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Incentivizing Signal and Energy Cooperation
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Abstract—We consider a two-hop wireless network where the
source(s) in the network have the ability to wirelessly power the
relay(s) who also have their own data to send to the destination.
Considering the fact that each node in the network aims to max-
imize its own metric, we adopt a game theoretic approach that
foresees offering relaying of the sources’ data in exchange for
energy provided to the relays, and simultaneously offering energy
to the relays in exchange for their relaying services. We first study
a Stackelberg competition with the single relay node as the leader,
and investigate the impact of having multiple source nodes in the
system. We next study the reciprocal Stackelberg game with the
single source as the leader, and investigate the inter-relay compe-
tition with multiple relays. We find that in the Stackelberg games,
the leader can improve its individual utility by influencing the fol-
lower’s decision accordingly, even more so when there are multiple
followers. We next formulate a noncooperative game between the
source and the relay and show the existence of a unique Nash
equilibrium by an appropriate pricing mechanism. The equilib-
rium maximizes the total utility of the network and allows the
destination to choose how much data to receive from each node.

Index Terms—Energy transfer, cooperative communications,
Stackelberg games, Vickrey auction, two-hop relay networks.

I. INTRODUCTION

T HE distribution of resources in a wireless network is
often nonuniform, and thus requires the cooperation of

the nodes in the network for the sake of network optimization.
This includes signal cooperation [1] where nodes with better
channel availability to destinations help forward other nodes’
data to the destination, and energy cooperation [2] where nodes
with better energy availability help energy deficient nodes by
means of energy transfer. As we opt for a greener future for
wireless communication networks, energy harvesting nodes and
utilizing energy (and signal) cooperation become viable design
choices for these networks [3]–[5]. Among other sources of
green energy such as wind, biomass, and piezoelectric devices
[6]–[8], radio frequency (RF) energy transfer, where a wire-
less node is powered by the energy harvested from another
node’s transmission, has recently gained attention, see for
example [9]–[14]. Undoubtedly useful for improving network-
wide performance, energy and signal cooperation may not arise
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naturally in practice as individual nodes would care for their
individual performance. It then becomes useful to investigate
how to incentivize the nodes so that they participate in signal
and energy cooperation. In this work, we study the two-hop
network where source(s) and relay(s) can engage in energy
cooperation in return for signal cooperation and vice versa,
using a game theoretic framework.

Two-hop networks have been studied extensively from a sig-
nal cooperation perspective. Reference [15], for example, has
investigated two-hop networks with multiple sources or relays,
and provided achievable rates. Energy cooperation has been
introduced to the two-hop channel in [2] with one-way energy
transfer from the source to the relay. An energy management
scheme based on two dimensional waterfilling has been shown
to maximize the system throughput. It has been concluded that
energy transfer can improve the end-to-end throughput signif-
icantly. Reference [16] has studied energy transfer from one
source to two relays in an energy harvesting diamond channel.
Reference [17] has generalized throughput maximizing trans-
mission and energy transfer policies by way of two-way energy
transfer between the sources and relays of an energy harvest-
ing two-hop network. Reference [18] has studied the multiple
access and two-way channels where all transmitters can share
their energy in all directions. Reference [19] has generalized
the energy cooperating two-way channel to the case with finite
batteries at both transmitters.

Simultaneous wireless information and power transfer
(SWIPT) has been studied extensively, among others, in [11],
[20], [21]. In SWIPT, signal cooperation and energy cooper-
ation are performed using power splitting where the received
signal at the relay is harvested in part for energy and in part
for information decoding; time sharing which specifies dis-
joint time durations for energy harvesting and relaying; and
relay selection for multi-relay setups where some relays har-
vest energy while others forward data [9]. Reference [22] has
studied the trade off between energy and information transfer
over a point-to-point channel. Reference [23] has considered
a two-hop network with multiple relays with energy transfer
from the source to the relays. Reference [24] has considered
a cognitive radio setup where a secondary user can harvest
energy from a nearby primary user’s transmission to use for
its own transmission. Cellular models where the base station
wirelessly powers the nodes have also been studied, see for
example [10], [25]. Reference [26] has investigated the trade off
between information transmission and energy transfer. For an
overview of SWIPT systems, see [12]. Other recent references
that have considered wireless power transfer/harvesting in order
to improve system performance include [5], [27]–[29].
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Energy transfer has also been considered over more than two
hops. Reference [30] has investigated wireless energy transfer
over multiple hops, and observed that efficient energy transfer
is possible over about twenty hops. Reference [31] has stud-
ied the free rider problem in multi-hop networks where some
relays are not willing to forward the packets they receive and
proposed a solution based on disconnecting them from the net-
work. Consequently, the relays that are not willing to cooperate
end up with zero utilities.

Energy and signal cooperation has proven useful in improv-
ing the end-to-end throughput in multi-terminal networks sig-
nificantly. Not surprisingly, the models studied to avail these
performance gains assume that nodes are altruistic and are
thus willing to cooperate. In reality however, nodes may need
encouragement in participating in cooperation as observed ear-
lier for non-energy harvesting/cooperating scenarios, see for
example [32] which has studied a cognitive radio setup where
the secondary users are given spectrum access in exchange for
signal cooperation with the primary user.

In this work, we consider an energy harvesting two-hop net-
work with “selfish” individual nodes and identify strategies that
encourage them to participate in actions that will improve the
network performance, i.e., cooperation on the energy and signal
levels. In this setup, all nodes wish to maximize the amount of
their own data delivered to the destination. The question thus
becomes how to incentivize them. An initial study in this direc-
tion has been conducted in [33] where a relay has sufficient
energy to forward a source’s data, but needs energy to for-
ward its own data and harvests it from the source. The relay
is assumed to be capable of amplify-and-forward only, which
necessitates allocating disjoint time intervals in which the relay-
ing of the source’s messages and the transmission of the relay’s
data takes place. In this work, we consider a comprehensive
interaction model where the relay has no energy supply other
than that which can be acquired from the source. We consider
a decode-and-forward relay capable of superposing cooperative
transmission with its own allowing for better design. The source
provides the energy required for the relaying of its data as well
as the transmission of the relay’s data, resulting in a model that
avails an array of cooperation scenarios within a game theoretic
framework including those with multiple sources and relays.

