for the sequence comparison application for all systems, using the
universal tuner and the class specific tuner. For the universal tuner, each pair of maps shows autotuned
performance against the best performance from exhaustive search, and the di�erence in band values used
at these points for Linear and Support Vector Predictors. For class specific tuner, only Linear Regressor
is used as before. In all of our maps the x-axis represents the systems and the y-axis is dim. It should be
noted that the sequence comparison application has constant tsize, hence there is no variation for this
parameter.
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selected a subset of the exhaustive search results to train our learning models. Evaluation
of our tuner was then carried out on a separate test set.

Our first tuning decision was a simple sequential/parallel choice. Where a parallel so-
lution was selected, we observed that well chosen settings for the tile and band parameters
produced very significant improvements in performance, and correspondingly that poorly
chosen settings resulted in performance which was sub-optimal. Our autotuning experi-
ments showed SVM regression outperformed Linear Regression on the i3-540 system, but
the reverse was true for the i7 systems.

Class-specific tuners equaled or outperformed the universal tuner in all situations. This
raised a new challenge. Our classes here were defined intuitively, but a fully automated
class-specific solution would have to perform this classification directly. For that to occur,
firstly the synthetic training set has to be large enough to encompass a wide range of input
parameter values of task granularity and problem size, and the learning model has to perform
better than the ones we had employed. These issues are addressed in the next chapter.





Chapter 5

Multiple GPU Autotuning : 2D
Wavefronts

5.1 Introduction

We now consider the additional challenge of autotuning wavefronts for systems with two
GPUs. Once again, our goals are to understand the relationship between settings of the in-
ternally tunable implementation parameters and performance, and to use machine learning
techniques to control the automatic setting of these parameters. We first explain our ex-
perimental program in section 5.2. The first phase of our experimental program deals with
training our model, using the synthetic wavefront application. The second phase applies
the learned model to real, previously unseen wavefront applications. We then analyze the
results of our exhaustive search in section 5.3 and examine the details of our autotuning in
subsection 5.3.2. Finally we discuss the evaluation of our learned models in subsection 5.3.3.

5.2 Experimental Program

In this section we discuss the training phase of our autotuner followed by the evaluation
phase and the systems on which our experiments were carried out.

5.2.1 Training Phase

Training is conducted with instances of a synthetically generated wavefront application, in-
stead of using training instances from all wavefront applications as was done for the universal
tuner in chapter 4. This is parameterizable across a wide range of size and granularities.
While the synthetic application of the previous chapter simulated real world applications
whose task granularity lied in mid-range, the current synthetic application simulates the
entire range of fine grain to coarse grain applications. This allowed us to exclude training

77



78 Chapter 5. Multiple GPU Autotuning : 2D Wavefronts

Figure 5.1: Machine Learning Strategy : The training set is created by selecting high performing
instances from an exhaustive parameterized search of the synthetic wavefront application. Decision tree
models are built from the training set and cross validated. In deployment, the model is passed features
of the previously unseen application and returns appropriate tuning parameter settings.

instances from real world applications, in contrast to the previous universal tuners that were
trained on instances from two real world applications.

5.2.1.1 Parameter Space

Table 5.1: Parameter Ranges

Parameter Range

dim 500 to 3100
tsize 10 to 12000
dsize 1, 3, 5
cpu-tile 1, 2, 4, 8, 10
band -1 to 2*dim-1
gpu-count 0, 1, 2
halo -1 to 0.5*(length of first o�oaded diagonal)
gpu-tile 1, 4, 8, 11, 16, 21, 25

In order to gain insights into the shape of the performance space and trade-o�s, we first
conduct an exhaustive evaluation of our synthetic application, across a range of settings
for the input and output parameters, as listed in table 5.1. The values selected for the
input parameter space (dim, tsize and dsize) are meant to be representative of real world
applications. For some tunable parameters, our experiments were carried out within the
range of values that are restricted by hardware and framework implementation. These are
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gpu-count and gpu-tile. Other tunable parameters like band and halo are dependent on
values of the input parameter space. The cpu-tile parameter range was chosen empirically
after observing tiling had no noticeable e�ect on performance for cpu-tile Ø 10 and 500 Æ
dim Æ 3100.

dim is straightforward. tsize is measured in units of the execution time of a single iteration
of the synthetic kernel function on a single CPU core. For dim values ranging 500 to 3100,
a single iteration of the coarse grained Nash Equilibrium application takes the same time
as 750 iterations of our synthetic application ( tsize=750) while the fine grained Biological
Sequence Comparison application takes half the time of a single iteration of the synthetic
application (tsize=0.5).

The data structure for each element in our synthetic application consists of two int
variables and a varying number of floats, controlled by dsize. For example, dsize=5 means
size of each element is 8+5ú8=48 bytes and so on. Nash Equilibrium application with its
two int and four float variables has a size of 40 bytes, so that dsize=4. Biological Sequence
Comparison application with its 1 int and 2 char variables has a size of 6 bytes but dsize=0
as it has no floating point data.

Values of parameters like dim, tsize, band, halo are spaced irregularly to avoid any cyclic
pattern and incorporate a degree of randomness. The best performing values are used in
training our learning models.

To simplify modeling, we have overloaded the band and halo parameters to encode gpu-
count. As before, a band of n means that 2n+1 diagonals in total are assigned to the GPU,
a band of -1 means that the GPU is not to be used. Larger band values mean that at least
one GPU is used, with a non-negative halo size indicating the gpu-count is 2.

To enable us to explore the parameter space within a reasonable time, we set a threshold
limit of 90 seconds on the runtime (rtime) for any execution. This has no impact on our
tuning since any point that exceeds this threshold limit is already a very bad configuration
which would not be selected as a training example. We removed the threshold in collecting
points for our serial baseline in order to correctly compute performance improvement.

5.2.1.2 Autotuning Strategies

We use decision trees to derive our learning model, using training data drawn from the
synthetic application. Training sets are created by subsetting the exhaustive search data as
follows: firstly a subset of the problem instances (i.e., by dim, tsize and dsize) are selected
by regular sampling; then the best five performance points for these instances (by tunable
parameter values) are added to the training set. The intuition is that these should be
representative of the good decisions we wish to embed in our models. Initial evaluation is
done through cross-validation, meaning evaluation is conducted on instances of the synthetic
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application which are omitted from the training set at the first step, to avoid over-fitting.
We explore di�erent configurations of the learning model to obtain test results that are at
least 90% accurate. This model is then applied to the real applications. As before, this
procedure is repeated independently for each system, in line with a scenario which would see
the software trained “in the factory”.

During training, we first build a binary SVM based predictor to decide whether or not
to exploit parallelism. For those cases in which parallelism is predicted to be beneficial we
then apply and evaluate two machine learning heuristics, based on M5P Decision Tree and
REP Tree [37]. Previous work [76] found simple Linear Regression models lacking, and upon
exploring di�erent learning models and analyzing the exhaustive search space, we found the
decision trees to be most accurate in predicting optimal values for our tunable parameters.
This is explained later in subsection 5.3.2.

5.2.2 Evaluation Phase

We evaluated the performance of our learned model on two real world wavefront applications,
discussed earlier in section 2.6. They are the coarse grained Nash application and the fine
grained Sequence Comparison application.

The input parameter values of these real world applications map to our synthetic scale as
follows: one iteration of the Nash Equilibrium application corresponds to a tsize=750 with
data granularity of dsize=4. One iteration of the Biological Sequence Comparison application
has tsize=0.5 and dsize=0 since there is no floating point data.

5.2.3 Platforms

Our three experimental systems are described in table 5.2. ‘HT’ stands for hyper-threaded
CPU cores and ‘CU’ refers to the GPU compute units. The single GPU i3-540 system is
the same as in chapter 4. The two i7 systems are however di�erent as these are multiple
GPU systems compared to the single GPU i7 systems of the previous chapter. As earlier,
our choice of these contrasting systems is meant to be representative of the variety found
in real world heterogeneous systems. The i3 system is the slowest among the three systems
with 1.2 GHz clock speed and a relatively fast GTX 480 GPU. The i7-2600K system has
faster CPU cores at 1.6 GHz and four fast GTX 590 GPUs (only two are used in our work).
The i7-3820 has the fastest CPU cores at 3.6 GHz and while the two Tesla GPU cores are
slightly slower at 1147 MHz compared to GTX 590, their memory capacity is the highest
among our GPUs.

We measure runtime of the whole program execution using wall clock timers in the host
program, averaging across three runs (which exhibited low variance of less than .01).
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Table 5.2: Experimental Systems

System Freq
(Mhz)

Cores
(HT)

Mem
(GB)

GPU Freq
(Mhz)

CU Mem
(GB)

i3-540 1200 4 4 GTX 480 1401 15 1.6
i7-2600K 1600 8 8 4 x (GTX 590) 1215 16 1.6
i7-3820 3601 8 16 Tesla C2070, Tesla

C2075
1147 14 6.4

5.3 Results and Analysis

In subsection 5.3.1 we investigate the characteristics of the search space created by our syn-
thetic training application, and explore the resulting model. In subsection 5.3.2 we evaluate
the model on real world applications.

5.3.1 Training : Exhaustive Search Results

We now present the results of our exhaustive search space exploration of the synthetic appli-
cation across all three systems. This subsection contains an analysis of the best performing
points found from exhaustive search. We explore the GPU usage (band values) at these
points, and how this is a�ected by problem features (size, task and data granularity) and
system characteristics. For optimal points that had multiple-GPU usage, we analyze the
extent of halo region between dual GPUs. Finally we analyze the e�ects of gpu-tiling at
these points.

Next we analyze the performance of these optimal points against simple schemes such
as computing everything serially, computing in parallel with no GPU usage and computing
every element inside a GPU. This is to compare how our framework, with its sophisticated
mechanism of partitioning computation (band and halo) and its built-in optimization tech-
niques (cpu-tile and gpu-tile) fares against such simple schemes. Then we compare the rtime
averaged across all possible tunable parameter configurations against the rtime of our opti-
mal points. This is to provide an estimate of how well a randomly chosen configuration would
perform against our exhaustively searched optimal configuration. If the averaged rtime and
best rtime are within few percentage di�erence, then we might as well randomly pick some
configuration to obtain good performance.

