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ABSTRACT

This paper presents a generalized approach for controlling various cases of the constrained
robot system. To accomplish specific tasks successfully by a constrained robot system, both the
constraint forces/torQues and the motion of the manipulator end-effector must be specified and
controlled. Using the Jacobian matrix of the constraint function, the generalized coordinates of
the constrained robot system can be partitioned into two sets; this leads to partitioning the con-
strained robot system into two subsystems. The constraint forces/torques in each subsystem can
be decomposed into two components: the motion-independent and the motion-dependent
forces/torques. Using the constraint function in the Cartesian space, the motion-independent
forces/torques can be expressed by a generalized multiplier vector and the Jacobian matrix of the
constraint function. The motion-dependent forces/torques can be determined by the motion of
the manipulator end-effector, the motion-independent forces/torques, and other known quanti-
ties. This decomposition of the constraint robot system into subsystems leads to the design of a
nonlinear decoupled controller with a simple structure, which takes the constraints into con-
sideration for controlling the constrained robot system. Applying the proposed nonlinear decou-
pled controller to each subsystem and using the relation between the motion-independent
forces/torques in the subsystems, we can show that both the errors in the manipulator end-
effector motion and the constraint forces/torques approach zero asymptotically. Typical exam-
ples of the constrained robot systems are analyzed and discussed. o

This work was supported in part by the National Science Foundation under Grant CDR 8803017 1o the Engineering
Research Center for Intelligent Manufacturing Systems and a grant from the Ford Fund.
Any opinions, findings, and conclusions or recommendations expressed i in this article are those of the authors and do
not necessarily-reflect the views of the funding agencies. :



-111 -

TABLE OF CONTENTS

N -

Cover Sheet.....ccccoeuunee. creeresrertatetristettuiiesssestisnane secusesesses cevereresanns cesrvesssrsasnrnnses esessrssacesncsces esensseseencl
Abstract.....ccceevueennnee cessersnsnstsns coeesacesecns cessiesesusrntisesisesesnsesnssene coveacaensas ceeseseerserenans cesrencsease cresereresscnns .11

aole O ONIENTS ..cvvirnirniirnernnresanannnes cessenseensesens crrerenenne ceereetarsurenss ceensene sresessesearenasnsasns ceriiessacnens .1l

1 Introductxon creceanne ceessssncasesese terrencree sessesnsesnesnis correensnens seeestesesecioe ceeseeens Cersrerseceseseretsntrceceseses RSO |

2. A Generalized Approach for the Control of Constrained Robots........ ST RNEN: §

2.1. Partitioning of Generalized Coordinates ............. ceeeerees cresenseegioressetesreseses revecerrreraessesesaasans 4
2.2. Decomposition of Constraint FOrCES/TOTQUES ....c.uvvvnrnsusresersescesesessessssrssrsssersassssasssssacseesd
2.3. De51gn of Nonhnear Decoupled Controller........oiiieuerenenrerisnnecnnencenes ceerienerereretesesesesiuensd

3. One Robot w1th Its End-Effector Contacnng a Rigid Friction Surface cevieressssessesssssssrnsssenannens 10
4. Two Cooperating Robots Handling a Common Rigid L_oad oot srerer e satateseneens : .'..;{..._.;.... ........ 12

5. Two Cooporating Robots Handling Two Rigid Bodies -
Connected by a REVOIIE JOINE 1...voorverrveecneaenensecsssnsssssiassnsrsssssssssssssssssismscnsssnnasossssine 1 T

6 Two. Cooperaung Robots Handling Two ngld Bodies .
Connected by a Sphencal JOIME o rereeereeeereeeenemseresesssssiesensssesesssssssssssasasesssesesssssrerersnesssssss 52

7. CONCIUSION cerrerreerrrsnrrnornens 27
References.......cccocooviinnenvennen ervisenees et creseens 27
Appendix A — Proof of Equation (32) 30 .
Appendlx B— Cornputanon of f, and f,,, from fc TSI 31
»Flgure 1. Two Cooperatlng Robots Handhng a Common Rigid Load ceessssamesssanne cosmsnsssesssnsin 32

- Figure 2. Two Cooperating Robots Handling Two Rigid Bodxes
Connected by a Revolute Joint eeverveieesseusessesuessesioss s e b s Rt e searsbasassnsasirarsseiresee DD

