
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/195806547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




STATISTICAL MODELLING OF DUAL ARM ROBOTIC SYSTEMS 

J.A. Tenreiro Machado1, Alexandra M.S.F. Galhano1, N. M. Ferreira2, J. Boaventura Cunha3

Institute of Engineering of Porto, PORTUGAL1

Institute of Engineering of Coimbra, PORTUGAL2

University of Trás dos Montes and Alto Douro, PORTUGAL3

The article presents a new approach to the analysis 
and design of two-arm robotic systems. Usually, 
system descriptions are based on a set of differential 
equations which require laborious computations. This 
motivates the need of alternative models based on 
other mathematical concepts. The proposed statistical 
method gives clear guidelines towards the robotic 
systems analysis and development. 

1. INTRODUCTION 

Mechanical manipulators are developed according to 
engineering and scientific principles that are based on 
fundamental concepts such as those arising from 
mathematics and physics. Based on these 
formulations, the first step on the study of a physical 
phenomenon is the development of an adequate 
model [1]. Manipulators are a system where we have 
for fundamental concepts the differential and matrix 
calculus and the classical Newtonian physics, while 
the system model corresponds to the standard 
kinematic and dynamic descriptions [2-6]. 
Nevertheless, other classes of phenomena such as 
quantum physics and thermodynamics are studied 
using different concepts. Quantum physics requires 
the use of statistical methods while thermodynamics 
can be studied both through classical and statistical 
methods. 

These facts suggest that, for a given problem, we may 
develop different models each with its own merits 
and drawbacks. This paper presents a framework 
where these problems are addressed for robotic 
manipulators. We develop a new modelling approach 
based on a statistical formalism [8-9]. These concepts 
are then illustrated on a simple mechanical joint-
actuated arm and for two robots carrying an object. In 
order to develop the method we organise this paper as 
follows. Section two formulates the new fundamental 
modelling concepts. Section three illustrates the 
application of the statistical method to the kinematics 
of one and two mechanical manipulators working in 
cooperation. Finally, section four presents the main 
conclusions. 

2. ON THE STATISTICAL MODELLING 

The classical modelling of mechanical manipulators 
is well known. For a n degrees of freedom (dof) robot 
the kinematics is described by a set of non-linear 
equations: 
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where p,pp,  and q,qq,  are n  1 vectors of 

positions, velocities and accelerations in the 
operational and joint spaces, respectively. 
These observations motivate the re-evaluation of the 
concepts in use because expressions (1) involve a 
plethora of variables and parameters that give rise to 
a gigantic number of possible combinations of values 
in a design stage. 
In order to overcome implementation problems, 
alternative concepts are required. Statistics is a 
mathematical tool well adapted to this type of 
problem. If with this method, we lose the 'certainty' 
of the deterministic model, we gain a simpler and 
more intuitive viewpoint. This approach has already 
been used by other researchers [11] in some restricted 
classes of problems. In the sequel we refer to the new 
approach, as the statistical model [12-15] to stress the 
contrast with the standard method. Our modelling 
procedure comprises: The statistical description of a 
set of input variables (IVs), which is variables that are 
free to change independently. 

The statistical description of a set of output 
variables (OVs), that is, variables that are 
functions of the previous ones. 

The above definition allows a considerable 
freedom in the choice of each set. In the present 
case, the distribution of the relevant variables 
through the three referred sets is established as 
follows: 

A set of parameters that are to be optimised in the 
design stage. 

Bearing these ideas in mind, we are stating that, in 
the kinematics, the independent random variables 
have probability density functions (pdf) similar to the 
histograms of a long run sampling therefore the 
statistical description of the variables does not 
consider the (implicit) time variable. 

3. A STATISTICAL MODEL FOR ROBOTICS 

In this section we adopt the 2R joint-actuated 
manipulator as the support for the development and 
implementation of the new modelling concepts. 
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Figure 1: One 2R joint-actuated manipulator. 

Figure 2: Two 2R cooperating robots for the 
manipulation of an object with length l0,

orientation 0 and center point A. 

In the first sub-section we begin by introducing our 
approach in the kinematics of the 2R robot (Figure 1). 
In the second sub-section we analyse the kinematics 
of two robots working in cooperation (Figure 2). 

3.1. ONE ARM KINEMATICS 

We begin our study with a numerical-based approach 
and, in a second stage, we adopt a complementary 
analytical perspective. 

In order to have a statistical description we have to 
characterise the random variables through appropriate 
pdf. At this point there is no a priori knowledge 
about the statistical properties of the system. 
Therefore, we start our experiments with some 
preliminary assumptions and, in the sequel; we 
demonstrate the conditions that optimise the 

kinematic performances. For 
T

pp 21,p  and 

T
qq 21 ,q we start by considering bidimensional 

uniform pdf for the IVs in pPf  in p q and qQf

in p q.

The inverse and direct kinematics have pdf related by 
the expressions: 

pq PPQ ff (2a)

qq QPP ff
1

(2b)

In order to test this idea we perform several 
numerical experiments. We consider identical links l1

= l2, that is, the case of maximum manipulability. To 

test this method, we 'excite' the p q kinematics with 
a numerical random sample of variables with a 
uniform pdf and we compare the relationship between 
the operational and joints space. Afterwards, we 
repeat this procedure in the reverse order, that is, we 

'excite' the p q kinematics with a numerical random 
sample in the inverse order. 
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Figure 3: Uniform 'excitation' of the p q kinematics 

of the 2R robot (l1 = l2) with a numerical 
sample. 