This leads us to the concept of sensitivity, that forms the last portion of this subsec-
tion. While the averages provide an estimate, we explore in detail the performance of every
configuration against the optimal configuration in our search space and observe if there are
many or few configurations with rtime close to the best rtime, forming a thick or thin cluster



82 Chapter 5. Multiple GPU Autotuning : 2D Wavefronts

around the best configuration. Having many points around the best performing one means
we can randomly choose some point which will perform well and our search space is thus
insensitive to changes in tunable parameter values. The reverse is true for a sensitive search
space. We measure sensitivity by analyzing the rtime from all tunable parameter configura-
tions across every combination of input parameter (dim - tsize - dsize) values in the form of
violin plots. This is explained in detail in subsubsection 5.3.1.4.

5.3.1.1 Optimal Performance Points

Figure 5.2 presents a set of four heatmaps for the two i7 systems with multiple GPUs and
two heatmaps for the i3 system with a single GPU. In all maps tsize and dim are the x
and y axes. The heat maps illustrate the values of band and halo (for multi GPU systems)
that result in the fastest execution time. The upper half heat maps correspond to dsize=1
(element size=16 bytes) and lower half with dsize=5 (element size=48 bytes). We analyze
the results based on the trade-o� considerations mentioned earlier in section 3.4.
GPU Usage (band) :

From the maps it is clear that computing on the GPU (band Ø 0) becomes favorable
when task granularity exceeds a certain threshold and this threshold varies depending on
the problem size, data size and the hardware. We consider each of these e�ects below.

• Problem Size and Task Granularity E�ect : GPU use becomes feasible when there
is su�cient parallelism available in the form of concurrently computable elements in
each successive wavefront diagonal and the computation is coarse enough to overcome
the communication overhead between CPU and GPU. Across all heatmaps, GPU use
can be seen for problem sizes (dim) Ø 1900 and task sizes (tsize) Ø 2000. In general,
the band value increases with increase in dim and tsize, though there is an exception
to this rule when multiple GPUs (halo Ø 0) are used. We discuss this later in this
subsection.

• Data Size E�ect : The e�ect of dsize can be seen in all three systems, where the 48
bytes sized elements make GPU use costly due to data transfer overhead to/from GPU
as previously discussed in 3.4. When dsize=5, GPU usage is feasible at high values of
problem size and task granularity with (tsizeØ2000, dimØ1900) in the i7 systems and
(tsizeØ700, dimØ 1100) in the i3 system. This threshold is low for dsize=1 with GPU
use becoming feasible at (tsize Ø 1000, dim Ø 1500) in the i7 systems and (tsize Ø 250,
dim Ø 1100) in the i3 system.

• Hardware E�ect : Consider the case of dsize=1 (element size=16 bytes) for the i7
systems with fast CPU cores, where the GPU is used from tsize Ø 500 and dim Ø 1900
onwards. This di�ers from the i3 system with its slower CPU cores where GPU is used
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Figure 5.2: Heatmaps illustrate the band and halo values at the best performing points from our
exhaustive search across three systems for an element size of 16 bytes (dsize=1; 1 float and 2 ints) and
48 bytes (dsize=5; 5 floats and 2 ints). The i3 system is a single GPU system, hence no halo heat map is
shown. In all maps the x-axis is tsize, indicating kernel task granularity and the y-axis is dim, indicating
problem size.
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at a lower threshold of tsize Ø 100 and dimØ 1100. A slower CPU coupled to a faster
GPU means most of the data should be o�oaded onto the GPU and this is validated
by the above result.

Multi-GPU Usage (halo) :
As discussed earlier in section 3.4, dual GPUs have the additional communication over-

head of halo swapping that gets more expensive for large data sizes and communication cost
is higher for fine grained tasks. However if the task granularity is above a certain threshold,
the redundant computations in the halo regions should dominate over the communication
cost. Problem size also plays a part in multi-GPU usage as larger problems have more
concurrently computable elements that can be split among multiple GPUs.

• Data Size and Task Granularity E�ect : In both multi-GPU i7 systems, we see
halo > -1 for tsize Ø 500 when dsize = 1. This means for small data granularity
and su�ciently large computation granularity, there is little communication overhead
in swapping boundary elements between two GPUs making dual GPU use e�ective.
However, this threshold increases to tsize Ø 2000 when dsize = 5. This confirms our
hypothesis that increase in communication overhead is due to the increase in data size,
rendering multi-GPU usage unfeasible.

We also note that the best halo values start decreasing steadily from a peak value.
For example in case of the i7 systems at dim=[2700, 3100] and dsize=1, halo values
peak in the regions of 500 Ø tsize Ø 1000 and then gradually decreases. This validates
our reasoning that halo sizes for the multi-GPU systems are higher when tsize values
exceed a certain threshold owing to the trade-o� between redundant computation cost
and lesser communication cost.

• Problem Size E�ect : The problem size naturally determines the extent of halo
regions and the heatmaps show a steady increase in halo values for corresponding
increase in dim values until a saturation point that depends on dsize and tsize, as
discussed above.

• Hardware E�ect : halo is also a�ected by hardware as seen in the heatmaps for the
i7 system (and is non-existent for single GPU i3 system). The i7-3820 CPU has higher
operating frequency than the i7-2600K CPU (3.9 vs 3.8 Ghz) and greater L2+L3 cache
(11 MB vs 9 MB) meaning i7-3820 should have more CPU computation relative to the
i7 2600K. Besides the GTX cards have faster and higher number of compute units (see
table 5.2). This is seen from the lower halo values for the 3820 system at tsizes 2000
to 12000 but there is an exception when dsize=5 and tsize=1000 where the Tesla cards
of the 3820 system take up more computation relative to the GTX cards of the 2600K
system.
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Figure 5.3: Bars illustrate the speedup of the heat-map points from figure 5.2 over serial, parallel CPU
and single GPU baselines.

Tiling :
We conclude the heatmap observations by noting that GPU tiling was not beneficial

in our search space. This was because tiled GPU performed better than the untiled GPU
implementation in cases where the communication costs dominated over computation costs,
tsize < 50. However in these situations, the CPU only parallel implementation dominated
over any GPU based implementation due to the additional overhead incurred from starting
the GPU.

5.3.1.2 Comparison with Simple Schemes

Next we investigate the quality of these heatmap points. We compute the average of the
best rtime across all input parameter values (dim-tsize-dsize) from our exhaustive search
and compare it against the best performing points from three simple schemes of carrying out
computation a) serially in the CPU, b) in parallel across all CPU cores with no GPU phase
and c) entirely in the GPU (figure 5.3)

The quality of our heat map points or optimal points from exhaustive search is superior
to the best performing points from simple schemes. This is observed from the 4 - 4.5 times
speedup over serial scheme, 1.05 - 2 times speedup over parallel CPU scheme and 1 - 2 times
speedup over single GPU scheme.

We note that in case of the i7 systems, on average, doing everything on the GPU, is worse
than doing everything on the CPU. This is because the fast CPU outperforms the GPU by
a large margin for low task granularity points (up to 10 times for tsize Æ 100, dim Æ 1100 ).

5.3.1.3 Average Case Comparison

The next comparison evaluates optimal heatmap points against average behavior. This is
seen in detail in figure 5.4, which representing the best exhaustive runtime (abbreviated to
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Figure 5.4: Average case comparison for the Synthetic Application. The x-axis is dim-tsize, indicating
groups of problem sizes whose kernel task granularity varies from 10 to 12K and the y-axis is rtime,
indicating actual runtime. Best is the best exhaustive rtime (ber), AVG is the average rtime from all
configurations, S.D. is the standard deviation from average. dsize refers to the number of floats in our
synthetic data structure containing 2 int variables. Total element size = 16 bytes (dsize=1; 1 float and
2 ints) and 48 bytes (dsize=5; 5 floats and 2 ints)
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ber) and the runtime (rtime) averaged across all possible combinations of tunable parameters.
The figure includes corresponding standard deviations. The x-axis shows groups of dim-tsize
with dim varying 500 to 2700 with each dim grouping tsize varying from 10 to 12000. The
y-axis is the rtime in seconds. Both halves show the performance across all three systems
when element size=16 bytes and 48 bytes respectively. For dsize=1 (element size=16 bytes),
the ber is 1.5-2 times faster than the average. The standard deviation steadily increases
from dim=500 to dim=1900 due to the widening gap between the best performing and worst
performing points. At dim=2700 there is a sharp drop as the rtime values exceeded our 90
second threshold. These points were excluded from the average. In case of dsize=5 (element
size=48 bytes), the gap between ber and average rtime for dim=2700 at tsize=[8K, 10K, 12K]
narrows down to being just 20%. With higher dsize, the GPU overheads become larger. So
the best rtime points which normally belong to dual GPU + CPU configurations, come closer
to the average rtime. With higher dsize more points also get excluded for exceeding our 90
second threshold so the average doesn’t include many poor configurations. This does not
a�ect autotuning since poor points are not used for training.

5.3.1.4 Sensitivity Analysis

We now explore how sensitive the best points are to changes in parameter values. Higher
sensitivity would indicate that finding these points is challenging, whereas low sensitivity
would indicate that simple random methods might su�ce. We present this in the form of
violin plots (a combination of box-plots and kernel densities) where the median value is
represented as the white dot, with the best and worst points at the extreme ends.
i7-2600K Sensitivity We begin with observing the entire search space distribution for the

synthetic application in the i7-2600K system, shown in Figure 5.5, Figure 5.6 and Figure 5.7
which correspond to the three broad category of groupings by data size or dsize of {1,3,5}.

Along the x-axis, violin plots are grouped according to a nested scheme of dim and tsize.
Inside each of these groups, the kernel task granularity or tsize varies from 100 to 12000 for
problem size that ranges from 500 to 3100. The y-axis shows the actual execution time or
rtime. We now examine the e�ects of each of these input parameters on the sensitivity of
this search space.