Flgure 3. Two Cooperatm g Robots Handhn g Two Rigid Bodies , . |
-"Connected by a Sphencal JOMMEu e cerincrersererenssessesssmesssscassseressssenssssssasssrorsnsenssessnses 39



Introductlon

v Dependmg on the task performed by a robot system, the robot system can be classified into
two categories: unconstrained and constrained robot systems. In the unconstrained robot sys-
tem, the manipulator end-effector moves freely in the workspace and does not interact with the

"environment to complete the task, and there is no force/torque which cannot be determined by

- the motion of the manipulator. These tasks, in general, can be specified in terms of the pre-

_ planned motion trajectory of the manipulator end-effector. Since the motion trajectory contains

only position/orientation information, existing positional controllers can be used successfully to

control the unconstrained robot system [1]. In the constrained robot system, the manipulator
end-effector is actively interacting with its environment to cofnpleté the task. Due to the con-

' 'stramts imposed by the task geometry and the environment, the manipulator end-effector motion

is confined by the constraints and the motion has to comply with the constraints. Typical exam- -

ples are the peg-and-hole insertion task, a robot with its end-effector contactmg a rigid surface,
and two robots manipulating a common object. For these tasks, the contact exists between the
manipulator end-effector and the environment. In other cases. of the constrained robot system,
the contact may be at points other than the manipulator end-effector. In this paper, a generalized -
approach for controlling various cases of the constrained robot system in which the manipulator
end-effector is mteractmg with its environment will be addressed -

Since the constraint forces/torques resulting from the contact between the mampulator
end-effector and the environment cannot be determined by the motion of the manipulator end-
effector, the tasks performed by the constrained robot system cannot be specified only in terms
of the motion trajectory. To accomplish the task successfully, the constraint forces/torques as
well as the motion of the manipulator end-effector must be specified and controlled. At present,
several strategles/ar_chltectures for controlling these constraint forces/torques have been pro-
posed, that include, for example, the stiffness. control [2], the hybrid control [3], the damping
control [4], and the operational space approach [5]. However, none of these controls considers
the dynamic meodel of the constrained robot system incorporating the constraint effects.
Recently, significant progress has been made on the dynamic model of the constramed robot sys-
tem [6-11]. In particular, the dynamic model of the constrained robot system in [8, 11} was used
to control both the motion of the mampulator end—effector and the constraint forces/torques in
tasks which are characterized by physical contacts between the manipulator end-effector and a
- constraint surface. Using the constraint function, nonlinear transformations were introduced to
develop the equations of motion for the constrained robot system [8,11]. These equations of
motion are written in a reduced model consisting of two sets of equations. One set of the equa-
~ tions of motion contains no constraint forces/torques and characterizes the motion of the mani-
pulator end-effector on the constraint surface. The other set of the equations is used to calculate
~ the constraint forces/torques which are caused by the interaction between the manipulator end-
effector and the environment. Nonlinear decoupled controllers are then proposed to track the
preplanned motlon and the constraint forces/torques of the manipulator end-cffector
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Other cases of the constrained robot systein involving two cooperating robot systems have
also been studied. Most of the research on two cooperating robot systems focuses on the load
distribution [12-14], the master-slave scheme [15], and the extended hybrid control [16, 17].
Some of the research considered the constraint effects of the internal forées/torques in two
cooperating robot systems. Since these internal forces/torques cause stress (compression, ten-
sion, and shear) in the load and do not contribute to the motion of the load because the summa-
tion of these forces/torques is zero [14, 18, 19], the internal forces/torques as well as the motion
of the manipulator end-effector must be controlled for the general manipulation of the load.
Although the above methods considered the constraint effects in two cboperating robots, no con-
. straint equations were derived explicitly to show that the relation of the internal forces/torques
can be obtained from the constraint equations. In this paper, considering a two cooperating
robot system as a constrained robot system, we will show that the relation of the internal
forces/torques in two cooperating robots can be derived from the constraint equations.