We start our investigation with a two-hop network with one
source, one relay, and a destination. We formulate and solve
Stackelberg games [34] for this setup where one of the two
nodes is deemed the leader of the game and the other node the
follower. There could be scenarios where it may be more suit-
able for either the source node or the relay to be the leader. For
example, the source (the relay) could be a node with data that
the destination has more priority on, e.g., an emergency respon-
der. Similarly, one of the nodes can be a primary user with
access rights to radio resources. As well, in a sensor network
setup, both nodes may be sending reports of measurements to
a collector node where one report may be more important, e.g.,
humidity level versus smoke. Thus, we study both cases where
(i) the source, and (ii) the relay is the leader. In each case, we
guarantee a unique equilibrium with positive utilities for both
nodes. We demonstrate how the leader chooses a strategy that

Fig. 1. The two-hop channel with energy transfer (ET).

influences the follower in a way to improve the leader’s utility.
We next extend each Stackelberg game to the case with multiple
followers where we employ a Vickrey auction among the fol-
lowers [35]. We determine the winner of the auction in each
case and find that the auction improves the auctioneer’s utility,
even more so as the number of bidders increases.

Next, we study a noncooperative simultaneous game for the
two-hop network and observe that energy or signal cooperation
is not possible when the nodes are left to their own devices. We
thus propose a pricing scheme that facilitates energy and sig-
nal cooperation, and maximizes the total utility of the network.
We show that this scheme allows the destination to specify how
much data to receive from each node. Via numerical simula-
tions, we observe the impact of the model parameters on the
nodes’ optimal strategies and the resulting utilities.

The remainder of this paper is organized as follows. In
Section II, we describe the two-hop channel and the proposed
cooperation scheme. In Section III, we formulate and solve a
Stackelberg game with the relay as the leader, and employ a
Vickrey auction between multiple sources to further improve
the relay’s utility. In Section IV, we consider the reciprocal
Stackelberg game with the source as the leader, and employ a
Vickrey auction between multiple relays. In Section V, we for-
mulate a simultaneous noncooperative game and improve the
resulting utilities using a pricing scheme. In Section VI, we
provide simulation results for all communication scenarios in
consideration, and observe the impact of the network parame-
ters in each case. In Section VII, we discuss our findings and
conclude the paper.

II. SYSTEM MODEL

In this paper, we study various generalizations of a funda-
mental communication model, namely the two-hop channel.
The two-hop channel we consider requires both signal and
energy cooperation by the source and relay nodes to attain a
positive sum throughput. For this reason, it is suitable as a base
model for a study of signal and energy cooperation in wireless
networks composed of nodes with selfish interests.

Consider a two-hop network with half duplex nodes as shown
in Fig. 1. Both the source, node S, and the relay, node R, have
data to transmit to the destination, node D. The source and the
relay are selfish in the sense that they will act to maximize their
respective utilities, i.e., the amount of their own data delivered
to the destination. The source is connected to the relay by an
additive white Gaussian channel with unit variance and channel
power gain h. We consider that the destination is far away from
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Fig. 2. The phases and subphases of the communication scenario.

the source and thus the direct channel between the source and
the destination can not sustain communication. The relay on the
other hand can communicate to the destination via an additive
white Gaussian channel with unit variance and channel power
gain g. Thus, the source requires the relay’s data cooperation so
that its data can be delivered to the destination.

We consider that the source can acquire energy from an
external source at a price of σ per unit of energy. The energy
source is assumed to be capable of providing the source with
any amount of energy that is required by the source’s chosen
strategy. The model is adopted so that we can contrast the
source energy availability with that of the relay. We consider
that the relay does not have access to any energy supply, and
has to harvest its energy from the source’s transmission at a
given harvesting efficiency η ∈ [0, 1]. That is, the relay can
use η fraction of the energy it harvests1 [2]. Since this is the
only source of energy for the relay, it needs the source to trans-
mit. That is, each node needs the other’s cooperation—signal
or energy—so that it can deliver its data to the destination.

We employ decode-and-forward relaying. The source can
choose an average transmit power p as long as it is below a
maximum power value, i.e., 0 ≤ p ≤ P . The relay’s strategy is
a fraction of time, δ ∈ [0, 1]. The relay uses the 1 − δ fraction
of its time to decode the source’s messages. The relay spends
the remaining δ fraction harvesting energy from the source’s
signal to be used for the transmission of both the source’s and
its own messages. In other words, 1 − δ fraction of the time,
the relay will be operating in favor of the source’s utility only,
whereas the remainder of its operation improves both utilities.

The communication scenario is composed of two phases, A
and B, see Fig. 2. Without loss of generality, the two phases
are considered to be of duration T each, noting that the results
extend to unequal phase durations in a straightforward man-
ner. Only the source transmits in phase A, and only the relay
transmits in phase B. The δ fraction chosen by the relay divides
phase A into two subphases: A1 and A2. This directly follows
from the definition of δ. That is, node R will use δ fraction of
phase A to harvest energy, and the remaining fraction to decode
node S’s data. Consequently, we have two subphases A1 and
A2 of duration (1 − δ)T and δT , respectively.

• Subphase A1: Node S transmits at p/(1 − δ). Node R
listens to S’s transmission and decodes S’s messages.

• Subphase A2: Node S transmits at p/δ. Node R uses all
of the received signal for energy harvesting. The receive
power at R is hp/δ. Node R harvests ηhpT .

1This overall loss factor can accommodate the inefficiencies in the harvesting
process as well as circuit energy costs for energy transfer [2], [36].

Note that the total energy spent by node S is 2pT , and the
incurred energy cost is 2σ pT . Node R spends phase B forward-
ing node S’s data and transmitting its own data. Node R can
maximize the amount of data it transmits to node D by spending
all of the harvested energy at a constant transmit power of ηhp.
Note that, node R must use the ηhpT units of energy both for
forwarding node S’s data and transmitting its own data. Node S
is silent in phase B.

Given that the strategies chosen by nodes S and R are p and
δ, respectively, their utilities uS and u R defined as the average
throughput over the two phases, i.e.,

uS(p, δ) = 1 − δ

4
log

(
1 + h

p

1 − δ

)
− σ p, (1)

u R(p, δ) = 1

4
log(1 + ηhgp)− 1 − δ

4
log

(
1 + h

p

1 − δ

)
.

(2)

Note that, the source utility is jointly concave in p and δ [37,
§3.2.6] whereas this is not necessarily the case for the relay
utility.

The definition of the utilities in (1) and (2) dictates that δ be
chosen large enough so that u R(p, δ) ≥ 0. In other words, if
node R chooses a small δ and cannot harvest sufficient energy
to forward all of node S’s data, then u R(p, δ) < 0. Therefore,
node R must limit the amount of data it receives from node S by
increasing δ accordingly so that it will have enough energy for
node S’s data, and possibly for its own data. While the current
formulation of the utilities allows node R to forward more of
node S’s data than it can with the harvested energy, this results
in a negative utility for node R. Given that it is interested in its
own utility, node R will never choose such a low δ as will be
demonstrated.