From the chart of the p q we conclude, that for a 
uniform pdf in the joint space the direct kinematics 
'prefers' the singular robot configuration, 

namely
TT

pp 0,0, 21 .
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Figure 4: Uniform 'excitation' of the p q kinematics 
of the 2R robot (l1 = l2) with a numerical 

sample, A robot with upper elbow and B 

robot with lower elbow. 

From the chart of the p q we conclude, we 
conclude, that for a uniform pdf in the operational 
space the inverse kinematics 'avoids' the singular 

robot configurations. Moreover, 22
qfQ  reveals 

maxima at 22q  and minima at ,02q .

As pdf of the IVs is not responsible for this situation 
the result is an intrinsic property of the kinematics. 
The symbolic derivation of the Jacobians requires the 
classical kinematic model. This indicates that the 
classical and the statistical models are not exclusive
but are, in fact, complementary. Knowing that for the 

2R manipulator the transformation p q is given by 
the expression: 
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yielding: 

211 qSinllP (4)

For 21 llL  and 21 ll  the maximum of P

occurs when: 

1 (5a)



22q (5b)

These expressions coincide with the numerical results 
and have distinct meanings. Condition (6a) defines 
the optimal kinematic structure of the 2R manipulator 
that must be optimised in a design stage. Expression 
(5b) points out the best position configuration that 
must be satisfied through appropriate trajectory 
planning algorithms. Such conclusions are similar to 
those obtained in previous studies [7-8] using the 
classical approach which proves the feasibility of the 
statistical analysis. 

3.2. TWO ARMS KINEMATICS 

We consider two manipulators with a configuration 
similar to the human being, namely robot A has an 
upper elbow and robot B has a lower elbow. 
Moreover, points leading to link-link or link-object 
crossovers are not considered in the system 
workspace.

Figures 5 and 6 depict the pdf for the kinematic 

transformations p q and p q, respectively. The 
charts in Fig. 5 show that a uniform pdf of the IVs in 
the joint space leads to the 'preference' of the singular 
configuration. On the other hand, the charts of Fig. 6 
reveal that an 'excitation' through a uniform pdf of the 
IVs in the operational space, leads to a ‘preference’ of 

the configurations 22Aq  and 22Bq .
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Figure 5: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = lb = 1 m) handling an 

object with length l0 = 1 m and orientation 0 = 0º 
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Figure 6: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = lb = 1 m) handling an 

object with length l0 = 1 m and orientation 0 = 0º 
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Figure 7: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = 1 m) handling an 

object with length l0 = 0.1 m and orientation 0 = 0º for different shoulder distances lb = {0.1, 1.0, 2.0} m. 
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Figure 8: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = 1 m) handling an 

object with length l0 = 2.0 m and orientation 0 = 0º for different shoulder distances lb = {0.1, 1.0, 2.0} m. 
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Figure 9: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = lb = 1 m) handling an 

object with orientation 0 = 0º for different lengths l0 = {0.1, 1.0, 2.0} m. 

Figures 7 and 8 show the uniform 'excitation' of the 

p q kinematics for two 2R cooperating robots (l1 = 
l2 = 1 m) for different shoulder distances lb = {0.1, 
1.0, 2.0} m when handling an object with orientation 

0 = 0º and two distinct lengths l0 = 0.1 m and l0 = 
2.0, respectively. We verify that the maximum 
workspace occurs for lb = l0. Furthermore, we 
observe a ‘preference’ of the configurations 

22Aq  and 22Bq , similarly to the result 

of Fig. 6. 

Alternatively, Fig. 9 depicts the uniform 'excitation' 

of the p q kinematics for two 2R cooperating robots 
(l1 = l2 = lb = 1 m) handling an object with orientation 

0 = 0º for different lengths l0 = {0.1, 1.0, 2.0} m. 
Once again, we get similar conclusions for the robot 
link and object lengths, and the arm configurations. 

Figure 10 shows the results for several object 
orientations demonstrating that the best case results 

for 0 = 0º. 
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Figure 10: Uniform 'excitation' of the p q kinematics for two 2R cooperating robots (l1 = l2 = lb = 1 m) handling an 

object with length l0 = 1.0 m for different orientations 0 = { 30, 0, +30} degree. 

4. CONCLUSIONS 

A new method to the analysis and design of robot 
manipulators was announced. The novel feature 
resides on a non standard approach to the modeling 
problem. Usually, system descriptions are based on a 
set of differential equations which, due to their nature 
lead to very precise results but can be very complex 
and hard to tackle. These difficulties motivate the 
development of models having distinct 
characteristics. The statistical formalism is a step in 
that direction which has been shown to give clear 
guidelines towards the robot structure. Moreover, the 
experiments demonstrated that the statistical 
modeling is well suited to a numerical evaluation. 
This characteristic is of utmost practical importance 
because it allows the direct treatment of data from 
sensor measurements. 
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