This paper presents a generalized approach for controlling various cases of the constrained
robot system. To accomplish specific tasks successfully by a constrained robot system, both the
constraint forces/torques and the motion of the manipulator end-effector must be specified and
controlled. Using the Jacobian matrix of the constraint function, the generalized coordinates of
the constrained robot system can be partitioned into two sets, and an influence coefficient matrix
can be constructed to relate the time derivatives of the dependent variables to the independent
variables [20,21]. The equations of motion of the constrained robot system are partitioned
according to the partitioned coordinates, and the dependent variables are replaced by functions
of the indcpendént variables. This results in partitionihg the constrained robot system into two
subsystems, which are different from the two subsystems generated from the nonlinear transfor-
mation technique [8,11]. Although this two subsystem representation is in a redundant form

“from the mathematical point of view, the decomposition of the constraint forces/torques can be
easily performed and a nonlinear decoupled controller for the constrained robot system, which
‘has a much simpler structure than other controllers, can be constructed and realized. The con-

“straint forces/torques résulting from the interaction of the manipulator end-effector and the
environment can be decomposed into two components: the motion-independent and the |
motion-dependent forces/torques. Using the constraint function in the Cartesian space, the

motion-independent forces/torques can be expressed by a generalized multiplier vector and the
Jacobian matrix of the constraint function. The motion-dependent forces/torques can be
expressed by the motion of the manipulator end-effector, the motion-independent forces/torques,
and other known quantities. Thus, the control problem of the constrained robot system reduces
to conu'dlling only the motion of the manipulator end-effector and the motion-independent

forces/torques. Applying the proposed nonlinear decoupled controller to each subsystem and
using the relation between the motion-independent forces/torques in the subsystems, we can
show: that both the errors in the manipulator end-effector motion and the constraint
forces/torques approach zero asymptotically. Utilizing thls approach, typ1ca1 examples of the
constrained robot system are analyzed and discussed.
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2. A Generalized Approach for the Control of Constrainéd Robots

Let us consider a constrained robot systcm whose equations of motion in the joint- -variable
space are expresscd as [8,10,11]

D@ +H(g, §) + G(@) =Ta() + J@ £() W
and its associated constraint function is expressed in a vector algebraic eqliation of the form
8 (=0 - )

where D(q) € R™ is a positive definite matrix function, q(z) € R" is the vector of generalized
coordinates (or joint variables), H(q, ('1) e R" and G(q) € R" are vector functions, I';(r) € R™
is the vector function consisting of actuator joint forces/torques, f.(t) € R" is the vector function
consisting of generalized forces/torques due to constraints in the Cartesian space [22],
J(q@) € R™" is the matrix function consisting of robot Jacobian matrices, the superscript "T"
denotes vector or matrix transpose, and the constraint function @ : R" - R™ with m <n. As
discussed in [11], if the constraint function @ (q)=0 is identically satisfied, then also
_ [a%é-gl] q=0. Thus, q(t) and q(z) are restricted to the manifold §; in R*® defined by

$1=4@9:0(@=0, [aﬂaéq) ] (’1=0“ rather than to the space R*".

The above dynamic model is used in most of previous work on constrained robot systems.
However, since most of the task specifications for robot motion and constrained forces/torques
can be easily specified in the Cartesian space, the dynamic model of the constrained robot sys-
tem in the Cartesian space must be considered. For the dynamic model in the Cartesian spacef,
we shall assume that the robot is nonredundant and always at a nonsingular configuration.
~ Extensions of the proposed approach to the redundant robot and to the robot in a smgular
configuration require further research. Let us consider a constrained robot system whose equa-
tions of motion in the Cartesian space are expressed as [5, 7]

A (X +c¢ (x,x) +p (x) =F, (1) +1:(2) , 3)
and its associated constraint function is expressed in a vector algebraic equatioh of the fqnn'
| ®(x)=0 4)

“where x(t) € R™ is the vector of generalized coordinates (or Cartesian variables) of the con-
strained robot systemt, A(x) € R™" is a positive definite matrix function, ¢(x,X) € R” and
p(x) € R™ are vector functions, F,(f) € R™ is the vector of generalized forces/torques, and the

1 All the quantmes in the Cartesian space are referenced to the global reference coordinate frame.
~ {Throughout this paper, the instantaneous angular rotations are used for the description of orientation error of the
manipulator end-effector. :
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constraint function ® : R — R™ with m < n. Asin the joint-variable space, if the constraints
are identically satisfied, x(¢) and x(z) are restricted to the manifold S, in R? defined by

oD (x)
ox

Sy=1{ (x%,%): @ x)=0, | x=0 }rather than to the space R2".

