526 research outputs found

    Network Coding for Cooperation in Wireless Networks

    Get PDF

    A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks

    Full text link
    This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is applied to study the gains resulting from the cooperation among single antenna transmitters for virtual MIMO formation. The aim is to find an ultimate transmitters coalition structure that allows cooperating users to maximize their utilities while accounting for the cost of coalition formation. Through this novel game theoretical framework, the wireless network transmitters are able to self-organize and form a structured network composed of disjoint stable coalitions. Simulation results show that the proposed algorithm can improve the average individual user utility by 26.4% as well as cope with the mobility of the distributed users.Comment: This paper is accepted for publication at the IEEE ICC Workshop on Cooperative Communications and Networkin

    Coalitional Games for Distributed Eavesdroppers Cooperation in Wireless Networks

    No full text
    International audiencePhysical layer security aspects of wireless networks have re- cently attracted an increased attention due to the emergence of large-scale decentralized networks. While most existing literature focuses on link-level performance analysis from the perspective of the wireless users, this paper turns the atten- tion to the eavesdroppers' (attacker) side of the problem. In this context, we introduce a model that enables a num- ber of single antenna eavesdroppers in a wireless network to cooperate, by performing distributed receive beamform- ing, for improving the damage that they inflict on the net- work's wireless users when tapping through their transmis- sions. We model the eavesdroppers cooperation problem as a non-transferable coalitional game and we propose a dis- tributed algorithm for coalition formation. The proposed algorithm allows the eavesdroppers to take autonomous deci- sions to cooperate and form coalitions, while maximizing the damage that they cause on the wireless users. This damage is quantified in terms of the overall secrecy capacity reduc- tion that the eavesdroppers incur on the users while taking into account cooperation costs in terms of the time required for information exchange. We analyze the resulting coali- tional structures, discuss their properties, and study how the eavesdroppers can adapt the topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the eavesdroppers to cooperate and self-organize while achieving an improvement of the av- erage payoff per eavesdropper up to 27.6% per eavesdropping cycle relative to the non-cooperative case

    Opportunistic cooperation in wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Feedback and Cooperation in Wireless Networks

    Get PDF
    The demand for wireless data services has been dramatically growing over the last decade. This growth has been accompanied by a significant increase in the number of users sharing the same wireless medium, and as a result, interference management has become a hot topic of research in recent years. In this dissertation, we investigate feedback and transmitter cooperation as two closely related tools to manage the interference and achieve high data rates in several wireless networks, focusing on additive white Gaussian noise (AWGN) interference, X, and broadcast channels. We start by a one-to-many network, namely, the three-user multiple-input multiple-output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains the channel state information (CSI) through feedback links after a finite delay. We also assume that the feedback delay is greater than the channel coherence time, and thus, the CSI expires prior to being exploited by the transmitter for its current transmission. Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help the transmitter to achieve significantly higher data rates compared to having no CSI. We indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio (SNR). For the symmetric case, i.e. with the same number of antennas at each receiver, we propose different transmission schemes whose achievable DoFs meet the upper bound for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric case, we propose transmission schemes that characterize the DoF region for certain classes of antenna configurations. Subsequently, we investigate channels with distributed transmitters, namely, Gaussian single-input single-output (SISO) K-user interference channel and 2×K X channel under the delayed CSIT assumption. In these channels, in major contrast to the broadcast channel, each transmitter has access only to its own messages. We propose novel multiphase transmission schemes wherein the transmitters collaboratively align the past interference at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater than one (which is the channel DoF without CSIT), and strictly increasing in K. Our results are yet the best available reported DoFs for these channels with delayed CSIT. Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter causes interference on only r receivers in a cyclic manner. By developing a new upper bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing our multiphase transmission ideas, we show that, for r=3, this channel can achieve strictly greater than K/3 DoF with delayed CSIT. Next, we add the capability of simultaneous transmission and reception, i.e. full-duplex operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaussian K-user interference and M×K X channel under the delayed CSIT assumption. By proposing new cooperation/alignment techniques, we show that the full-duplex transmitter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This is in sharp contrast to the previous results on these channels indicating the inability of full-duplex transmitter cooperation to increase the channel DoF with either perfect instantaneous CSIT or no CSIT. With the recent technological advances in implementation of full-duplex communication, it is expected to play a crucial role in the future wireless systems. Finally, we consider the Gaussian K-user interference and K×K X channel with output feedback, wherein each transmitter causally accesses the output of its paired receiver. First, using the output feedback and under no CSIT assumption, we show that both channels can achieve DoF values greater than one, strictly increasing in K, and approaching the limiting value of 2 as K→∞. Then, we develop transmission schemes for the same channels with both output feedback and delayed CSIT, known as Shannon feedback. Our achievable DoFs with Shannon feedback are greater than those with the output feedback for almost all values of K

    Enhancing cooperation in wireless networks using different concepts of game theory