Remark 1: Our communication scheme foresees that each
node is informed with the other node’s chosen strategy so that
their best reaction, as well as p/(1 − δ) and p/δ, can be com-
puted. This information would be collected by the destination
and fed back to the nodes, causing negligible signaling over-
head, which is a reasonable compromise in order to optimize
the system throughput.

Remark 2: We consider the energy values for the source’s
transmission of its own data and energy transfer to be equal
for ease of exposition. One can easily assume an arbitrary allo-
cation of the total energy of 2pT units. This results in the
same utilities up to a scaling factor for the transmit powers,
and our results carry through. Moreover, this allocation can
be optimized by the network operator, i.e., the destination, to
maximize a weighted sum of uS(p, δ) and u R(p, δ). Such a
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metric can further emphasize the relative importance of the
source versus the relay data.

In the sequel, we consider the system model described in this
section and its extensions to multi-terminal networks, i.e., with
multiple sources and multiple relays, in various game theoretic
scenarios. We begin with a Stackelberg competition where the
relay is the leader and the source is the follower.

III. STACKELBERG COMPETITION WITH THE RELAY AS

THE LEADER

A. Two-Hop Channel with One Source

In this subsection, we formulate and solve a Stackelberg
game for the communication scenario described above with the
relay node as the leader of the game. In a Stackelberg game,
the follower chooses a strategy that maximizes the follower’s
utility given the leader’s strategy. That is, the leader and the
follower play a sequential game where the follower must react
to the leader’s strategy optimally. The leader is capable of cal-
culating the follower’s best response to any leader strategy. The
leader hence chooses a strategy that maximizes its own utility
knowing how the follower will react [34].

Define a Stackelberg game given by ({S, R}, {IS, IR},
{uS, u R}) where S and R are the players, the strategy spaces
are given by IS = [0, P] � p and IR = [0, 1] � δ, and the pay-
offs, i.e., the utilities uS and u R , are as in (1) and (2). In the
sequel, we refer to nodes R and S as the leader and the follower,
respectively.

Given any leader strategy δ ∈ IR , the follower solves

p(δ) = arg max
p′∈IS

uS(p
′, δ). (3)

The utility uS(p′, δ) is concave in p′ and (3) is a one dimen-
sional optimization problem with an interval as the feasible set.
We thus solve the problem by relaxing the constraint p′ ∈ IS

to p′ ∈ R and projecting the solution to IS . The unconstrained
solution is found as the p′ value that satisfies

∂

∂p
uS(p, δ) = h

4 ln 2
(

1 + h p
1−δ

) − σ

∣∣∣∣∣∣
p=p′

= 0. (4)

We next project this relaxed solution into the feasible set and
identify the optimal solution of (3) as

p(δ) = min

{
max

{(
1

4σ ln 2
− 1

h

)
(1 − δ), 0

}
, P

}
. (5)

It can be seen that, p(δ) is nonincreasing in σ , nondecreasing
in h, and nonincreasing in δ. Node S reacts to a large δ cho-
sen by node R by lowering the average transmit power. This
is because a larger δ implies less time dedicated to improving
node S’s utility, and the throughput it can attain can no longer
compensate for the incurred energy cost. The leader knows this,
i.e., node R can calculate p(δ) for all δ ∈ IR . The leader takes
this information into account when choosing a δ, and solves

δ = arg max
δ′∈IR

u R(p(δ
′), δ′). (6)

Before solving (6), let us take a closer look at p(δ) in (5). If
φ � 1

4σ ln 2 − 1
h ≤ 0, then p(δ) = 0 for all δ ∈ IR . In this case,

the objective of (6) is zero, and regardless of the choice of δ,
the total utility is zero. This results from the energy price σ of
node S being too high, or the power gain to the relay h being
too low, i.e., node S could not attain a positive utility even if it
were allocated the entire transmission session with δ = 0.

Suppose now that φ > 0, thus node S has incentive to
transmit. In this case, we can restate p(δ) as

p(δ) =
{

P if δ ∈ IR,1

φ(1 − δ) if δ ∈ IR,2
(7)

where IR,1 � [0, δ̄), IR,2 � [δ̄, 1], and δ̄ � 1 − min{P/φ, 1}.
Note that IR,1 ∪ IR,2 = IR and if φ ≤ P , IR,1 = ∅ and IR,2 =
IR . Using the piecewise description of p(δ) in (7), we separate
the feasible region of (6) into two regions IR,1 and IR,2, solve
the problem in each region, and finally identify the optimal δ.

1) IR,1 as the feasible region of (6): In this case, p(δ) = P
for all δ ∈ IR,1. The objective of (6) becomes

u R(P, δ) =1

4
log(1 + ηhg P)

− 1 − δ

4
log

(
1 + h

P

1 − δ

)
(8)

and is strictly increasing in δ. Therefore, no δ ∈ IR,1 can
outperform δ̄ ∈ IR,2. In other words, the maximizer of (6)
lies in IR,2.

2) IR,2 as the feasible region of (6): In this case, p(δ) =
φ(1 − δ) for all δ ∈ IR,2. The objective of (6) becomes

u R(φ(1 − δ), δ) =1

4
log(1 + ηhgφ(1 − δ))

− 1 − δ

4
log(1 + hφ). (9)

The utility u R(φ(1 − δ), δ) is concave in δ, and (6) is a
one dimensional optimization problem where δ ∈ [δ̄, 1].
We again remove the interval constraint first and find the
unconstrained solution as the δ′ value that satisfies

∂

∂δ
u R(φ(1 − δ), δ) = −ηhgφ

4 ln 2 (1 + ηhgφ(1 − δ))

+ 1

4
log(1 + hφ)

∣∣∣∣
δ=δ′

= 0. (10)

We next project this solution into the feasible set as

δ′ = min

{
max

{
1 − 1

ln
( h

4σ ln 2

)
+ 1

ηg
( h

4σ ln 2 − 1
) , δ̄

}
, 1

}
(11)

which maximizes u R(φ(1 − δ), δ).
We can observe from (11) that as σ increases or h decreases,

node R tends to choose a lower δ. This follows from the fact
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that node R knows that such changes in σ and h will cause
node S to lower p. Therefore, node R proactively lowers δ so
as to counteract the influence of σ and h on node S’s decision.
This demonstrates how the leader uses its knowledge of how
the follower reacts to the leader’s strategy.