2.1. Partitioning of Generalized Coordinates

One of the major differences between the constrained and the unconstrained robot systems
is the existence of the constraint function in (4). Using this constraint function (4), the order of
the dynamic model of the constrained robot system can be reduced via nonlinear transformation
[8] or the dynamic model can be transformed into two equivalent subsystems, one containing
motion component and the other containing force/torque and motion components [11]. In our
approach, we use the constraint function and the implicit function theorem to partition the con-
strained robot system into two subsystems, both containing motion and force/torque components.
The result of this partitioning will yield a nonlinear decoupled controller with a much simpler
structure. To partition the Cartesian coordinates into two sets of coordinates [21], let us use the
implicit function theorem [23]. Suppose that a constant vector X, € R" satisfies the following
properties:

(i) The constraint function ® (x) is twice continuously differentiable in some neighbor-

hood of x,. .

(i) ®x)=0.

oD .
- ; =m.
X .
X=X, v

(iii) Rank
After a reordering of the variables and using the implicit function theorem, an open set’
V cR™™ and a twice continuously differentiable function Q:V — R™ can be obtained such
that - '

®(Qv),v)=0 forall ve V. (5)

Assuming that (5) holds with V=R"™™, a set of generalized coordinates x can be partitioned
into two sets of coordinates,

X= [lvl} where ue R™and ve R"™. 6)
Using the partitioned coordinates, the equations of motion in (3) can be partitioned
P.,V) | _ | Fa feu
pv(u,v) ] : [Fav ] * [fcv @

where F , € R™ and F,, € R"™™. Differentiating the constraint function (4) with respect to

Ay ,v) Ay (u,v)
A,,(u,v)A,,u,v)

i.i cu (u’ V, ﬁ, i')
v ¢, (u,v,1,v)
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time and expressing the resultant equations in terms of the partitioned coordinates, we have

4 h'

D (x)= 9P | M’@E][“]

ox Ou ov v
(2@, [22 ]
“ | ou ov T

Since [ ?9_u ] is nonsingular, the time derivative of u can be expressed as

o[22 ] (o],
u}— du v |V

Because u is expressed by £2(v) on the constraint manifold, we can define a function of v,
W(v) e R™n-m) called the influence coefficient matrix by some authors [21], as

-1 N . '
od | 0P
WA~ | =— -

v [ du ] ov ] : . ®)

Using the influence coefficient matrix, the first and second time derivatives of u can be
expressed as -

u=W(v)v and u= W(v,i')i' + W)V,

If there is no confusion, we shall omit v and v in all the functions of v and v for clarity and ease
of notation. Substituting u, @ and ii with functions of v, v and V, the partitioned equations of

motion (7) become

Allll AKV pu - Fau + fcu

AVM AVV pv ’ F av fCV '
This results in partitioning the constrained robot system into two subsystems according to the
partitioned coordinates u and v :

Cy

+
c,

v

Wetwv}+

AW+ ALV +¢, + AWy +p, =Fg, +f,, (subsystem 1) ,
AuW+AV+0, + AWy +p,=Fs +1,  (subsystem?2). 9)

These two subsystems as in (9) are equivalent to the constrained robot system as in (3) and (4).
’Considering that the constrained robot system as in (3) and (4) has (n —m ) degrees of freedom,
the above two subsystems with n equations of motion is in a redundant form. Thus, as in [8,21],
the number of equations of motion can be reduced from n to (n —m). However, as will be
explained later, this redundant representation as in (9) together with the decomposition of the
constraint forces/torques will yield a very simple nonlinear decoupIed controller structure for the
constrained fobot system.
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In (9), the constraint forces/torques f{z) have been partitioned into f,,(¢) and £, (¢). Due to
the interactions between the manipulator end-effector and the environment, some of these con-
straint forces/torques are independent of the manipulator end-effector motion, while the others
are dependent. In the next subsection, the constraint forces/torques in (9) will be decomposed
into two components depending on their charteristics.

2.2. Decomposition of Constraint Forces/Torques

 To accomplish specific tasks successfully by a constrained robot system, the constraint
forces/torques as well as the motion of the manipulator end-effector must be specified and con-
trolled. The constraint forces/torques resulting from the interaction of the manipulator end-
effector and the environment can be decomposed into two components: the motion-independent
and the motion-dependent forces/torques. That is,

f.(t)=1£,) +1,@) (10)

where f.e R" is the constraint forces/torques, f, e R” is the motion-independent
forces/torques, and f,, € R" is the motion-dependent forces/torques. These two types of con-
straint forces/torques are characterized by the following:

(i) The motion-independent forces/torques are the forces/torques which are independent of the
motion of the manipulator end-effector. The motion-dependent forces/torques are the
forces/torques which are equal to f.—f,. In other words, the motion-independent
forces/torques do not contribute to the motion of the manipulator end-effector, while the
motion-dependent forces/torques contribute to the motion of the manipulator end-effector.