• Data Granularity E�ect : With increase in dsize from 1 to either 3 or 5, the
sensitivity of points decreases with the best performing points in each grouping of dim-
tsize falling from being 7-8 times faster than the worst points to being 3-4 times faster
than the worst points. This happens due to the increased communication overhead
with larger data that to some extent negates the gains of using single/multiple GPUs
as discussed earlier in section 3.4. The median value also gets closer to the base.

• Task Granularity E�ect : Another observation is that low task granularity points
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Figure 5.5: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-2600K system. The best points are at the base and the white spots are the medians. The x-axis is
tsize, indicating kernel task granularity. The y-axis is rtime, indicating actual execution time. The violin
plots cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize =
1. Segments of this space are examined in greater detail in Figure 5.8.
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Figure 5.6: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-2600K system. The best points are at the base and the white spots are the medians. The x-axis is
tsize, indicating kernel task granularity. The y-axis is rtime, indicating actual execution time. The violin
plots cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize =
3. Segments of this space are examined in greater detail in Figure 5.8.
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Figure 5.7: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-2600K system. The best points are at the base and the white spots are the medians. The x-axis is
tsize, indicating kernel task granularity. The y-axis is rtime, indicating actual execution time. The violin
plots cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize =
5. Segments of this space are examined in greater detail in figure 5.8
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are more sensitive in general due to communication dominating computation, requiring
careful selection of band values. However, at the other extreme, sensitivity of very
coarse tasks (tsize Ø8000) gradually increases as seen from the rise in median (the
white spots) from the base of the violin plots. Here the best points usually have halo
Ø 0 meaning the trade-o� between redundant computation and communication has to
be factored in, so the tunable parameter values are more sensitive.

• Problem Size E�ect: Finally we notice that increase in problem size leads to decrease
in sensitivity, relative to smaller problem sized instances. This is observed from the
increasingly flat bases of the violin plots when dim approaches 3100.

While these are high level observations, we now examine sensitivity e�ects in detail.
Detailed Examination of i7-2600K sensitivity We now explore interesting areas of
the space in more detail by expanding segments of Figure 5.5, Figure 5.6 and Figure 5.7
into Figure 5.8. These are two samples of dim=[700, 2700] for dsize=[1, 5] representing the
boundary problem and data sizes. They are followed by two samples of dim=[1100, 1900]
for dsize=[3, 5] representing the mid range cases.

The samples in figures 5.8 (a) and 5.8 (b) are close to the boundary cases in our search
space and they conclusively highlight how di�erence in problem size and data granularity
(and corresponding variation in kernel task granularity within them) impacts the search
space. For dim=700 we note that most of the points in tsize=100 to 1K are dispersed
around the median value. This is due to the best configuration in these cases being all CPU
(see the heatmap in figure 5.2 showing band=-1 for i7-2600K where dim=700, tsizeÆ2K).
In that case the tunable parameters are only cpu-tile and dsize resulting in configurations
numbering in tens instead of thousands. Contrast this with tsizeØ2K and for all points in
dim=2700 where there are many points less than the median value, as seen from the flat base
of each violin. These cases correspond to various combinations of the tunable parameters
band, halo and gpu-tile in addition to cpu-tile. We also observe that in case of dim=2700,
dsize=5 variations in the former three parameters do not a�ect performance as much as for
dim=700. This is also confirmed by the lower gap between average rtime and ber (see figure
5.4). However selecting the worst points in these cases, such as computing on the CPU
only with band=-1 when dim=2700, dsize=1 and tsizeØ4K, is quite costly (up to 8 times
slower). The worst case in these cases are the best points for dim=700, tsizeÆ2K. Thus,
while variation in tunable parameter values from the best values within a subset of input
configurations may not a�ect performance, it can a�ect performance in other subsets.

The samples of figure 5.8 (c) and 5.8 (d) highlight the mid range case which highlight
the low sensitivity of these points in contrast to samples of figure 5.8 (a) and 5.8 (b). The
bases are flatter and there is hardly any di�erence between the violin plots for dsize=3 and
dsize=5. While this may indicate tuning certain parts of the search space can be trivial,
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(a) (b)

(c) (d)

Figure 5.8: Detailed violin plots for the synthetic application showing dispersion of all configurations
for the boundary cases of (a) [dim={700}, dsize={1,5}] (b) [dim={2700}, dsize={1,5}] and the mid
range cases of (c) [dim={1100}, dsize={3,5}] (d) [dim={1900}, dsize={3,5}] in the i7-2600K system.
The best points are at the base and the white spots are the medians. The x-axis is tsize, indicating
kernel task granularity and the y-axis is actual execution time.
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we note that the best points in some subsets were the worst ones in others and vice versa,
meaning that any attempt to hand code heuristics for each case quickly becomes impractical.
i7-3820 Sensitivity We briefly discuss the sensitivity of the i7-3820 system for the synthetic
application as illustrated in Figure 5.9, Figure 5.10 and Figure 5.11. It is similar to what was
observed for the i7-2600K system barring minor di�erences due to di�erence in hardware.
As observed earlier in the i7-2600K system, here too the sensitivity decreases with increase
in both data granularity and problem size, while registering a slight increase when task
granularity exceeds certain threshold values. The increase in sensitivity varies based on dsize
due to the trade o� from the communication cost of transferring and exchanging more data
between the GPUs and the computation cost of each data point. For example in Figure 5.9,
for dim=[2700, 3100] there is a marked ascent in the median value (denoted by white spot)
from the base of the violin plots from tsize=2000 to 12000, and the best performing points
can be 8 times faster than the worst performing ones. But in Figure 5.10, the ascent is
not so steep, and the best performing points are 3-4 times faster than the worst performing
points. This is because for low data sizes, the data transfer overhead is lower, and choosing
the optimal GPU-specific tunable parameter values (band and halo) a�ects performance.

In all these figures, some of the violin plots do not capture the worst performing points
because they exceed the time limit for computation set by us. As the worst performing points
are not part of the training dataset, their exclusion does not a�ect tuning but the height of
the violin plot in the search space is distorted. These points are (dim=1900, tsize=12K),
(dim=2700, tsize=[8K, 10K, 12K]) and dim=3100, tsize=[4K, 8K, 10K, 12K]).

We conclude this subsection by noting how our exhaustive search results have revealed
the di�culty in creating a naive heuristic to predict optimal values for tunable parameters.
Thus, we pursue auto-tuning strategies based on machine learning.

5.3.2 Autotuning : The Learned Model

Our learned model is an M5 pruned decision tree, as discussed earlier in subsection 2.4.7. We
did not use Linear Regression or SVM based universal tuners due to their poor performance
in the previous chapter. A careful analysis of the search space of the synthetic application
shows the best performing points in the synthetic application resemble a saw-tooth like
pattern, progressively increasing in size with increase in dim, as illustrated in Figure 5.12.
This sort of pattern fits quite well with a tree based learner, as can be observed from a
fragment of the learned model predicting the optimum halo values for the i7-2600K system,
in figure 5.13.

The regression equation (LM1) shows that halo depends on other tunable parameters like
band and cpu-tile. This agrees with our intuition as halo values are a measure of the extent
of overlap among partitioned diagonals o�oaded onto GPUs. Hence, halo values depend on
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Figure 5.9: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-3820 system. The best points are at the base and the white spots are the medians. The x-axis is tsize,
indicating kernel task granularity.The y-axis is rtime, indicating actual execution time. The violin plots
cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize = 1
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Figure 5.10: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-3820 system. The best points are at the base and the white spots are the medians. The x-axis is tsize,
indicating kernel task granularity.The y-axis is rtime, indicating actual execution time. The violin plots
cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize = 3
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Figure 5.11: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-3820 system. The best points are at the base and the white spots are the medians. The x-axis is tsize,
indicating kernel task granularity.The y-axis is rtime, indicating actual execution time. The violin plots
cover the entire search space with dim varying from 500 to 3100, tsize from 10 to 12K and dsize = 5
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Figure 5.12: The saw tooth like shape of the best performing points in the synthetic application search
space for i7-2600K system, with progressively increasing size as dim values increase. This shape is more
pronounced with increase in dsize. This type of pattern is a good fit for tree based learners that generate
di�erent linear regression equations to predict output parameters based on decisions taken for di�erent
values of input features. An example of such tree is illustrated in Figure 5.13.

band<=160
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halo = 0 * tsize – 0.1598 * dsize 
+ 0.0546 * cpu-tile + 0.003 * band

– 0.381
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Figure 5.13: i7-2600K system : The M5 pruned model tree for predicting halo values with one linear
model (out of 22) shown. As seen, halo depends on band and cpu-tile values, as well as the input
parameters of task granularity and data granularity.
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Figure 5.14: Speedup over sequential baseline from auto-tuning is within 5% of exhaustive search.

band values. cpu-tile values were predicted using input parameters only (dim, tsize and dsize).
This was because on removing other tunable parameters from the regression equations that
predicted cpu-tile values, accuracy of prediction increased. This also makes intuitive sense
since an all CPU configuration has tiling as its only tunable parameter, so other tunable
parameters are not needed. band values depended on gpu-tile values in addition to input
parameters. From our exhaustive search we found gpu-tile values corresponded to either 1
or 0 (meaning a GPU was not employed), so it was a binary decision that was accurately
predicted using REP Tree. cpu-tile and band values, like halo values, were predicted using
the M5 pruned tree model.

5.3.3 Autotuning Results : Evaluation

For the fine grained Biological Sequence Comparison application, autotuning was trivial as
the band predictions were 100% accurate, i.e. do everything on the CPU. Our learning model
had predicted band=-1 for all tsize<100, across our search space of dimÆ3100. Thus in the
context of our search space only the predicted cpu-tile values di�ered and selecting the best
points was trivial.

A summary of our autotuner’s performance for the Nash application is shown in figure
5.14. This figure describes for each system, the average optimal speed-up against a sequential
baseline found during exhaustive search of Nash, and the speed-up obtained by our autotuner.