B. Two-Hop Channel with Multiple Sources

In this subsection, we study the two-hop channel with multi-
ple source nodes. We introduce an additional layer of competi-
tion by utilizing an auction scheme between the multiple source
nodes where the auctioned item is the relay’s signal coopera-
tion. That is, only the winning source node can deliver its data to
the destination using the relay. We foresee that this will improve
the relay’s utility since the sources need to outbid each other in
order to obtain positive utilities, and consequently, the winner
will be a source that is most willing to compromise its own util-
ity. In this work, we employ a Vickrey auction to model the
inter-source competition.

Definition 1: A Vickrey auction is a sealed bid second price
auction mechanism where an item is to be assigned to a bidder
in exchange for a payment [34], [35]. The bidders submit their
bids simultaneously with no knowledge of other bids, hence
the sealed bid property. The winner of the auction is the bidder
who has placed the highest bid. The winner is required to pay
the second highest bid, hence the second price property.

Due to the second price property of Vickrey auctions, it is a
weakly dominant action for each bidder to bid their true valua-
tion of the item [34]. That is, for each bidder, bidding the true
valuation results in a payoff that is no less than the payoff that
is obtained by submitting any other bid. This encourages the
bidders to bid the maximum price they are willing to pay. The
second price property is thus a desirable property of Vickrey
auctions, and it is particularly useful in this work since it results
in an improvement in the relay’s utility while attaining a pos-
itive utility for the source as well. In our formulation of the
auction, the source nodes are the bidders and their bids are
the relay utilities that can be obtained with the transmit powers
chosen by the sources.

Consider a half-duplex Gaussian two-hop network with J
source nodes, Sj , j ∈ J � {1, 2, . . . , J }, a decode-and-forward
relay node, R, and a destination node, D, as shown in Fig. 3.
The power gain is hj from node Sj to R, j ∈ J, and g from R to
D. As before the Gaussian noise variance of all links is assumed
to be unity without loss of generality. The source nodes are not
directly connected to the destination. All source and relay nodes
are assumed selfish in the sense that each node wishes to max-
imize the amount of its own data delivered to the destination.
Node Sj has energy available from an external source of energy
at a price of σj per unit of energy, j ∈ J. The relay node can har-
vest a fraction of the energy in the source’s transmission at effi-
ciency η ∈ [0, 1], and use this energy to transmit its data to D.

The communication scenario studied in this section is based
on an auction between the source nodes. Node Sj chooses aver-
age transmit power pj ∈ [0, Pj ] and bids the resulting relay
utility. Here, Pj models a maximum average power constraint
at node Sj , j ∈ J. Only the winning source will be given the

Fig. 3. The two-hop channel with multiple source nodes. Data links are shown
in solid lines and energy transfers are shown in dashed lines.

chance to adjust its average transmit power, and transmit its
data to the relay and subsequently to the destination. The auc-
tion scheme will be explained in the sequel, but suppose, for the
moment, node Sj∗ wins the auction, and settles on average trans-
mit power p∗ ∈ [0, Pj∗ ]. The relay chooses δ ∈ [0, 1] denoting
the fraction of the received signal that will be used for energy
harvesting.

Without loss of generality, suppose a two-phase communi-
cation scheme with phases A and B of equal duration T is
employed for the transmission of Sj∗ and R, respectively. In
phase A, R listens to Sj∗’s transmission for (1 − δ)T seconds
while Sj∗ transmits at p∗/(1 − δ), resulting in an average trans-
mit power of p∗. During the remaining δT seconds of phase A,
Sj∗ transmits at transmit power p∗/δ while R harvests ηhj∗ p∗T .
In phase B, the relay uses the harvested energy to forward Sj∗’s
data and send its own data to node D. For equal duration of
phases and the winning bidder Sj∗ , the utilities uSj for node Sj ,
and u R| j∗ for node R are

uSj∗ (p
∗, δ) = 1 − δ

4
log

(
1 + hj∗

p∗

1 − δ

)
− σj∗ p∗, (12)

uSj (pj , δ) = 0, j ∈ J \ { j∗}, (13)

u R| j∗(p
∗, δ) = 1

4
log(1 + ηhj∗ gp∗)

− 1 − δ

4
log

(
1 + hj∗

p∗

1 − δ

)
. (14)

Instead of serving all of the source nodes at the same time, the
relay puts its relaying services up for auction. Each source node
chooses an average transmit power pj given leader strategy δ,
and bids the leader utility u R| j (pj , δ) that results from these
strategies. Due to the truthful bidding property of the Vickrey
auction, the sources are willing to increase their bids as long as
their own utilities are nonnegative. That is, source Sj wishes to
ensure that

1 − δ

4
log

(
1 + hj

pj

1 − δ

)
≥ σj pj , ∀ j ∈ J. (15)

This condition results in an upperbound on the relay utility
given by

u R| j (pj , δ) ≤ 1

4
log(1 + ηhj gpj )− σj pj , ∀ j ∈ J. (16)
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Since the sources wish to bid the highest relay utility while
maintaining a nonnegative utility for themselves, they calculate
their transmit powers in such a way that results in an equality
for (16), and thus for (15). That is, node Sj computes pj by
solving

1 − δ

4
log

(
1 + hj

pj

1 − δ

)
− σj pj = 0, ∀ j ∈ J. (17)

This equation has a solution, other than pj = 0, for all sources
which can be stated as

pj = − 1 − δ

4σj ln 2
W

(
−4σj ln 2

hj
e
− 4σj ln 2

hj

)
− 1 − δ

hj
(18)

for all j ∈ J. Here, we use the Lambert W function [38] to iden-
tify pj . Note that W (·) denotes the lower branch of the Lambert
W function. We can rewrite (17) as

f (hj pj ) �
(

hj pj

1 − δ

)−1

log

(
1 + hj pj

1 − δ

)
= 4

σj

hj
, (19)

for all j ∈ J. Since x log(1 + 1/x) is strictly increasing in x ≥
0, f (hj pj ) is strictly decreasing in hj pj . Thus, we can infer that
hj pj increases as σj/hj decreases. That is, the source node with
the lowest σj/hj value can provide the highest receive power
at the relay. Hence, the sources that can buy energy at a lower
price, or have a better link to the relay are willing to bid higher
average receive powers at the relay. The winner of the auction is
the source node that can provide the highest utility to the relay
with its bid, i.e.,

j∗ = arg max
j∈J

u R| j (pj , δ) (20)

= arg max
j∈J

(log(1 + ηghj pj )− f (hj pj )hj pj ) (21)

where (21) follows from (17). Recall that − f (hj pj ) is strictly
increasing in hj pj . Thus, we have

j∗ = arg min
j∈J

hj pj = arg min
j∈J

σj

hj
. (22)

In other words, the winner of the auction is the source node
with the highest received power at the relay, or equivalently, the
one with the lowest σj/hj ratio2. Note that, the source nodes
need not calculate their bids in order to determine who will win
the auction. Recall that in the single source case, δ turned out to
be decreasing in σ/h as observed in (11). It is thus shown that
with multiple sources, the source node with the lowest σj/hj

will agree with the largest δ chosen by the relay, and therefore
provide the largest utility to the relay. Consequently, the auction
improves the auctioneer’s payoff, in this case, the relay’s utility.