(ii) As aresult of (i), the motion-independent forces/torques perform no virtual work, while the
motion-dependent forces/torques perform work.

(iii) In the case of a robot with its end-effector contacting a rigid friction surface, the motion-
independent forces/torques cause the normal forces on  the surface and the motion-
dependent forces/torques react to the surface friction force during the motion of the mani-
pulator end-effector on a surface. |

(iv) In the case of two robots manipulating a common object, the motion-independent
forces/torques play the same role as the internal forces/torques [18] and the motion-
dependent forces/torques contribute directly to the motion of the common object.

(v) Using the constraint function in the Cartesian space, the motion-independent forces/torques
can be determined by a generalized multiplier vector and the Jacobian matrix of the con-
straint function. The motion-dependent forces/torques can be expressed by the motion of
the . manipulator end-effector, the motion-independent forces/torques, and other known
quantities. Thus, the control problem of the constrained robot system reduces to controlling
only the motion of the manipulator end-effector and the motion-independent forces/torques.

Using the pdartitioned coordinates u and v in (6), the motion-independent and the motion-

dependent forces/torques in (10) can be partitioned as

i ] . (1

[feu | _ [T
[fw]".[fm}* o
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To express the motion- mdependent forces/torques in another fonn let us use the Lagrange :
" multiplier method [24].  Since the motion-independent forces/torques. are mdependent of the :
: mampulator motion, they perform no work in the virtual d1sp1acement ox. Hence we have

| fix=0. . ay
From the constramt equatron m (4), the v1rtual d1splacement 8x satlsﬁes : ‘
¥ [%3]8"‘0 'fbrleR,'."f S

Subtractmg (13) from (12) and expressmg the resultant equanons in terms of vmual d1splace- L
: ments of partmoned sets, du and 8v, we have. ' '

od

T
I FT

]]au+[f£v AT i";]:nv:'o. o asy

»_ Smce uis expressed by Q(v), we treat u as dependent vanables and-v as independent varlables S
‘ By appropnately choosmg the va]ues of the mult1pher A, the coefficient of du, T K
50 ] o
also

lT [ Ca can be set to zero. Asa result the coefﬁcrent of 8v fT - lT 3

du -
‘ becomes Zero because the components in’ 8v are mdependent of each other Thus, the parntmned{

motxon-mdependent forces/torques can be expressed as follows: T S J
From these relations and the fact that the constraint forces/tordues consist of the motion-
mdependent and the motion- dependent forces/torques the two subsystems as in (9) can be" v
rewritten as (1 e., use (11) and (15)) . ‘ : -

(A,mw+Aw)V+'c,+A,mwv+p,,'-'—_'Fa,, 6, + aq’ A (subsystem1) ,
. . : ) ' ao : , ' oo
Vg “Ahyy v T Ly v — LYav mv .
(A kW+A} )v’+c »+1t Wy+p =F *f-_f L avn; ‘l ) (‘subsystem‘2) ‘ (16),

The above two subsystems as in (16) are equiyalent to the constrained robot system as in
3) and (4). In addition, the constraint forces/torques have been decomposed into the motion-

. mdependent and the motion- dependent components. Although these two subsystems are in a .

redundant representatlon this representation leads to the design of a s1mple nonlinear decoupled ’
controller, which takes the constraints 1nto con51deranon for controlhng the constramed robot
system ' ' : ' L
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1

2.3. Design of Nonlinear Decoupled Controller

In this section, a nonlinear decoupled controller is proposed for controlling the constrained
robot system as in (3) and (4). The desired generalized coordinates, x4, and the desired con-
straint forces/torques, ¢+ are assumed to be consistent with the constraints of the robot [11].
Then, the control problem can be stated as: Given (i) a constrained robot system as in (3) and
(4), and its equivalent subsystems as in (16), (ii) the initial conditions of x and x satisfying the
constraint equation, (iii) the desired generalized coordinates, Xz, and (iv) the desired constraint
forces/torques, £¢, find a feedback control, F,, based on x4, X4, X, ¢, x, x, and f, such that both
the generalized coordinates of the manipulator and the constraint forces/torques approach the
desired values asymptotically.

