786 research outputs found

    Trajectory generation for cooperating robots

    Get PDF
    Includes bibliographical references (page 302).This paper derives a formulation for on-line trajectory generation for two robots cooperating to perform an assembly task. The two robots are treated as a single redundant system. A Jacobian is formulated that relates the joint rates of the entire system to the relative motion of one of the hands with respect to the other. The minimum norm solution of this relative Jacobian equation results in a set of joint rates which perform the cooperative task. In addition to the cooperative task, secondary goals, which include obstacle and joint limit avoidance, are specified using velocities in the null space of the relative Jacobian. This formulation also allows the robots to be controlled in parallel on independent tasks

    Application of the CIRSSE cooperating robot path planner to the NASA Langley truss assembly problem

    Get PDF
    A method for autonomously planning collision free paths for two cooperating robots in a static environment was developed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The method utilizes a divide-and-conquer type of heuristic and involves non-exhaustive mapping of configuration space. While there is no guarantee of finding a solution, the planner was successfully applied to a variety of problems including two cooperating 9 degrees of freedom (dof) robots. Although developed primarily for cooperating robots the method is also applicable to single robot path planning problems. A single 6 dof version of the planner was implemented for the truss assembly east, at NASA Langley's Automated Structural Assembly Lab (ASAL). The results indicate that the planner could be very useful in addressing the ASAL path planning problem and that further work along these lines is warranted

    HUMAN CONTROL OF COOPERATING ROBOTS

    Get PDF
    Advances in robotic technologies and artificial intelligence are allowing robots to emerge fromresearch laboratories into our lives. Experiences with field applications show that we haveunderestimated the importance of human-robot interaction (HRI) and that new problems arise inHRI as robotic technologies expand. This thesis classifies HRI along four dimensions - human,robot, task, and world and illustrates that previous HRI classifications can be successfullyinterpreted as either about one of these elements or about the relationship between two or moreof these elements. Current HRI studies of single-operator single-robot (SOSR) control andsingle-operator multiple-robots (SOMR) control are reviewed using this approach.Human control of multiple robots has been suggested as a way to improve effectiveness inrobot control. Unlike previous studies that investigated human interaction either in low-fidelitysimulations or based on simple tasks, this thesis investigates human interaction with cooperatingrobot teams within a realistically complex environment. USARSim, a high-fidelity game-enginebasedrobot simulator, and MrCS, a distributed multirobot control system, were developed forthis purpose. In the pilot experiment, we studied the impact of autonomy level. Mixed initiativecontrol yielded performance superior to fully autonomous and manual control.To avoid limitation to particular application fields, the present thesis focuses on commonHRI evaluations that enable us to analyze HRI effectiveness and guide HRI design independentlyof the robotic system or application domain. We introduce the interaction episode (IEP), whichwas inspired by our pilot human-multirobot control experiment, to extend the Neglect ToleranceHUMAN CONTROL OF COOPERATING ROBOTSJijun Wang, Ph.D.University of Pittsburgh, 2007vmodel to support general multiple robots control for complex tasks. Cooperation Effort (CE),Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure thecooperation in SOMR control. Two validation experiments were conducted to validate the CDmeasurement under tight and weak cooperation conditions in a high-fidelity virtual environment.The results show that CD, as a generic HRI metric, is able to account for the various factors thataffect HRI and can be used in HRI evaluation and analysis

    Coordination of multiple robot arms

    Get PDF
    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself

    Generalized Approach for the Control of Constrained Robot Systems

    Get PDF
    This paper presents a generalized approach for controlling various cases of the constrained robot system. To accomplish specific tasks successfully by a constrained robot system, both the constraint forces/torques and the motion of the manipulator end-effector must be specified and controlled. Using the Jacobian matrix of the constraint function, the generalized coordinates of the constrained robot system can be partitioned into two sets; this leads to partitioning the constrained robot system into two subsystems. The constraint forces/torques in each subsystem can be decomposed into two components: the motion-independent and the motion-dependent forces/torques. Using the constraint function in the Cartesian space, the motion-independent forces/torques can be expressed by a generalized multiplier vector and the Jacobian matrix of the constraint function. The motion-dependent forces/torques can be determined by the motion of the manipulator end-effector, the motion-independent forces/torques, and other known quantities. This decomposition of the constraint robot system into subsystems leads to the design of a nonlinear decoupled controller with a simple structure, which takes the constraints into consideration for controlling the constrained robot system. Applying the proposed nonlinear decoupled controller to each subsystem and using the relation between the motion-independent forces/torques in the subsystems, we can show that both the errors in the manipulator end-effector motion and the constraint forces/torques approach zero asymptotically. Typical examples of the constrained robot systems are analyzed and discussed

    Statistical modelling of dual-arm robotic systems

    Get PDF
    The article presents a new approach to the analysis and design of two-arm robotic systems. Usually, system descriptions are based on a set of differential equations which require laborious computations. This motivates the need of alternative models based on other mathematical concepts. The proposed statistical method gives clear guidelines towards the robotic systems analysis and development.N/

    HERMIES-3: A step toward autonomous mobility, manipulation, and perception

    Get PDF
    HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information
    corecore