Let Sj† be the runner up. Node Sj∗ must provide at least
u R| j†(pj†, δ). We know that hj∗ pj∗ ≥ hj† pj† , and thus Sj∗ can
lower its transmit power to hj† pj†/hj∗ and provide the required
relay utility. However, if pj∗(δ) computed as

pj∗(δ) = arg max
p′∈[0,Pj∗ ]

uSj∗ (p
′, δ) (23)

2In case there are multiple maximizers to (22), the winner is picked randomly
among the source nodes that provide the highest received powers.

is larger than hj† pj†/hj∗ , then both Sj∗ and R can have higher
utilities if Sj∗ lowers its power only to pj∗(δ). Thus,

p∗(δ) = max{pj∗(δ), hj† pj†/hj∗}. (24)

That is, the Vickrey auction results in a minimum average
power requirement at node Sj∗ . Since the auctioneer, i.e., node
R, would have to sacrifice its utility by lowering δ in order to
increase the average transmit power of the source node if there
were only one source node, the auction results in an increase in
the auctioneer’s utility.

IV. STACKELBERG COMPETITION WITH THE SOURCE AS

THE LEADER

In this section, we consider the reciprocal Stackelberg games
to those in Section III with the source node as leader.

A. Two-Hop Channel with One Relay

Consider first when there is only one relay3. Given leader
strategy p, the follower, node R, solves

δ(p) = arg max
δ′∈IR

u R(p, δ
′). (25)

Since u R(p, δ) is increasing in δ, it is immediate that the solu-
tion of (25) is δ(p) = 1 for all p > 0, and u R(p, δ) = 0 for any
δ if p = 0. The leader knows δ(p), and solves

p = arg max
p′∈IS

uS(p
′, δ(p′)). (26)

If the leader picks a positive p, then the first term in its util-
ity will be zero, but the second term will be negative. Thus, the
optimal strategy for the leader is to stop transmission, resulting
in vanishing utilities for both nodes. Therefore, with a single
relay in a Stackelberg setup with the source as the leader, the
two players cannot agree on a strategy pair that yields positive
utilities. However, positive utilities can be facilitated by intro-
ducing multiple relay nodes, and another layer of competition
to the system. As will be shown next, this approach improves
the utilities under the source’s leadership.

B. Two-Hop Channel with Multiple Relays

The communication system we study in this section is similar
to the one in Section III-B, except here, there are multiple relay
nodes instead of the multiple source nodes. We thus have a half-
duplex Gaussian two-hop network with a source node, S, K
decode-and-forward relay nodes, Rk , k ∈ K � {1, 2, . . . , K },
and a destination node, D, as shown in Fig. 4. All nodes have
data to transmit to node D, and they wish to maximize their
individual throughputs. The power gain is hk from S to Rk , and
gk from Rk to D with unit noise variance. Node S can pur-
chase energy at price σ . Relay Rk can harvest energy from S’s
transmission at efficiency ηk ∈ [0, 1] to transmit its data to D.

3We consider this scenario as a pedagogical step in order to build upon this
model.
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Fig. 4. The two-hop channel with multiple relay nodes. Data links are shown
in solid lines and energy transfers are shown in dashed lines. Data arrivals at
the relays are omitted.

We consider an auction between the relay nodes. The under-
lying communication scheme is again carried out in two phases.
Node S’s strategy is the average transmit power p ∈ [0, P]
where P is the maximum average power. Node Rk bids har-
vesting fraction δk ∈ [0, 1], k ∈ K. The winning relay will be
able to adjust its fraction, and take part in the two-phase com-
munication scheme. Suppose the winning relay is node Rk∗ , and
the adjusted harvesting fraction is δ∗ ∈ [0, 1]. Given that k∗ is
the winning bidder index, the resulting utilities uS|k∗ for node S
and u Rk for node Rk can be stated as

uS|k∗(p, δ∗) = 1 − δ∗

4
log

(
1 + hk∗

p

1 − δ∗

)
− σ p, (27)

u Rk∗ (p, δ
∗) = 1

4
log(1 + ηk∗hk∗ gk∗ p)

− 1 − δ∗

4
log

(
1 + hk∗

p

1 − δ∗

)
, (28)

u Rk (p, δk) = 0, k ∈ K \ {k∗}. (29)

Let us now consider a Vickrey auction where the auction item
is the energy that can be harvested from the source’s trans-
mission, and the bids are the utilities for the source resulting
from the harvesting fractions chosen by the relays. Similar to
Section III-B, the relays are motivated to pay the maximum
price they can pay. Since the relay utilities are increasing in
δ, each relay is willing to lower their δ until the relay utility
vanishes. That is, node Rk solves

log(1 + ηkhk gk p)− (1 − δk) log

(
1 + hk

p

1 − δk

)
= 0, (30)

for all k ∈ K, which yields

δk = max

{[
1

ψk
W

(
− ψk

hk p
e
− ψk

hk p

)
+ 1

hk p

]−1

+ 1, 0

}
(31)

for all k ∈ K where ψk = ln(1 + ηkhk gk p). To determine the
winner of the auction, one need not calculate δk however.
Instead, we use (30) to express the source utility in a simpler
form as follows.