Since the motion-dependent forces/torques can be determined from the motion-independent
forces/torques and the motion of the manipulator end-effector, the above control problem can be
restated as finding a feedback control, F,, based on x4, X4, X4, f4, x, X, and f, such that both the
generalized coordinates of the manipulator and the motion-independent forces/torques approach
the desired values asymptoncally

Since the motion-independent and the motion-dependent forces/torques, f,, and f,,, can be
determined from the measured values of f., x, and X, the partitioned motion-independent and
motion-dependent forces/torques, fn., fny, fmu, and f,,, are measurable quantities. Thus,
| 2]

du

f., is also a measurable quantity. With these measurable quantities, a non-

linear decoupled controller using (16) can b¢ computed as

Fo)= BuW+A) (Va0 +K, &,() + K, e,()) + ¢y + Ay, Wi +p, — Ty
oo | o .
-Kpu [—87] (Aa=2A)- [311—] Ay s

Fo () = (A, W +A,,) (vd(r)+ K, &,()+K, e,()) +¢, + A, Wv+p, — £, ,

Ky |22 ] (Ag=A)- [a‘f

v

where e, =(vg—v) e R"™,Kg € R and Ky, € R(®—mX(n=m) are the forcé/torque feedback
gain matrices, K, K, € R(""")X(" ) are, respecuvely, the velocity and posmon feedback gain
matrices.

o a7

Substituting the controller from (17) into (16), we obtain the error equations of the subsys-
tems

1+ Throughout this paper, the notations (* )% or ()4 are used to represent the desired value of (*).
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E ’ T
AW+ Ay) (ev(t) +K, ev(t) + Kp e, (1)) = (Kfu +1) [%%)' ] (xd —l) (18)

AW +A,) (6,0 +K, e, +K, e,())=Kp +1, -m) [a? ] (Aa=2) (19)

where I,, € R™" is the identity matrix. Choosing K, and Ky, to be positive semidefinite, then
the matrices, (Kg +1,) and (Kz +1,_,), are positive definite and therefore nonsingular.
Premultiplying (18) and (19) with W7 (Kp, +1,,)™! and (K4, +1,_,,)"", respectively, and adding
the resultant equations together, and using (8), we have , :
A(EM+K, 60+K, e,(1))=0 (20)
where the matrix A € R 7>~ jg given as |
= WT(Kfu + Im)-l AW +A,)+ (Kfv + In’—m)—-l AW +A,,)

( Kfu + Imv, )—1 0 Auu Auv

—rwly
= [W In—m] 0 (Kfv +In-m )-l Avu AW

W .
In—m

and the matrix A can be proved to be nonsingular. If Kg, and Ky, are positive semidefinite, it
‘can be easily shown that the matrix

(Kp+1, )" 0
0 ( Kfv +Inm )_1

is positive definite and therefore nonsingular. The matrix

Auu Ay
Avu AW

is nonsingular because it is equivalent to the matrix A which is positive definite.
W

n—m

Furthermore, Rank [WT | - ] = Rank [I = n —m. Thus, Rank A = n—m , and matrix

A isrnonsingular. _
Since matrix A is honsingular, (20) reduces to
e,)+K, e @)+ K, e, (1) =0

Choosing the feedback gain matrices K, and K, to be positive definite, e,(¢) will approach zero
asymptotically. From the given assumption, the error in the partitioned Cartesian coordinate u
also approaches zero asymptotically. Thus, the generalized coordinates x of the constrained
robot system in the Cartesian space will approach the desired value x; asymptotically,

lim x(t) > x4(2) -
t — oo

Since the matrices, Ky +1,) and [ %E— ], are ‘nonsingulai, from (18) and (19), we know that
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the multiplier A approaches the desired value asymptotically,

lim l-—)ld
t o0

Since the desired motion-indcpéndcnt forces/torques also satisfy the constraint equation (4), they

can be expressed as
3 |’ 30 |
d _ | O°F d _ | 22
e, = [ 5 ] u=udxd and f9, [’av } u=udld'

V=V, v=vy4
Thus, the motion-independent forces/torques approach the desired value asymptotically,

lim f,(t) - £4¢r) .
t 5o
In the above discussion, a generalized approach for controlling the constrained robot sys-

tem as in (3) and (4) has been presented. In the previous work for controlling the constrained
robot system [3, 8, 11], their analyses are restricted to the case of the constrained robot system in
which the direction of the constraint forces/torques f, is orthogonal to the direction of the motion
of the manipulator end-effector x. However, our proposed generalized approach is not restricted
to this case and can be applied to other cases of the constrained robot system in which the direc-
tion of the constraint forces/torques f, is not orthogonal to the direction of the motion of the
manipulator end-effector x. In other words, the proposed approach can be applied to controlling
general cases of the constrained robot system.