The super-optimal performance in the case of the i3-540 is explained by the fact that our
decision tree based tuner is free to select parameter values which lie outside the set of cases
explored in the necessarily finite search. The better quality predictions for the i3-540 can be
explained by considering a) it is a single GPU system with only two tunable parameters band
and cpu-tile, i.e. less parameter values to predict as compared to the multi-GPU systems
and b) its four CPU cores are slow relative to its GPU, meaning most of the data is often
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Figure 5.15: The bars represent runtime of optimal points found from exhaustive search and the line
represents runtime from auto-tuning. The x-axis is dim-tsize, indicating groups of problem sizes whose
task size varies from 10 to 12000 and y-axis is runtime.
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o�oaded onto the GPU, easing prediction as compared to the i7 systems with fast CPU
cores.

We conclude this section with a detailed visualization of how our auto-tuning fares against
the best exhaustive runtime or ‘ber’ (figure 5.15). The rtime after autotuning is slightly lower
than the ber for the i3-540 at many points (as discussed above), while it is slightly higher
for the i7 systems as prediction is harder. Correct setting of the tuning factors leads to a
maximum of 20 times speedup over an optimized sequential baseline, with an average of 7.8
times speedup. Our machine learned heuristics obtain 98% of this speed-up, averaged across
all three systems.

5.4 Conclusion

In this chapter we discussed our autotuning strategy for 2D wavefront applications in sys-
tems that have two GPUs and the performance of such an autotuner. The introduction of an
additional GPU enabled tasks to be split and o�oaded onto each GPU, increasing scalability
and performance. However, in such a setting the exchange of data in the boundary regions
(halo) became a tunable parameter. Transferring less data was quicker but the number of
transfers increased, leading to increase in communication costs. Similarly, the size of data
(dsize) also a�ected tuning. We first explored the runtime performance of our synthetic
application across a range of kernel task granularities. The search space of the synthetic
application across three di�erent systems for various combinations of input parameter values
were explored using violin plots to analyze the sensitivity of the best performing points. We
observed that well chosen settings for the cpu-tile, band and halo (for multi-GPU systems
only) parameters produced significant speedups and correspondingly poorly chosen points
were many times slower than the best performing points. Based on the shape of the search
space, we decided to use decision trees to train on synthetic training sets, which were evalu-
ated on real world applications. Our tree based learners were able to obtain on average 98%
of the speedup of the best exhaustive runtime figures.



Chapter 6

Autotuning 3D Wavefronts

6.1 Introduction

In this chapter we describe our tuning strategy for 3D wavefront applications and analyze
the results of our single GPU autotuning scheme. Our 3D tuner is an extension to the 2D
autotuner described in the previous chapters.

We discuss our tuning strategy for the 3D case in section 6.2. This is followed by a
discussion of our synthetic 3D wavefront training application and the real world lower tri-
angulation application in section 6.3. In subsection 6.4.1 we discuss our findings from an
exhaustive search of the best performing points for our synthetic application and use the
lessons learned to train our autotuner. Our autotuning results on the real world application
are discussed in subsection 6.4.2 and we conclude with a discussion of our multicore + single
GPU tuning of 3D wavefronts in section 6.5.

6.2 3D Autotuning Strategy

The 3D case di�ers from the 2D case in that CPU tiling plays no significant role. This is
because within the range of our experimental space spanning from 100 to 9,000,000 elements
(dim=10 to 3000), for the same quantity of compute elements in the data grid, the cubical
structure is already small enough in the i,j,k dimensions to take advantage of cache reuse
compared to the matrix structure in the 2D case.

For example, in a 250 ◊ 250 square matrix with 62,500 compute elements, tiling may be
done with tile size of 10◊10 to have 625 such tiles for cache reuse. However, as we have seen
from our previous 2D results, tiling is not beneficial for the 250◊250 case as the problem size
is not large enough in the i,j dimension to overflow the cache. In our 3D case, the equivalent
cubical datagrid is 40 ◊ 40 ◊ 40 (we are ignoring 39.68 ◊ 39.68 ◊ 39.68 = 62500 as problem
size is limited to natural numbers) which is already small enough in the i,j,k dimensions to
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fit the L1 cache.

Similarly, even in the largest configuration of 3000◊3000, the equivalent problem size in
the 3D case would be 208 ◊ 208 ◊ 208. In the i,j,k dimensions this is less than the dim=250
case where tiling provides no benefit. Thus unlike the earlier 2D cases, cpu-tile parameter is
not needed in the 3D case.

With regard to training, we use the synthetic application to train our M5 pruned tree
model based on a training set taken from our exhaustive search results in the same manner
as the 2D cases. The training set comprises 5 best band values for each grouping of the input
parameter values of dim and tsize from the synthetic application. Choosing a smaller number
of training samples per input parameter configuration results in poor accuracy of prediction
during k-fold cross validation of the synthetic application. Choosing a higher number does
not improve accuracy either, due to the saturation limit of training examples for tree based
learners, discussed in subsection 2.4.7. Our M5 pruned tree learner is tuned by checking
the predictions against the test set. Since this is a single GPU system, halo is no longer a
tunable parameter and we instead tune for the band values. We also do not tune for gpu-tile
parameter. This is based on our observation of tuning results from previous chapters where
gpu-tile values > 1 did not improve performance of 2D wavefront applications.

Our first tuning decision is a binary choice between using or not using the GPU in each
system for di�erent configurations of input parameters. We capture this information in a
tunable parameter useGPU, and this binary decision is accurately predicted using a REP
Tree. Apart from this trivial binary choice, the only tunable parameter for our single GPU-
multicore tuner for 3D wavefronts is the band, which is predicted using the M5 pruned tree
model. As before, a band value of -1 indicated no GPU usage. This may look like a redundant
piece of information (as we already capture this in useGPU) but comparing band values of -1
with useGPU prediction values of -1 provides an additional validation for not using a GPU.

6.3 Application Suite and Platforms

In line with our previous experimental programs, we first build a synthetic 3D wavefront
application to explore the search space and generate training data for our learning models.
This synthetic application is identical to the 2D synthetic application except for the addition
of the third dimension. The problem size and task size granularity of this application are
controlled in the same manner as our 2D synthetic application. However, since our experi-
ments are restricted to single GPU multicore architectures, our 3D application does not have
the data size input parameter. This is because data size is only relevant when GPU to GPU
boundary value swapping is required.
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6.3.1 Lower Triangulation Application

We extracted our 3D wavefront application from a NAS Parallel Benchmark (NPB) program
that deals with solving an unfactored implicit finite-di�erence discretization of the Navier-
Stokes equations in three dimensions using a technique called symmetric successive over-
relaxation or SSOR[57]. A high level control flow for the SSOR subroutine is shown in the
pseudo code listing below.

DEF SSOR

DO ISTEP=1,ITMAX

CALL COMPUTE_RHS

CALL JACLD

CALL BLTS

CALL JACU

CALL BUTS

CALL ADD

END DO

SSOR comprises multiple iterations until the solution converges to the desired value. The
COMPUTE_RHS calculates pressure and viscous forces of the Navier-Stokes equation which
are present on the right hand sides of the equation. Then the lower-triangular and diagonal
systems are formed in the Jacobian Lower Diagonal method - (JACLD) and solved in the
block lower triangular solution (BLTS). This is followed by the forming the strictly upper
triangular part of the Jacobian matrix in the JACU subroutine, which is then solved by
the block upper triangular solution (BUTS). It should be noted the solution at coordinates
(i,j,k) depends on those at (i+s,j,k), (i, j +s,k) and (i, j,k +s) where s = ≠1 for BLTS and
s = 1 for BUTS, corresponding to two sweeps in one iteration. For a compute grid of size
nx ◊ ny ◊ nz, the first sweep corresponds to the lower triangulation starting at (2,2,2) and
ending at (nx ≠ 1,ny ≠ 1,nz ≠ 1), while the second sweep corresponds to the strictly upper
triangulation algorithm flowing in the reverse direction. Finally the solution is updated.

Wavefront like behavior occurs within BLTS and BUTS methods as discussed in the
subsection 2.6.3. However, the BUTS method is a backward sweep, so the planar waveflow
shown in Figure 3.5 has to be in the reverse direction. Consequently, the dependency array
in Figure 3.6 has to be modified. As our previous experiments dealt with forward sweeps, we
limit our wavefront OpenCL kernel to the BLTS method, which also incorporates computa-
tional elements of the JACLD subroutine. This merged BLTS+JACLD OpenCL kernel has
530 lines of code, which is larger than all our previous 2D kernels put together. As before,
we investigated a single sweep (ITMAX = 1) instead of multiple iterations that converge to
a solution.
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Figure 6.1: Call graph of the NAS Parallel benchmark application that solves a finite-di�erence dis-
cretization of the Navier-Stokes equation in 3D. It shows 92.17% of computation takes place inside the
SSOR subroutine for a single iteration with two sweeps (lower and Upper). We have combined the Jacobi
operation and the Lower Triangular operation into a single sweep of wavefront which accounts for 30%
of overall computation

We verified the results from the original Fortran code against our optimized wavefront
kernel code to ensure correctness of our merge optimization. The task granularity of our
optimized single sweep Lower Triangulation (LT) kernel was found to be lower than that
of the coarse grained Nash Application but larger than the fine grained Biological Sequence
Comparison application from the 2D application suite.

The full Navier-Stokes NPB application also has a substantial residual computations
outside the SSOR subroutine. This is shown in the call graph analysis of Figure 6.1 which
illustrates the computation overhead for each of the subroutines

6.3.2 Experimental Platforms

To maintain consistency, our experiments are carried out on the same machines as for the 2D
wavefront case. To recap, the i7 systems had fast CPUs and fast GPUs while the i3 system
had a slow CPU and a moderately fast GPU. As before, we measure runtime of the whole
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Figure 6.2: Exhaustive search results for the synthetic application on the i7-2600K, i3-540 and i7-3820
systems. The heatmaps illustrate the best band. In all maps the x-axis is tsize, indicating kernel task
granularity and the y-axis is dim, indicating problem size.

program execution using wall clock timers in the host program, averaging across three runs.
We also observed low variance between the runs which was in the order of few hundreds of
milliseconds.