The winner of the auction is the relay node that can provide
the source with the highest utility. That is,

k∗ = arg max
k∈K

uS|k(p, δk) (32)

= arg max
k∈K

(log(1 + ηkhk gk p)− 4σ p) (33)

where we use (30) to arrive at (33). Since the source utility is
strictly increasing in ηkhk gk , we have

k∗ = arg max
k∈K

ηkhk gk . (34)

In other words, the winner of the auction is the relay that can
utilize its harvested energy most efficiently, and thus deliver
the most data to the destination. Let Rk† be the runner up.
Relay Rk∗ must provide at least uS|k†(p, δk†). Since the win-
ning relay’s own utility is increasing in the harvesting fraction,
it is optimal for Rk∗ to provide exactly uS|k†(p, δk†). Thus, the
adjusted fraction can be found by solving

log(1 + ηk† hk† gk† p) = (1 − δ∗) log

(
1 + hk∗

p

1 − δ∗

)
(35)

The unique solution to (35) can be computed as

δ∗ =
[

1

ψk†
W

(
− ψk†

hk∗ p
e
− ψ

k†
hk∗ p

)
+ 1

hk∗ p

]−1

+ 1 (36)

by using the lower branch of the Lambert W function.
Since ηk∗hk∗ gk∗ ≥ ηk† hk† gk† due to (34), the right-hand side

of (35) is at least log(1 + ηk† hk† gk† p) when δ∗ = δk∗ , and it
decreases to 0 as δ∗ increases to 1. Thus, a unique solution
exists, and unless ηk∗hk∗ gk∗ = ηk† hk† gk† , the follower can also
have a positive utility while delivering the required leader util-
ity. The leader can now calculate p using (26). As a final
remark, we note that no Stackelberg game with the source as the
leader and any one of the relays as the follower results in a pos-
itive utility for any node. By introducing competition between
the relays by means of an auction, we obtain positive utilities.

V. SIMULTANEOUS GAMES FOR THE TWO-HOP CHANNEL

We have so far studied sequential games for the two-hop
channel where the leader node plays first knowing how the fol-
lower will react, and then the follower reacts to the leader’s
strategy in the optimal way. In this section, we consider a
distributed setting where all nodes are equal, and study simul-
taneous games where both nodes will react to each other’s
strategies optimally.

A. Noncooperative Game

Consider the noncooperative game given by ({S, R}, {IS,

IR}, {uS, u R}). A strategy pair (p∗, δ∗) is a Nash equilibrium
if and only if neither player has incentive to unilaterally devi-
ate from these two strategies, i.e., each player plays its best
response to the other player’s strategy at the equilibrium [34].
The best response is defined as the strategy that maximizes
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a player’s utility given the other player’s strategy. We aim to
identify the Nash equilibria of this game.

The observation that u R(p, δ) is strictly increasing in δ for
p > 0 yields that the best response of node R to any p > 0 is
δ = 1. But, with δ = 1, node S’s strategy is nonpositive and is
maximized by p = 0. In other words, we have

• (p∗, δ∗) �∈ (0, P] × [0, 1) since node R has incentive to
increase δ to 1,

• (p∗, δ∗) �∈ (0, P] × {1} since node S has incentive to
decrease p to 0, and

• (p∗, δ∗) �∈ {0} × [0, 1) since node S has incentive to
increase p to a positive value.

Therefore, the unique equilibrium is (p∗, δ∗) = (0, 1) which
results in uS(0, 1) = u R(0, 1) = 0, and thus zero total utility.

This result can be interpreted as follows. Although there
exists (p, δ) ∈ IS × IR \ {(0, 1)} with a positive total utility, the
players cannot agree upon this strategy pair due to the noncoop-
erative nature of the setting at hand. We can, however, not only
ensure a positive total utility, but also maximize it at a nonco-
operative equilibrium by modifying the utilities with pricing as
explained next.

B. Social Optimality of the Two-Hop Channel

We employ a pricing scheme on the utilities for both players
to facilitate an equilibrium that results in social optimality for
the entire network. The pricing scheme is similar to the interfer-
ence compensation scheme in [39], except here, the prices are
not determined by the players, but are announced by node D.
Consider the noncooperative game ({S, R}, {IS, IR}, {ũS, ũ R})
where the modified utilities are given by

ũS(p, δ;πR) = uS(p, δ)− pπR, (37)

ũ R(p, δ;πS) = u R(p, δ)− δπS, (38)

where the prices πR and πS model a penalty charged to the two
nodes as a result of the influence of their individual strategies on
the other node’s utility. For instance, pπR is a penalty charged
to node S as a result of the impact of its strategy p on node R’s
utility. The prices are announced by node D and can be used
by node D to maximize the amount of data it receives. Node D
wishes an optimal solution of the social problem which can be
expressed as

max
(p,δ)∈IS×IR

(uS(p, δ)+ u R(p, δ)) (39)

or equivalently as

max
(p,δ)∈IS×IR

(log(1 + ηhgp)− 4σ p) (40)

Problem (40) is a convex program whose objective is strictly
concave in p and constant in δ. The optimal solution can be
computed as

p‡ = min

{
max

{
1

4σ ln 2
− 1

ηhg
, 0

}
, P

}
. (41)

Recall that δ determines what portion of the data received at
the destination is node R’s data and what portion is node S’s

data. Since the social problem as expressed in (40) maximizes
the total data delivered to node D, regardless of nodes S and
R’s contribution, any feasible δ is optimal. However, node D
may wish that the data it receives be composed of node S’s and
node R’s data in a particular ratio. Let δ‡ be the corresponding
harvesting fraction. We rewrite (40) as

max
(p,δ)∈IS×IR

(uS(p, δ)+ u R(p, δ)− (δ − δ‡)2). (42)

Problem (42) is a convex program with a strictly concave
objective, thus it admits a unique optimizer, say (p‡, δ‡). This
strategy pair can be made the unique Nash equilibrium if node
D calculates the prices using

πS(p, δ) = −∂uS(p, δ)

∂δ
+ 2(δ − δ‡), (43)

πR(p, δ) = −∂u R(p, δ)

∂p
. (44)

We employ a modified version of the asynchronous dis-
tributed pricing (ADP) algorithm in [39]. The strategies are
initially set as p = 0 and δ = 0, and are then asynchronously
updated by nodes S and R using their best response updates.
Consequently, any limit point of the modified ADP algorithm
is a Nash equilibrium. After each update of p or δ, node D
calculates πS and πR using (43) and (44), and announces them.
This selection of the prices guarantees that any limit point
of the algorithm will satisfy the Karush-Kuhn-Tucker (KKT)
conditions of (42), and will thus be uniquely optimal [39,
Theorem 1].