Utilizing this approach, typical examples of the constrained robot systems are analyzed and
discussed. Section 3 considers the case of one robot with its end-effector contacting a rigid fric- -
tion surface; section 4 considers the case of two cooperating robots handling a common rigid
load; sections 5 and 6 will consider the cases of two cooperating robots handling two rigid
bodies connected by a revolute joint and a spherical (ball-and-socket) joint, respectively.

3. One Robot with Its End-Effector Contacting a Rigid Friction Surface

In this section, the proposed generalized approach for controlling the constrained robot sys-
tem will be applied to controlling a robot with its end-effector contacting a rigid surface. A
review of the previous work shows that the friction of the constraint surface was not included in
the control of this constrained robot system [8,11]. And [6,7] included the frictional effects in
the dynamic model of this constraint robot system, while no controller was designed to control
this constraint robot system with the frictional effects taken into consideration. However, [6]
provides a detailed account of the frictional effects in the dynamic model of this constraint robot
system. For ease of discussion, we assume that: :

(i) There is no effect of the static friction between the manipulator end-effector and the con-
straint surface.

(i) The manipulator end-effector is in a frictional point contact with the surface. This assump-
tion implies that the manipulator end-effector does not exert any torque to the surface, and
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the torque component in the constraint forces/torques is always zero.

(iii) Initially, the manipulator end-effector is in contact with the constraint surface and its velo-
city is zero or tangent to the constraint surface. ’

In this constrained robot system, the constraint force i is the contact force between the mani-
pulator end-effector and the constraint surface, the motion-independent force is the normal force
on the constraint surface, and the motion-dependent force reacts to the surface sliding friction.
Thus, the equations of motion of this constrained robot system in the Cartesian space are
described as

A XX +cxX)+p x)=F,@)+f.() ' 1)
f.0)=£,() +1,() (22)
.j’_(_t)_ | (23)

£, @) ==p|| £, ()

mp (1) == || £, )] %ol
where x € R® denotes the vector of generalized coordinates (or Cartesian variables) describing
the position/orientation (i.e. pose) of the manipulator end-effector, A(x) € R 6x6 s the robot iner-
tia matrix in the Cartesian space, c(x, X) € R® is the vector of Coriolis and centrifugal
forces/torques in the Cartesian space, p(x) € RS is the vector of gravitational forces/torques in
the Cartesian space, and F,(t)e RS is the vector of generalized forces/torques.
frp (1), £, (1) € R3 are the vectors of the force components in fy, (), f,(r), respectively,
x,(1) € R3 is the vector of the Cartesian variables describing the position of the manipulator
end-effector,  is the sliding friction coefficient, and || -|| denotes the Euclidean norm. The
motion constraints of this constrained robot system can be described by the constraint surface
equation :

O x)=0 (24)

where the constraint surface function ® : R® = R™. If m =1, the motion of the manipulator
end-effector is constrained on a surface. If m =2, it is constrained on a curve. Let us assume
that the constraint surface function @ (x) and a function £(v) : R&™ = R™ satisfy the following
condition, :

@ (QV),v)=0 forall ve R¢™.

Then the proposed generalized approach can be applied to control this constrained robot system.
Using the constraint function in (24) and following the similar procedures as discussed and out-
lined in sections 2.1 and 2.2, this constrained robot system can be partitioned into two subsys-
tems whose equations have the similar form as in (16).-

The control problem of this constrained robot system can be stated as: Given (i) the con-
strained robot system as in (21)-(24), (ii) the initial conditions that the manipulator end-effector
is in contact with the constraint surface and its end-effector velocity is zero or tangent to the con- -
straint surface, (iii) the desired position/orientation of the manipulator end-effector, x4, and the
desired contact force/torque on the constraint surface, f¢, which are consistent with the
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constraints, find a feedback control, F,, based on Xy, Xz, ¥4, f2, X, X, and f. such that both the
position/orientaticn of the manipulator end-effector and the contact forces/torques approach the
desired values asymptotically. '

Since the motion-dependent forces/torques can be determined by the motion-independent
forces/torques and the manipulator motion as in (23), the above problem can be restated as
’ﬁnding a feedback control, F,, based on X, Xz, %4, £, x, X, and f. such that both the
position/orientation of the manipulator end-effector and the normal force/torque on the con-
straint surface force/torque approach the desired values asymptotically.