6.4 Results and Analysis

In subsection 6.4.1 we investigate the characteristics of the search space created by our
3D synthetic training application and the real world Lower Triangulation (LT) kernel, and
explore the resulting models. In subsection 6.4.2 we evaluate our learning model on the real
world kernel.

6.4.1 Exhaustive Search Analysis

We begin by examining the performance for the synthetic application in the search space
across three systems in the form of heatmaps and violin plots. A set of three heatmaps
corresponding to best band for various configurations of two input parameters (dim and
tsize) across three systems are shown in Figure 6.2.

We analyze the best band results, which correspond to amount of GPU usage, based on
the trade-o� considerations discussed in section 3.4. In previous chapters, computing on the
GPU (band Ø 0) became favorable when task granularity exceeded a certain threshold that
varied with problem size and the hardware system. We make similar observations in the 3D
case and they are as follows :
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Figure 6.3: Exhaustive search results for the Lower Triangulation application on the i7-2600K, i7-3820
and i3-540 systems. The x-axis is dim, indicating problem size and the y-axis is the best band. There is
no variation in tsize as the task granularity for this application is constant.

• Problem Size and Task Granularity E�ect : Across all three heatmaps, GPU use
is beneficial for problem sizes (dim) Ø 150 and task sizes (tsize) Ø 700. In general,
the band value increases with increase in dim and tsize. This is because at higher
task sizes the computation is coarse enough to overcome the communication overhead
between CPU and GPU. Similarly at higher problem sizes, the number of concurrently
computable elements in a plane diagonal increases, allowing the hundreds of GPU cores
to dominate CPU only performance.

• Variation between Systems : As usual, the i3-540 system, has bands starting from
a low tsize because its relatively slow CPU and 4 cores are easily dominated by the
faster GPU with 15 compute units. Thus it makes sense to o�oad much of the data
to the GPU in case of the i3-540, as is seen with the band Ø 0 starting at dim Ø 50,
tsize Ø 2000.

In contrast, it is preferable to carry out a larger chunk of computation in the CPU
for the i7-3820 system with its fast 8 core CPU as observed with the band Ø 0 section,
starting at dim Ø 100, tsize Ø 4000.

An exhaustive search for the best band on the LT application is shown in Figure 6.3. Since
this application has a fixed tsize, band values vary with dim only. As with the synthetic case,
the best band increases with increasing dim and tsize.

With respect to hardware, the trend is similar to the synthetic application where the
i3-540 system starts o�oading data to the GPU from dim= 50, owing to its slow CPU while
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Figure 6.4: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-2600K system. The best points are at the base and the white spots are the medians. The x-axis is
DIM_TSIZE, indicating a grouping of problem size and kernel task granularity. The y-axis is rtime,
indicating actual execution time. The violin plots cover the entire search space with dim varying from 5
to 200, tsize from 10 to 12K.
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the i7-3820 system, with its faster CPU, only o�oads data from dim= 125.

6.4.1.1 Sensitivity analysis

We now explore the quality of the points at the best band values and their sensitivity to
changes in parameter values. This is achieved through presentation of all points as violin
plots. As discussed in subsubsection 5.3.1.4, the best performing points are at the bottom
ends of the plots, with the median values being represented as white dots. Highly sensitive
band configurations have narrow bases while flat bases mean we can choose from a wide range
of band values and still achieve high performance, making prediction easy and accurate.

For each architecture, the violin plots have been grouped into three sections based on
their dim for all values of tsize. These three groupings are 5-25, 50-100 and 125 to 200. The
runtime at dim=5 is in the range of few hundreds of milliseconds while for dim=200, the
runtime exceeds hundreds of seconds. Owing to this large disparity in runtime figures, the
violin plots have been divided into the three groups for better visualization.

The sensitivity analysis of the i7-2600K system is shown in Figure 6.4. We make the
following observations.

• For dim= [5≠25] the best point is hard to get as these points are highly sensitive. At
such small problem sizes, the parallel CPU version with band= ≠1 is best, since there
is not enough parallelism to cover the overhead of CPU to GPU transfers. All other
bands fare poorly. Thus the band values are clustered around the median at the top
end of the plot. For dim= 25, at a high tsize> 8K the median approaches the middle
of the violin plot. The best performing points are 3-4 times faster than the worst but
in absolute terms they are mostly within rtime=1 second, so poor choice is not too
costly.

• For dim= [50 ≠ 100] the band starts to matter for higher tsize across all dims. The
median gradually comes to the middle and the base starts getting flat. Deviation
from the best band has penalties, particularly for dim= 100 since the worst performing
point at tsize= 12000 is three times slower than the best performing point at rtime=12
seconds.

• For dim= [125≠200] most bands above a certain threshold give good performance, so
choice of band is not so sensitive within a broad range of good bands. However, making
the wrong choice is now very costly as seen from dim=175 where the worst point is 3
times slower at rtime=45 seconds compared to the best performing point at rtime=15
seconds. It should be noted for dim=200, tsize= [8K,10K,12K] the corresponding
execution times exceeded the set threshold of 50 seconds, and were not captured.
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Figure 6.5: Violin plots showing dispersion of all configurations for the synthetic application in the
i7-3820 system. The best points are at the base and the white spots are the medians. The x-axis is
DIM_TSIZE, indicating a grouping of problem size, kernel task granularity and the data granularity.
The y-axis is rtime, indicating actual execution time. The violin plots cover the entire search space with
dim varying from 5 to 200, tsize from 10 to 12K.
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The sensitivity analysis of the i7-3820 system is almost the same as for the i7-2600K
system, with minor di�erences as shown in Figure 6.5.

However there is a marked di�erence for the i3-540, as shown in Figure 6.6, where the
worst point is more than 15 times slower than the best point at dim=200, tsize=12000, due
to the slow CPU. Thus carrying out the entire computation inside the CPU is quite costly
for the i3-540 system. In terms of band values, the median value is usually near the flat base
of most violin plots for this system. This means the i3-540 system is generally insensitive
to choice of band as long as some amount of data is o�oaded to the GPU. There are a few
exceptions. In particular, for low dim of 5-25 where the median is at the top end of the violin
plot, and for high tsize values for dim=100 where the median is slightly above the base.

We now discuss the sensitivity of the real world LT application, which is illustrated in
Figure 6.7. In terms of hardware e�ects, there is a clear di�erence between the i3 and the i7
systems. Due to the fast GPU and slow CPU of an i3-540 system, o�oading any amount of
data onto the GPU is advantageous most of the time. So the sensitivity of the i3 system is
low and this is reflected in its dispersion where the base tends to flatten earlier compared to
the i7 systems. Moreover the worst points are more costly for the i3 system with the worst
performing rtime of 12 seconds versus 5 seconds in the i7 systems.

We conclude this section by noting the large variations in best performing points across
systems and applications, for di�erent values of input parameters, make it hard to implement
a naive heuristic that predicts the optimally performing points. Thus, as in previous chapters,
we deploy machine learning based auto-tuning to find the best performing points. In the
next section we explore the performance of our autotuner.

6.4.2 Autotuning Results

Once the parameters of our decision tree learner are tuned to predict with high accuracy
for synthetic cases, we test our tuner on the LT application instances. The results of our
autotuning are shown in Figure 6.9. We compare the autotuned runtime, shown as a line
(Autotuned RTIME) over the best exhaustive runtime or ber (see subsection 4.3.2 where ber
is explained). Except for a few instances like dim= 100 for the i7-2600K system and for dim
values of 50 and 200 for the i3-540 system, the autotuner predicts with high accuracy.

On average, it even manages to predict super optimally (1.15% better than the ber) for
the i3 system, in the same way it did for the 2D wavefront cases in subsection 5.3.3. Owing
to the low sensitivity of the i3 system prediction is easy and accurate. Autotuning performs
better than the ber because our tuner is free to select band values which lie outside the set
of cases explored in the (necessarily finite) full search.

The autotuner also predicts marginally less well compared to the ber in the i7 systems on
average, at (99.5%) in the i7-3820 system and at 96% for the i7-2600K system. A summary
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Figure 6.6: Violin plots showing dispersion of all configurations for the synthetic application in the
i3-540 system. The best points are at the base and the white spots are the medians. The x-axis is
DIM_TSIZE, indicating a grouping of problem size and kernel task granularity. The y-axis is rtime,
indicating actual execution time. The violin plots cover the entire search space with dim varying from 5
to 200, tsize from 10 to 12K.
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Figure 6.7: Violin plots showing dispersion of all configurations for the real world LT application across
all systems. The best points are at the base and the white spots are the medians. The x-axis is DIM,
indicating problem size. The y-axis is rtime, indicating actual execution time. The violin plots cover
the entire search space with dim varying from 5 to 200.
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Figure 6.8: The REP tree for predicting binary useGPU values,i.e. 1 indicates GPU usage while -1
indicates no GPU usage. As seen, tile depends on the input parameters of task granularity and data
granularity.

Figure 6.9: Plot showing best exhaustive runtime (ber) as bars and autotuned rtime as lines across
three systems for the LT app. The x-axis is DIM, indicating problem size. The y-axis is rtime.
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Figure 6.10: The bars represent averaged speedup of optimal points found from exhaustive search over
the sequential baseline and the speedup from auto-tuning. The x-axis represents the systems and y-axis
is speedup.

of this performance is illustrated in Figure 6.10

6.5 Conclusion

In this chapter we discussed our implementation strategy for tuning 3D wavefront applica-
tions. The addition of an extra dimension to a 2D compute grid made the use of cpu-tiling
redundant as for the same amount of data, the size of compute grid in each of (i,j,k) di-
mensions is shorter compared to (i,j) dimensions, such as 4 ◊ 4 ◊ 4 versus 8 ◊ 8. This form
of built-in tiling led to reuse of CPU caches. We created a 3D synthetic wavefront applica-
tion to build our automated tuner and tested it against the real world Lower Triangulation
application. Our tuner, built on a decision tree learner, was highly accurate.