In order to prove the convergence of the modified ADP algo-
rithm, we take an approach that is based on transforming the
strategy space as was done in [39, Theorem 1]. Suppose that the
prices are announced by the source and the relay nodes them-
selves, not the destination, and that the source and the relay will
compute the prices using (43) and (44). We have

∂2ũS(p, δ;πR)

∂p∂πR
= −1 < 0, (45)

∂2ũ R(p, δ;πS)

∂δ∂πS
= −1 < 0. (46)

That is, the utilities have decreasing differences. Letting π ′
R �

−πR and π ′
S � −πS , we consider the same game with strate-

gies (p, δ, π ′
S, π

′
R). For this game, the strategy space for each

strategy is nonempty and compact, and the utilities are con-
tinuous in all strategies. Moreover, each node’s utility has
increasing differences in its own strategies since we have

∂2ũS(p, δ;πR)

∂p∂πS
= 0, (47)

∂2ũ R(p, δ;πS)

∂δ∂πR
= 0. (48)

Lastly, the derivatives in (45) and (46) are positive if we replace
πS and πR by π ′

S and π ′
R , respectively. Hence, the utilities have

increasing differences, and we have a supermodular game for
which the best response updates converge to a Nash equilibrium
[40]. The original game is equivalent to the supermodular game
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Fig. 5. The two players’ utilities versus the location of node R with d ′ =
100 m, σ = 0.05 bps/W, η = 0.4, and P = 500 mW for the Stackelberg game
in Section III-A and the noncooperative game in Section V-B.

since the prices are computed and announced in the same way.
Note that, although the two players can choose any p or δ value
they want in the supermodular game, they are constrained to
use (45) and (46) to compute the prices by definition of the
game. Therefore, (p‡, δ‡) is the unique Nash equilibrium of the
supermodular game as well, and hence is the limit point of the
modified ADP algorithm [39].

This completes the description of the socially optimal pric-
ing scheme for the two-hop channel since we already know that
(p‡, δ‡) solves (42) optimally. Next, we implement all equilib-
ria found in Sections III–V and compare the resulting utilities
for varying channel parameters.

VI. NUMERICAL RESULTS

We first present the simulation results for the two-hop chan-
nel with one source and one relay. We evaluate the utilities of
the two players at the equilibria found in Sections III-A and
V-B. We omit the equilibria found in Sections IV-A and V-A
since they yield zero utilities for both players. The available
bandwidth is 1 MHz, and the additive white Gaussian noise
density is 10−19 W/Hz. We assume Rayleigh fading and aver-
age over 1000 realizations of the fading coefficients. We denote
by d the distance between the source and the relay, i.e., between
nodes S and R, and by d ′ the distance between the source
and the destination, i.e., between nodes S and D. The chan-
nel power gains are computed using a model where the power
gains corresponding to the mean fading level are h = K/d2 and
g = K/(d ′ − d)2 respectively for the channel gain between S
and R, and R and D. The carrier frequency is 900 MHz, and
the reference distance for the path loss model is 1 m resulting
in K = −40 dB [41], [42]. We vary the remaining parameters
d, the power price σ , the harvesting efficiency η, and the max-
imum power P in order to assess their impact on the utilities.

Fig. 6. The two players’ utilities versus the power price with d = 50 m, d ′ =
100 m, η = 0.4, and P = 500 mW for the Stackelberg game in Section III-A
and the noncooperative game in Section V-B.

For the utilities resulting from the noncooperative equilibrium
in Section V-B, we consider that node D wishes to receive equal
amounts of data from node S and node R.

Fig. 5 shows the utilities resulting from the Stackelberg
equilibrium in Section III-A, and the noncooperative Nash equi-
librium with pricing in Section V-B. Recall that the latter is
socially optimal, thus it maximizes the total utility in all set-
tings considered here. For this set of simulations, node S and
node D are stationary and node R moves from node S to node
D on a line. We observe for the noncooperative equilibrium that
both nodes have higher utilities when node R is close to node S
or node D. This follows from the fact that R can harvest more
energy when near node S, and can send more data when near
node D. At the Stackelberg equilibrium, however, as node R
moves away from node S, its utility is increased while node S’s
utility is decreased. Recall that δ is decreasing in g, and thus
decreases as node R moves away. This encourages node S not
to lower its transmit power. As a result, node R has a higher util-
ity as its channel to node D is improved while node S’s utility
suffers from a smaller channel gain.

Fig. 6 shows the utilities for varying power price σ , in order
to observe the impact of the energy cost at node S. The power
price causes node S to be more conservative with its power
usage. Thus, at the social optimum, both nodes’ utilities are
decreasing in σ . At the Stackelberg equilibrium, the power
price does not impact node R’s operations. Node R chooses
a lower δ as φ decreases in order to give node S incentive to
transmit even though σ is increasing. This demonstrates the
advantage of having the additional knowledge of the follower’s
best reaction to any leader strategy.

Fig. 7 shows the utilities versus the harvesting efficiency η.
The harvesting efficiency is varied from 0 with no harvested
energy to 1, i.e., the ideal case. Since the energy harvested by
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Fig. 7. The two players’ utilities versus the harvesting efficiency with d =
50 m, d ′ = 100 m, σ = 0.05 bps/W, and P = 500 mW for the Stackelberg
game in Section III-A and the noncooperative game in Section V-B.

node R is increasing in the harvesting efficiency, both utilities
are increasing in η at the social optimum. For low values of η
at the Stackelberg equilibrium, node R cannot harvest enough
energy for both node S’s data and its own data. Thus, in this
regime, more of node S’s data can be delivered as η increases.
However, once η is high enough, node R limits the energy usage
for forwarding node S’s data, and attains a larger utility as η
increases.

Fig. 8 shows the utilities for varying maximum power con-
straints. The maximum average transmit power that node S can
choose is varied from 0 to 1 W. We observe that both utilities are
increasing in P at the social optimum since the feasible space
for node S’s strategy is larger with a higher P . However, the
utilities for the socially optimal case are concave, which means
the gain from a high P diminishes as P is further increased.
This is due to the energy cost of node S being a part of the total
utility. At the Stackelberg equilibrium, node R uses its knowl-
edge of p(δ) in (5) to entice node S to increase its transmit
power. This eventually results in a decrease in node S’s utility
due to the energy cost. However, at P = 0.88 W, the maximum
power constraint is active and limits the transmit power chosen
by node S. Node R needs to sacrifice more of its own utility
beyond this point.

Fig. 9 provides a comparison of the source utility if it were
to simply use a direct link and did not participate in signal or
energy cooperation. In this example, the direct link is 20 dB
weaker than its path loss based attenuation, for example due
to shadowing. Again, S and D are 100 m apart. As we can
observe from the figure, the source obtains a larger utility with
the help of the relay node as compared to its utility over the
direct link to the destination without any relaying in this exam-
ple. The two-hop scheme is even more advantageous when the
relay is close to the source or the destination. This example is

Fig. 8. The two players’ utilities versus the maximum average transmit power
for node S with d = 50 m, d ′ = 100 m, σ = 0.05 bps/W, and η = 0.4 for the
Stackelberg game in Section III-A and the noncooperative game in Section V-B.