    Get PDF
    PhDOptimizing radio resource within a network and across cooperating heterogeneous networks is the focus of this thesis. Cooperation in a multi-network environment is tackled by investigating network selection mechanisms. These play an important role in ensuring quality of service for users in a multi-network environment. Churning of mobile users from one service provider to another is already common when people change contracts and in a heterogeneous communication environment, where mobile users have freedom to choose the best wireless service-real time selection is expected to become common feature. This real time selection impacts both the technical and the economic aspects of wireless network operations. Next generation wireless networks will enable a dynamic environment whereby the nodes of the same or even different network operator can interact and cooperate to improve their performance. Cooperation has emerged as a novel communication paradigm that can yield tremendous performance gains from the physical layer all the way up to the application layer. Game theory and in particular coalitional game theory is a highly suited mathematical tool for modelling cooperation between wireless networks and is investigated in this thesis. In this thesis, the churning behaviour of wireless service users is modelled by using evolutionary game theory in the context of WLAN access points and WiMAX networks. This approach illustrates how to improve the user perceived QoS in heterogeneous networks using a two-layered optimization. The top layer views the problem of prediction of the network that would be chosen by a user where the criteria are offered bit rate, price, mobility support and reputation. At the second level, conditional on the strategies chosen by the users, the network provider hypothetically, reconfigures the network, subject to the network constraints of bandwidth and acceptable SNR and optimizes the network coverage to support users who would otherwise not be serviced adequately. This forms an iterative cycle until a solution that optimizes the user satisfaction subject to the adjustments that the network provider can make to mitigate the binding constraints, is found and applied to the real network. The evolutionary equilibrium, which is used to 3 compute the average number of users choosing each wireless service, is taken as the solution. This thesis also proposes a fair and practical cooperation framework in which the base stations belonging to the same network provider cooperate, to serve each other‘s customers. How this cooperation can potentially increase their aggregate payoffs through efficient utilization of resources is shown for the case of dynamic frequency allocation. This cooperation framework needs to intelligently determine the cooperating partner and provide a rational basis for sharing aggregate payoff between the cooperative partners for the stability of the coalition. The optimum cooperation strategy, which involves the allocations of the channels to mobile customers, can be obtained as solutions of linear programming optimizations

    Space-time coded cooperation in Wireless Networks

    Get PDF
    Nowadays, the concept of spatial diversity and cooperative networks attract a lot of interest because they improve the reliability of transmission in wireless networks. Spatial diversity is achieved when multiple antennas are at the transmitter. With great growth and demand for high speed high data rate wireless communication, more and more antennas are required. In order to achieve maximum diversity, these antennas should be well separated so that the fading on each link is uncorrelated. This condition makes it difficult to have more than two antennas on a mobile terminal. The relay's cooperation helps increase the diversity order without extra hardware cost. However, its main inconvenience is the use of multiple time slots compared to the direct link transmission. In this thesis, we develop a cooperation model which is composed of three terminals: source, relay and destination. The transmitters (source and relay) are composed of 2 antennas at the transmitter and the receivers (relay and destination) have 4 antennas. In the first proposed model, transmitters and decoders are composed of an Alamouti encoder and decoder respectively. In the second model, we also add a turbo encoder at transmitters and iterative decoding takes place at receivers. In both cases, the transmission cycle is composed of two time slots and the decode and forward (DF) protocol is applied. Multiple scenarios are considered by changing the environment of the transmission, such as line of sight (LOS) or non line of sight (NLOS) or by modifying the location of the relay between the source and destination. We also simulate an uplink and a downlink communication. All the scenarios show a coding gain with the turbo coded space-time cooperation

    An automatic cooperative retransmission MAC protocol in wireless local area networks

    Get PDF
    Existing solutions for cooperation in wireless networks either require simultaneous transmission of source and relay nodes or impose major modifications to original MAC protocols. In this paper, a new efficient retransmission MAC protocol is proposed for IEEE 802.11 based cooperation communications, with minimum modifications to the DCF scheme. Throughput and access delay performance of the proposed protocols is analyzed in error-prone and highly temporally correlated channels. Numerical results show that significant benefits can be achieved with our cooperative protocol, compared with the legacy schemes

    Game theoretic approaches to cooperation in wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Incentivizing Signal and Energy Cooperation in Wireless Networks

    Get PDF
    Abstract-We consider a two-hop wireless network where the source(s) in the network have the ability to wirelessly power the relay(s) who also have their own data to send to the destination. Considering the fact that each node in the network aims to maximize its own metric, we adopt a game theoretic approach that foresees offering relaying of the sources' data in exchange for energy provided to the relays, and simultaneously offering energy to the relays in exchange for their relaying services. We first study a Stackelberg competition with the single relay node as the leader, and investigate the impact of having multiple source nodes in the system. We next study the reciprocal Stackelberg game with the single source as the leader, and investigate the inter-relay competition with multiple relays. We find that in the Stackelberg games, the leader can improve its individual utility by influencing the follower's decision accordingly, even more so when there are multiple followers. We next formulate a noncooperative game between the source and the relay and show the existence of a unique Nash equilibrium by an appropriate pricing mechanism. The equilibrium maximizes the total utility of the network and allows the destination to choose how much data to receive from each node
    corecore