Chapter 7

Related Work

7.1 Introduction

This chapter discusses prior work related to the areas introduced in the previous chapters. A
comprehensive review of publications in each area is provided. To structure this discussion
we follow the categorization of Williams [102], which notes that the optimization space,
code generation, and exploration form the basic concepts of auto-tuning. This involves
enumerating a large optimization space, generating code for those optimized kernels and
finally, exploring the optimization space by benchmarking some or all of the generated kernels
and searching for the best performing implementation. It categorizes autotuners into the
following :

• Self-tuning library generators that target specific computation kernels or a class of
kernels;

• Compiler-based autotuners that automatically generate and search a set of alternative
implementations of a computation;

• Application-level autotuners that automate empirical search across a set of parameter
values proposed by the application programmer.

We review autotuners that fall in one or more of these three categories, starting with the
work done in the space of high level domain specific auto-tuning in section 7.2. We contrast
the di�erences between automated tuning at low level with our own domain specific tuning
of wavefront parameters at the high level of a skeleton. Since not all domain specific auto
tuners utilize machine learning, we discuss prior work done in learner based auto tuning,
particularly in low level compiler search space exploration and optimization, and contrast
those with compiler based autotuners that do not use machine learning in section 7.3. Finally,
all of the tuners discussed so far, including our own, use o�ine tuning. So we conclude the
chapter with a contrasting discussion of online autotuning strategies in section 7.4.
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Figure 7.1: A GUI to design wavefront structure with Full Matrix shape parameter, {N,W,NW}
dependency parameter and immediate neighbor only performance parameter, adopted from [5]

7.2 Domain Specific Autotuners

We begin with a discussion of parallel programming systems that generate structural frame-
work code for pattern description of wavefront problems.

7.2.1 Wavefront Tuning Frameworks

CO2P3S [5] is a wavefront framework that generates parallel programs from user supplied
methods and data. Its wavefront pattern template has design parameters that a�ect the par-
allel structure and performance parameters that a�ect code runtime. The design parameter
shape “Full Matrix” enables computation of all elements in a rectangular matrix, “Triangu-
lar” supports computations over half of a matrix and “Banded” computes elements centered
around the main diagonal of the matrix. The dependency set design parameter specifies
the neighboring elements such as N, W, NW, meaning each element is computed by using
previously computed values of north, west and north-west elements. For computing each el-
ement, CO2P3S provides users with a performance parameter called “neighbours-only”. This
parameter allows access to all previously computed neighboring elements when set to false,
and access to only elements in the immediate neighborhood when set to true. A sample
CO2P3S framework wavefront design is illustrated in Figure 7.1

While our wavefront framework o�ers similar features, including allowing users to spec-
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ify dependencies (north, west, north-west), it does not provide access to all neighboring
dependencies to compute an element. However, CO2P3S is restricted to just shared memory
architectures and does not employ any optimization techniques for any combination of its
application dependent properties. It also does not support any 3D wavefront problems (there
is no top element dependency ).

The wavefront abstraction in [104] targets multicore and distributed systems. However,
its tunable parameters are specific to distributed systems and there is no support for 3D
wavefront applications. It also employs processes instead of threads as they are more adapt-
able to distributed systems. The overhead from processes impacts performance in shared
memory systems as opposed to light weight threading building blocks used in our work.
There is also no exhaustive search space exploration and tuning using learning involved.

While these frameworks have not explored any optimization space, extensive work has
been done on building performance models for wavefront applications by the Warwick High
Performance Systems Group in [79, 50]. The performance models include an analytic “Plug-
and-Play” reusable wavefront model on regular orthogonal grids, designed from performance
studies of 3D wavefront applications like the Sweep3D and Chimaera particle transport
benchmarks and the NAS-LU computational fluid dynamics benchmark. This reusable model
targets large scale MPI based traditional HPC systems consisting of clusters of nodes num-
bering up to 8192 processors. It captures application level 3D wavefront parameters such as
input problem size, number of sweeps, behavior of a sweep, height of tile, message size etc
and machine specific parameters like “grind-time” per grid-point or (Wg), representing the
non-idle time a given processor and compute time on each processor prior to communication
(W). It utilizes information about these parameters to predict the runtime and scaling behav-
ior of such MPI-based pipelined wavefront applications which help in hardware procurement
and in optimizing application and hardware specific parameters.

The Warwick High Performance Systems Group has also explored two tier heterogeneous
parallelism comprising clusters of CPU + single GPU systems in [82] for pipelined wavefront
computation of the three dimensional LU application using MPI-CUDA. In this scheme a
k-blocking strategy is employed to avoid idle work-items on the GPU whenever the size of
the diagonal hyperplane (grid points with coordinates i+ j +k = w for w

th diagonal) is less
than the number of work-items the GPU can execute in parallel. Other optimizations include
loop unrolling and fusion, memory access coalescing for GPU and message size optimization
when MPI is used for communication between processing-elements. Their previously built
performance models are then used to study weak and strong scaling behavior of the code and
investigate the overheads from computation, network communications and PCIe transfers.

This work is later extended to assess the performance portability of OpenCL based single
GPU implementation across a cluster of nodes in [83]. Auto-tuning is done on two important
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GPU parameters of memory layout and work-item distribution to improve performance with-
out changing the underlying algorithm, apart from extending the k-blocking optimization for
CUDA devices to OpenCL. For coalesced memory layout optimization, the choice is between
an array of structs (AoS) approach that provides good cache utilization for processing a
scalar work-item and struct of arrays (SoA) approach that allows parallel SIMD processing.
For work-item and work-group distribution the choice is between fine grained distribution of
one work-item per LU grid-point and coarse-grained distribution of one work-group per the
GPU compute unit. However, this is not a machine learning based auto tuning framework.

With this discussion of work done on wavefront tuning frameworks, we look at other
domain specific tuners ranging from highly specific library generators to the more generic
stencil pattern autotuners.

7.2.2 Self Tuning Library Generators

ATLAS [58] is a self tuning library based on compile time auto-tuning of basic linear algebra
subroutines. It includes some kernels from the Linear Algebra Package. It uses an exhaustive
orthogonal search for empirical optimization. An orthogonal search refers to search in one
dimension at a time by keeping rest of the parameters fixed. Architecture specific knowl-
edge provides the possible range of optimizations which includes information like size of
caches, number of floating point units, hardware characteristics, length of pipeline, natively
supported instruction set and other low level details. This corresponds to ad-hoc empirical
studies carried out for compiler optimization which involve changing flags for performance-
critical sections of code.

Other tuning library generators are FFTW [39], OSKI [100] and SPIRAL [84]. FFTW
is an e�cient compile time autotuner that combines static models with empirical search to
optimize FFTs while OSKI has both compile and runtime auto-tuning capabilities for tuning
sparse linear algebra kernels. Unlike the previous three library generators that relied on sim-
ple string manipulation and were limited in scope to specific kernels and hardware, SPIRAL
is a more generic domain specific auto tuner. It targets a class of kernels by generating
empirically tuned Digital Signal Processing (DSP) libraries. SPIRAL and FFTW do not
employ exhaustive search like ATLAS or OSKI due to their much larger optimization space
relative to the other library generators. So they traverse their search space by employing
search heuristics that include genetic algorithms.

Our experiments are quite similar with respect to carrying out empirical optimization
for choosing the values of various tunable parameters. The crucial di�erences lie in our
focus on exploring the optimization space of a high level abstraction such as the wavefront
that is not tied to specific algorithms, kernels or subroutines (making it closer to SPIRAL)
and in employing machine learning to tune the kernels for di�erent computing systems.
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Figure 7.2: Basic Farm prototype in eSkel, adopted from [73]

However, improvements to these library generators have been explored by employing machine
learning in [67], where the best sorting algorithm is encoded as a function of the entropy
of the input data and chosen at runtime for each target machine. We discuss this further
in section 7.4. Other autotuners like William’s [102] determine the best combination of low
level implementation and data structure pertaining to the architecture and input data for
two computational motifs (as per the Berkeley View terminology [6]) - computational grids
and sparse linear algebra.

7.2.3 Task Farm Skeleton Frameworks

Another high level pattern or skeleton is the Task Farm which was briefly discussed in
subsection 2.3.1. An example of the basic farm implemented in the eSkel library [73] is the
Farm1for1 skeleton. The programmer specifies the number of workers, the operations that
need to be performed by the worker in a task and the total collection of such input tasks. The
skeleton handles the entire low level implementation ranging from getting the initial tasks,
enforcing good load balancing through dynamic task distribution and collecting the results
returned. In this classic farm implementation the farmer is also a multi threaded worker
process. Each worker is created in the context of a dynamically changing hierarchy of MPI
communicators so that its processes can communicate within the safety of that context. In
case thread safe MPI is not available, each worker has to be a single process. Its prototype
is shown in Figure 7.2.

The first parameter denotes the worker function which contains the code for solving a
specific problem. Other input parameters include number of tasks, task element type, an
output bu�er that detects any overflow and the communicator within which the farm is
constructed. A similar task farm library is the Munster Skeleton Library (Muesli) [62], a
C++ skeleton library with an object oriented implementation. Compared to eSkel which
exposed a low level API based on C binding to MPI, Muesli is based on the two tier model
of P

3
L [7] that also incorporates data parallel skeletons.

Here the client supplied method (foo()), shown in line 2 of Figure 7.3 is passed to the
worker atomic process and then the worker processes are passed to the Farm. The Pipe
in line 5 consists of three stages with initial, farm and final processes in each stage. J.
Falcou et al have found in [33] that Muesli satisfies the principles of minimal conceptual
disruption due to its approach of polymorphic C++ skeleton library which is familiar to
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Figure 7.3: Task Farm in Muesli, adopted from [62]

many developers. Also, it accommodates diversity owing to its polymorphic nature. However
when it comes to payback, the price of overhead is high [63]. Also, limitations of skeletons in
Muesli cannot be easily circumvented using ad-hoc parallelism as was done in eSkel. Neither
farm frameworks employ any form of sophisticated auto-tuning strategy and can at best be
considered skeletons for the task farm pattern.