Fig. 9. Node S’s utility versus the location of node R with d ′ = 100 m,
σ = 0.05 bps/W, η = 0.4, and P = 500 mW for the noncooperative game in
Section V-B and direct transmission from node S to node D.

meant to demonstrate that the source would prefer employing
the relay’s services rather than sending its data directly to the
destination, in conditions similar to those that render classical
two-hop communications preferable, e.g., when the direct link
is under unfavorable fading conditions; even though the relay
demands additional energy for its own data in exchange, and
the RF energy transfer leads to a significant loss due to channel
gains.

For the multi-source/relay auction schemes, we consider a
two-hop line network with one source and one relay, and add
more randomly placed source or relay nodes to observe the
inter-source or inter-relay competition. Similar to the previ-
ous simulations, we assume Rayleigh fading and compute the
mean power gain between two nodes that are d meters apart
as −40 dB/d2. The harvesting efficiencies, maximum average
powers, and energy prices are drawn uniformly from βη[0, 1],
βp[0, 100] mW, and βσ [0, 0.1] bps/W, respectively where
βη, βp, βσ ∈ [0, 1] vary for each simulation to demonstrate the
impact of these model parameters.
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Fig. 10. The winning source’s utility and the relay’s utility in a two-hop net-
work with multiple sources versus the number of sources in the network for the
setup in Section III-B.

Fig. 10 shows the leader and follower utilities for the setup in
Section III-B with one relay and J sources versus the number
of sources in the network. The distance from R to D is set to
be 50 m, and the distance between each Sj and R is uniform
on [0, 100] m. As more randomly placed sources are intro-
duced to the system, the sources face more intense competition
whereas the relay has more options to choose from. Therefore,
the relay’s utility is nondecreasing in the number of sources in
the system. However, the winning source’s utility is not mono-
tone since the addition of new sources with random distances
and random energy prices can impact the source’s utility in
any direction. Note that the new sources added to the system
during the constant portions of both utilities cannot win the auc-
tion or have the second best offer, thus their involvement does
not impact the utilities. The utility curves are also drawn for
lower harvesting efficiencies by setting βη = 0.5, lower maxi-
mum powers by setting βp = 0.5, and lower energy prices by
setting βσ = 0.5. We observe that a lower harvesting efficiency
at the relay results in a lower utility for the relay, but it does not
impact the winning source’s utility. A lower maximum power
constraint helps the source and causes a lower utility at the
relay. In addition, a lower energy price results in higher bids
from all sources, and thus a higher relay utility. It also results in
a lower energy cost at the winning source.

Fig. 11 shows the leader and follower utilities for the setup in
Section IV-B with one source and K relays versus the number
of relays in the network. The distance from S to D is set to be
100 m, and the relays are placed uniformly on the line between
S and D. Similarly, the auctioneer’s utility is nondecreasing in

Fig. 11. The source’s utility and the winning relay’s utility in a two-hop net-
work with multiple relays versus the number of relays in the network for the
setup in Section IV-B.

Fig. 12. Node S’s utility versus the location of node R with d ′ = 10 m, σ =
0.05 bps/W, η = 0.4, and P = 1 mW for the noncooperative game in Section V-
B and direct transmission from node S to node D.

the number of bidders whereas the auction winner’s utility is
not monotone. The source’s utility is increasing in the harvest-
ing efficiency when the source is the leader of the game. With
a higher η, the source can encourage node R to use the addi-
tional harvested energy for forwarding node S’s data. While
the source can adjust the average transmit power and in turn the
harvesting fraction at the relay in accordance with the changes
in the energy price, a lower maximum power constraint at the
source results in a lower source utility. This is because with a
lower maximum power, the source has a smaller feasible set,
and hence the resulting utility potentially decreases.

Lastly, we consider a low frequency short range RFID appli-
cation example such as an asset tagging system in which an
intermediate node can relay another node’s data in exchange
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for transferred energy [43]. We consider a carrier frequency of
13.56 MHz and reference distance of 1 m. Fig. 12 shows the
source’s utility over two hops as well as over the direct link.
Here, S and D are 10 m apart, and R moves from S to D. The
figure demonstrates that our two-hop cooperation scheme can
outperform the direct link in this setup, without any additional
fading on the direct link. We observe a similar phenomenon to
that of Fig. 9 in that the proximity of the relay to the source
or the destination leads to improved source utility since the
relay can harvest more energy or has a better channel to the
destination, respectively.

VII. DISCUSSION AND CONCLUSION

In this paper, we have studied signal and energy cooperating
two-hop wireless networks in a game theoretic setup, with the
goal of properly incentivizing the nodes in the network to par-
ticipate in both forms of cooperation. We have considered the
two-hop network where the source has energy to offer to the
relay in exchange for relaying its data, and the relay can use
part of this energy to transmit its own data. We have focused
on the setup that, despite wishing to maximize their individ-
ual utilities, the nodes find it beneficial to cooperate. We have
formulated Stackelberg games, where the relay and the source
is the leader respectively, and observed how the leader can
influence the follower’s decision in order to obtain a higher
individual utility. By introducing an additional layer of com-
petition by means of a Vickrey auction, we have shown that the
leader’s utility can be improved. We have observed that auc-
tions incentivize the source nodes to transfer more energy to the
relay, or the relay nodes to forward more of the source’s data, as
compared to the single-source single-relay case. Moreover, as
there are more bidders participating the auction, the inter-source
or the inter-relay competition becomes more intense, and con-
sequently the leader has an even higher utility. Additionally, we
have considered a noncooperative game with nodes of equal
stature, and shown that a pricing scheme can be employed to
improve all utilities to social optimality of the two-hop chan-
nel. In this case, the destination can employ the pricing scheme
to choose how much data to receive from the source and the
relay.

We note that the two-hop setup considered in this work is a
stepping stone in the direction of fully characterizing the coop-
eration performance in networks with energy harvesting and
selfish nodes. In arbitrary network topologies, there would be
interference between the terminals which needs to be carefully
managed, but this would also provide further opportunities for
energy harvesting. In this case, our cooperation schemes need
to be extended to those that allow some source nodes to trans-
mit data while other source nodes transmit energy to their relays
which harvest energy from the interference they receive as well.
Considering such a general network interaction is an interesting
future direction.
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