7.2.4 Stencil Tuning Frameworks

Stencils are high level patterns, but have a di�erent dependency pattern compared to wave-
front. Stencil computations are nearest neighbor computations, which are at the heart of
structured grids and PDE solvers. Stencil application domains include heat di�usion, climate
science, electro magnetics and fluid dynamics and their implementation in multi-GPU sys-
tems has been explored in [97]. Unlike wavefronts, all elements in the computation grid can
be computed simultaneously and per element computation usually depends on neighboring
north, east, west and south elements for 2D stencil applications like the Jacobi application
[65]. In this section we discuss in depth the Berkeley autotuner proposed by Kamil et al
[60, 59], while briefly discussing PATUS [18] which is an enhancement to the Berkeley design
of Kamil et al .

The Berkeley auto tuner is a domain specific tuner that optimizes stencil computations
across a range of CPU cache based architectures and NVIDIA CUDA based GPU architec-
tures. Its stencil benchmark kernels consist of finite di�erence methods applied to Laplacian,
Divergence and Gradient di�erential operators. Its code-generation framework consists of
parallel and serial components and the tuner features an automated search that replaces
stencil kernels with optimized versions. The input to the autotuner is a sequential Fortran
95 stencil expression and the final output is a tuned parallel implementation in Fortran, C
or CUDA. This framework o�ers performance portability across chip multiprocessors and
accelerators in the shared memory space but does not address distributed clusters. The
basic mechanics of the framework are :

• User described problem specification in Fortran is parsed into an intermediate abstract
syntax tree (AST) stencil representation.

• Numerous CPU or GPU specific transformations are explored utilizing the intermediate
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Figure 7.4: Berkeley Tuner flow showing parsing of readable domain specific code into abstract code
by the parser. This is followed by transformation of code based on strategy for GPU, multicore or serial
systems and generating equivalent Fortran for serial, C with pthreads for multicore and CUDA for GPU
systems. Finally the search engine picks the best performing implementation [59]

representation.

• Optimized shared-memory parallel (SMP) implementations are generated and the best
performing optimization and configuration parameters are determined via an auto-
mated search engine.

Figure 7.4 describes the flow of the tuning framework and we briefly discuss the main
stages.

Front End Parsing Stage : Input stencil code in Fortran is parsed into an AST
representation by the front end parser for subsequent transformation in later stages.

Strategy Engines Stage : A subset of the parameter search space is traversed for each
architecture based on the best utilization of the underlying hardware such as employing cache
blocking in the unit stride dimension for the Victoria Falls architecture [23], while ignoring
the same for the Nehalem architecture [64], due to presence of hardware prefetchers. The
engines also ensures parameter values are valid for the specific architecture, such as fixing
the correct maximum number of threads based on hardware restrictions.

Code Generation Stage: This stage deals with production of code by the serial and
parallel code generating components based on parameter values chosen in the strategy engines
stage. Posix threads are used for parallelization in CPU cache-based systems of Nehalem
and Victoria Falls while CUDA threads are executed on NVIDIA GPUs. In CPU systems
the problem space is decomposed into three nested levels starting from the top level core
blocks (size tuned to avoid capacity misses in the last level cache) which are decomposed into
thread blocks sharing a common cache. These thread blocks are further decomposed into
register blocks through strip mining and loop unrolling of stencil loops via the serial code
generator. In GPU systems the CUDA code generator divides the problem across thread
blocks and explores setting of the number of threads in a thread block and their access
patterns in the global memory. Since parallelization is architecture specific (CPU or GPU),
the parallel code generators modify the AST accordingly and pass the modified code over to
the serial component.

Search Stage : In this stage the autotuner records the runtime for each generated code



122 Chapter 7. Related Work

on a target architecture and reports it to the users, who can then link the optimized stencil
code into their existing code. The parameter subspace search is static and timing feedback
is not used to dynamically direct the search.

The tuning framework reported the best speedup of 22x over the reference serial version
and the performance was comparable to previous hand-optimized code at a fraction of the
e�ort (minutes versus months).

Our framework does not generate any intermediate abstract representation like the Berke-
ley tuner and it does not require any predefined strategies for architecture types because it is
a high level wavefront pattern tuner that is architecture agnostic, as demonstrated through
our tuning results across di�erent kinds of heterogeneous systems. The Berkeley tuner also
cannot deal with multiple GPU implementations.

The PATUS framework [18] builds on top of the work done by the Berkeley tuner by
providing a high degree of customization and flexibility to the user. It allows the user
to choose from predefined strategies regarding how the kernel should be optimized and
parallelized. It also lets the user design custom strategies in order to experiment with other
algorithms or even discover a better mapping to the underlying hardware. Its modular code
generator back-end supports future hardware architectures and programming paradigms by
providing communication and synchronization primitives that allow custom definition of
hardware-specific characteristics and code generator methods. However, like the Berkeley
tuner, it is restricted to single GPU systems.

Autotuning for the stencil pattern has been also been investigated in the multi-GPU
framework “PARTANS” [68]. A key di�erence with our implementation is the absence of
dependence between elements in a stencil pattern, which means halo swapping is less frequent
for stencils distributed over multiple GPUs than for wavefronts. A three tier multi-GPU+
multi-core + cluster framework stencil tuning framework has been investigated [93] for mesh-
based applications. It accepts user supplied code and executes it on multiple GPU by
generating CUDA code for GPU and distributed CPU code using MPI and OpenMP. It also
provides C++ classes to write GPU-GPU communication e�ectively as shown in Figure 7.5.
Experimental results of carrying out di�usion computation using two NVIDIA Tesla K20X
GPUs was found to be 1.4 times faster than hand tuned code. Our framework is restricted
to two tier of parallelism - multicore + multi-GPU. However, our GPU kernel code is based
on portable OpenCL.
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Figure 7.5: A three tier parallel (multicore + multi-GPU + cluster) stencil autotuning framework.
The above figure has been adopted from [93]

7.3 Compiler Space Tuners and Optimization using Machine Learn-
ing

In this section we discuss some compiler based autotuners and how machine learning is used
for compiler space optimization. Compiler based autotuners are based on polyhedral models,
loop tiling approaches and time blocking schemes [47]. Polyhedral models are representations
of programs that allow compilers to perform complex transformations such as loop nest
optimizations and parallelizations in mathematically rigorous ways, ensuring correctness of
code. CHiLL [17] is such a polyhedral loop transformation and code generation framework.
It provides a convenient high-level scripting interface to the compiler for simplifying code
generation and varying optimization parameter values that can then be processed by a search
engine, as discussed later in section 7.4. Pluto [12], is an automatic parallelization and
locality optimization tuner based on the polyhedral model and is based on minimization
of a unified cost function that incorporates aspects of both intra-tile locality and inter-tile
communications of the data. The polyhedral model is used for both determining good tile
sizes as well for auto-parallelization on CPUs. In contrast to these compiler based tuners,
our framework uses machine learning techniques to determine good CPU and GPU tile sizes.

Machine learning techniques have also been utilized to e�ciently explore the compiler co-
design space by Grewe [27]. The earlier method of compiler optimization involved empirical
ad-hoc changing of flags. This is now automated through machine learning and the general
idea behind it is to build a learning model that predicts the right optimizations for specific
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Figure 7.6: Predictive Modeling in Compiler Optimization, adopted from [27]

combinations of programs and platforms. In Grewe’s work, decision tree models are used to
select either multi-core CPU or GPU implementation and not a hybrid CPU + multi-GPU
setup as is done in our framework. His work also focuses on applying machine learning for low
level program optimizations (like learning to schedule, loop unroll etc). The trained machine
learning models predicted the optimal number of threads for these low level combinations.
However, the accuracy of most models in this project were usually in the range of 30-55
percent.

7.4 Dynamic Self Adaptive Tuners

In the final section of this chapter we discuss adaptive tuners.
The Active Harmony framework [55, 19] uses the greedy or Nelder Mead algorithm to

search a high dimensional space and the tuning results are then treated as a new experience
to be stored in a data characteristics database for future reference. It is an application
level auto tuner that uses machine learning in its data analyzer component as illustrated in
Figure 7.7.

When input data is fed into the system, the data analyzer examines a small number of
sample requests to explore the feature space of the input data using a user supplied method.
Once these characteristics are identified, the prior known tuning experience associated with
the input request characteristics are retrieved from the data characteristics database. For
those input data with characteristics that have never been seen before, the tuning system
will try di�erent configurations from scratch on the high dimensional search space (using
the greedy or the Nelder Mead algorithm). The tuning results are then treated as a new
experience and are used to update the data characteristics database for future reference.
The classification mechanism of the Active Harmony tuner is the least square error technique
(discussed earlier as part of Linear Regression in subsection 2.4.4), which is used to retrieve
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Figure 7.7: The data analyzer component of the Active Harmony dynamic autotuner, adopted from
[19]

configurations from previously stored experiences in the data characteristics database. Active
Harmony then uses those retrieved configurations to setup the system being tuned.

Dynamic autotuning based on machine learning is also observed in the work of Tiwari et
al [98]. Their auto tuner combines Active Harmony’s improved parallel search backend with
the CHiLL compiler transformation framework to generate in parallel a set of alternative
implementations of computation kernels and automatically select the one with the best-
performing implementation. Their improved Active Harmony system consists of a parallel
search algorithm in place of the original Nelder Mead simplex algorithm for searching the
optimization space. This algorithm, called the Parallel Rank Ordering (PRO) Algorithm,
deals with high-dimensional search spaces with unknown objective functions. It is essentially
a parallel version of a class of direct search algorithms known as the Generating Set Search
(GSS) methods that traverse constrained spaces. PRO converges to a solution faster than
its sequential counterparts.

Dynamic compiler based autotuning requires a compiler to be able to generate di�erent
codes rapidly during the search phase by adjusting parameter values, without time consuming
compiler reanalysis. It is also beneficial to have a modular framework so that the compiler can
interface to a separate parameter search engine. These ideas led to the deployment of CHiLL,
a polyhedral loop transformation and code generation framework (mentioned earlier in sec-
tion 7.3) whose optimization choices are passed to the search engine. In order to carry out
transformation of loops, Active Harmony’s search-kernel requests CHiLL’s code-generator to
create code variants with given sets of parameters. Once compiled, the optimization driver
runs the code variants in parallel on the target architecture. The search-kernel bases its
simplex transformation decisions on performance metrics. The learning mechanism of stor-
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ing new experiences and retrieving them through least square error classification mechanism
remains unchanged. The performance of this framework generated code is comparable to
the fully automated version of the ATLAS library for the tested kernels and is 1.4 to 3.6
times faster than the native Intel compiler without search. Our o�ine autotuning framework
di�ers from this online tuning framework and we tune high level pattern specific parameters
using machine learning techniques to set optimal values for those parameters.

Another adaptive tuner is an adaptive implementation of a task farm known as Self
adaptive farms. These are based on a single round scheduling algorithm called Dynamic
Deal [46]. This algorithm is specifically aimed at improving the performance of task farms in
computational grids by getting compile time data which is then used at run time to adapt the
Task Farm to di�erent load and network conditions in the grid. The task farm dynamically
schedules what tasks should be allocated to the workers and then adaptively determines the
optimal size of the task for each worker. This kind of self-adaptation reduces the execution
time of the task farm application. Determining the task size forms the core of the adaptive
strategy. This is based on parameters like CPU availability which a�ects computation,
bandwidth which determines the speed and throughput of farmer-worker communication and
latency which a�ects the time taken to communicate messages between farmer and worker.
Unlike our work, here the compile time profile information pertains to low level details like
CPU availability and network bandwidth. Also, it is restricted to the computational grid
architecture and is not suitable for heterogeneous systems.

7.5 Conclusion

In this chapter we reviewed various types of autotuning frameworks and contrasted their
design and performance characteristics with our domain specific tuning of wavefront param-
eters at the high level of a skeleton. We highlighted autotuners for other high level patterns
like task farms and stencils. We discussed advances in multi-GPU + multicore and even
multi-node auto tuning framework for stencils. We explored application of machine learn-
ing techniques in setting optimal values of tunable parameters in some of these auto-tuning
frameworks and concluded the chapter with a discussion of online autotuners .
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Conclusion

Our work has been a case study in designing an e�cient machine learning based autotuning
framework for applications following a specific parallel pattern. In our study, the pattern is
the wavefront and the target architectures are heterogeneous systems comprising multicore
CPUs and multiple GPU accelerators.

Our autotuning framework addressed the twin challenges of problem decomposition and
distribution by providing a layer of abstraction which partitioned and distributed work across
systems, and enabled performance portability by predicting optimal values for tunable pa-
rameters. These are very sensitive to di�erent combination of problem instances and hetero-
geneous systems. Tunable parameters included choosing the number of GPU accelerators,
controlling the amount of computation to be o�oaded onto GPU accelerators, choosing the
number of boundary elements to be swapped between GPU accelerators, and tiling for both
CPU and GPU memories. These were evaluated against the best performing points obtained
from exhaustively traversing the optimization search space.

The next section in this chapter summarizes our contributions. This is followed by critical
analysis of areas of improvement. We conclude with a brief discussion of possible future work.

8.1 Contributions

There are two main contributions of this thesis.
Wavefront Skeletons targeting heterogeneous architectures
Our thesis presents the first definition and implementation of a flexible, heterogeneous ab-
straction of the wavefront pattern that targets multicore CPUs and multiple GPUs, and
addresses two and three dimensional problems. By encapsulating tedious parallel boilerplate
code, we allow the application program to focus on only application specific issues in 2D
and 3D wavefront patterns. This level of abstraction also allowed us to identify high level
parameters that can a�ect the runtime of applications implemented using our framework

127



128 Chapter 8. Conclusion

across di�erent heterogeneous systems.
E�ective machine learning for tuning wavefronts
Our thesis is also the first demonstration that such a scheme can be e�ectively autotuned
using machine learning, to give portability across a wide range of wavefront applications and
architectures. As an extension, this also provides a demonstration that pattern information
can be usefully exploited in autotuning.

We used regression and support vector machines to tune 2D wavefronts in single GPU +
multicore CPU setting in chapter 4. We employed universal and class specific tuners. The
class specific tuners had some prior knowledge of the application as they were built separately
from training samples of each application and validated against distinct test sets of those
application. They predicted with high accuracy, leading to speedup from autotuning being
91% of the optimal speedup found from exhaustive search. However, our universal tuner
which was built from training instances from all applications was not so successful, with
auto tuned speedup being 64% of the optimal. This led us to experiment with a learning
technique that was better suited to our data. An exhaustive analysis of the optimization
space revealed a saw-tooth like shape, meaning the best points were arranged as per a
piecewise-defined function. The M5 Decision Tree was the learning technique most suited to
such a function comprising of multiple sub-functions applied to specific intervals of the main
function’s domain, as discussed in chapter 5. This tuner was able to obtain 98% of optimal
speedup. We also tuned 3D wavefront applications with an impressive 99.5% of the optimal
speedup as described in chapter 6. The average speedup from all such tuning across single
GPU and multi GPU systems was 87% of the optimal speedup.

8.2 Critical Analysis

In this section we discuss the limitations of our autotuner and lessons learned from our past
experiments.

The optimization space was explored manually through regular sampling but we could
have used more sophisticated Monte Carlo methods [36] based on repeated random sampling
to find the best performing points and generate the shape of our search space. We also
learned from the past performance of our naive linear regression tuner and that decision
tree based learners were better suited to our data. The same held true in selecting training
instances for these models. When dealing with single GPU autotuning, we gathered training
instances from all wavefront applications (that included real world applications) to create a
“universal tuner” which performed rather poorly. So, for our multiple GPU autotuner and
3D wavefront autotuner, we trained on instances drawn solely from our synthetic application
that spanned a wide range of task granularity and problem sizes. This coupled with decision
trees learners provided very high accuracy, averaging 97% of optimal performance. Thus we
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Figure 8.1: (a)Forward Sweep dependency array for 3D Wavefront (b) Reverse Sweep for same.

did not require any real application during the training phase, which is again a strength of
our pattern-oriented approach.

In terms of autotuning, we are restricted to o�ine tuning strategy. While this is e�ective
in predicting optimal values when the training sample from synthetic application is large
enough to cover a range of real world 3D wavefront applications, there is always the chance
of encountering some application which lies outside our training space. Hence an online tuner
built in the same manner as the Active Harmony tuner, would add the newly encountered
space or experience into its list of known experiences and then be able to tune a wider range
of wavefront applications dynamically.

Another framework limitation was that we only tested applications that had dependency
relations in the immediate neighborhood. By immediate neighborhood we refer to elements
that are one diagonal away such as north and west elements, or two diagonals away like
the north-west elements. Most wavefronts follow this sort of non serial monadic recurrence
relation but there could be some that compute on data from elements that are more than
two diagonals away.

Our autotuner also does not handle reverse sweeps, which was the reason behind limiting
our 3D wavefront application to lower triangulation instead of lower upper triangulation. A
reverse sweep would require the dependency to be built in the opposite direction as illustrated
in figure Figure 8.1.

8.3 Future work

A possible expansion to our work is to incorporate three tier parallelism comprising of clusters
of nodes with each node consisting of multiple GPU accelerators to scale our framework
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to handle larger problems and provide better speedup from three tier parallelism. This
would be similar to the three tier multi-GPU+ multi-core + cluster framework stencil tuning
framework of [93] for mesh-based applications.

We would also make our framework more flexible by adding support for sweeps in any
direction of the computation grid and provide better customization by allowing access to
elements more than two diagonals away. We would also increase the scope of our autotuner to
handle more dynamic programming problems, which are not restricted to non serial monadic
variety of wavefronts. Our autotuning could also be improved by utilizing sophisticated
sampling methods for the training phase and by deploying dynamic online tuning to address
the limitations of our o�ine tuning strategy.

Finally, we could explore alternatives to GPU accelerators for high performance comput-
ing with more recent many core developments such as AMD APUs [43] and Intel MIC [42].
We conclude our work with these new developments which are briefly explained in the next
subsections.

8.3.1 Accelerated Processing Unit

An accelerated processing unit like the AMD Fusion integrates the CPU and GPU on a
single die. This allows the CPU memory management unit (that translates virtual memory
addresses to physical addresses) and the equivalent GPU input/output memory management
unit to share the same address space. The advantage from such a design is the time saved
from not requiring transfer of data from GPU to host memory and back through PCI-E.
This design also allows higher performance since the GPU can access CPU cache data and
the memory is fully cache coherent between CPU and GPU. Other performance improving
features include a preemptive scheduler that can interrupt long running tasks for low latency
access to GPU, and context switching ability of the GPU.

8.3.2 Many Integrated Core Architecture

Intel’s Xeon Phi coprocessor (a processor that supplements the main CPU by o�oading
compute intensive tasks from the CPU) is an example of Intel’s many integrated core archi-
tecture (MIC). Each co-processor consists of 61 cores and four hardware threads per core
(244 threads)[42]. To reduce energy consumption, the clock speed is kept low at 1.01 GHz,
but high performance is achieved through the aggregate throughput of 244 threads. Apart
from task level parallelism obtained from 4 threads per core, the availability of wide vector
units (512 bit) for SIMD computations enables users to develop vector intensive code (such
as vectorized loops) to exploit high levels of data parallelism. MIC lets the user choose
from native, symmetric and o�oad execution. Under native execution there is only one exe-
cutable that runs on the MIC architecture which is useful for benchmarking and analysis. In
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symmetric mode the code is compiled twice, one for host and once for MIC. Thus, di�erent
work items can be assigned to CPUs and MICs with host to MIC communication (and host-
host, MIC-MIC) being carried out in MPI. The o�oad execution mode is similar to shared
memory directive based models where the directives indicate the data and methods that are
o�oaded from CPU to MIC for execution, and the code needs to be compiled only once.
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