Taking the similar steps as in section 2.3, the nonlinear decoupled controller which has a
similar structure as in (17) can be derived. Applying this nonlinear decoupled controller, the
motion of the manipulator end-effector in the Cartesian space approaches the desired motion
asymptotically,

lim x(t) = x4(t)
t —eoe

and the motion-independent force/torque approaches the desired value asymptotically,

lim f,(r) - @) .
t oo

4. Two Cooperating Robots Handling a Common Rigid Load

The constrained robot system also arises when two robots are cooperatively manipulating a
load. In this section, the proposed generalized approach for controlling the constrained robot
system will be applied to controlling two cooperating robots handling a rigid load. For this con-
strained robot system (see Figure 1), we assume that:

(i) The gnppmg pose of each manipulator end-effector with respect to a rigid load is fixed.
This assumption is valid for a broad range of tasks.

(i) No relative motion between the load and each manipulator end-effector exists. We do not
consider the slipping effect between the load and the manipulator end-effector. Thus, if the
mass and the inertia of the load are known, the motion of the load can be determined from
the motion of each manipulator end-effector.

(iii) Initially, the common rigid load is firmly grasped by both manipulator end-effectors.

In this constrained robot system, the motion-independent forces/torques play the same role
~ as the internal forces/torques [18] and the motion-dependent forces/torques contribute directly to
the motion of the common load. To form the equations of motion for this constrained robot sys-
tem, we select a set of generalized coordinates by augmennng the vectors of generalized coordi-
nates (or Cartesian variable) of both manipulators, x; € R® and X; € RS, into an x vector as

A
X(t) = ‘ X2(t)

Then, from the equations of motion of each robot manipulator as in (21), the equations of motion

"1(')] , xeRZ . (25)
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of this constrained robot system in the Cartesian space can be augmented and written as

AX) X+ e(x,X) + p(x)=F, +f_ (26) |
| a0 | (e
where A(x;) = { 0 Ayxy) | c(x,x) = ey ). s,

p(x) =

1
p1(x1) F. = Fig f = fic

Pax2) |° T4 | Fp |7 T (M |

A (X)), €1 (X1, X1), P1(X1), Fy4, and fj. have con'esponding meanings as in (21) for the first
robot’s end-effector, Ay (X3), €2(X2, X2), P2(X2), Fa,, and f,; have corresponding meanings as in
(21) for the second robot’s end-effector, x;(¢) € R 6 and x;(t)e R 6 are the respective vectors of

generalized coordinates in the Cartesian space of each robot manipulator, and these two vectors
describe the pose of both manipulator end-effectors.

To partition this constrained robot system into two subsystems, let us discuss the con-
straints of this constrained robot system. The constraint equation for this robot system is
described as ' ‘

@ (x) = ( [2})5 [xlpx-lrxipx;r:;rz}._.o @

where the conSt_raint function ®: R'? - RS, X1p, X2p € R 3 are the respective vectors of the
Cartesian variables describing the position of each manipulator end-effector, X, X2, € R3 are
the respective vectors of the Cartesian variables describing the rotation of each manipulator
end-effector, ry, r, € R 3 are the respective Cartesian position vectors from the center of mass of
the load to the gripping position of each manipulator end-effector (see Figure 1), and ¢ € R3is
fixed from the initial values of x;, and X, because the load is rigid and no relative motion exists
between the load and each manipulator end-effector. Similarly, r; and r; can be determined
- from x,, and x,,, respectively, and they can be written as |

r; =ri(x;,) and ry=ry(xy) .

Thus, for a function Q : R 6 _ RS such that

}:

1] (Q(xz),x2)=0 forall x; € RS .

Xy + (X2 +¢) —ra(x2,)

Q(x;) = O R4 :

X2p
X2

we have

‘Therefore, the pose vectors of both manipulator end-effectors, x; and x,, partition the set of gen-
eralized coordinates of this constrained robot system, X, into the dependent set and the indepen-
dent set. As in section 2.1, letting u be the dependent set and v bc_the independent set, we have

u=x; and v=x;. - : (28)
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Taking the similar steps as in sectlons 2.1 and 2.2, the constramcd robot system is pamuoned
~ into two subsystems. :

"Let us discuss the effects of 'the motion—independent and the motion-dependent
forces/torques on this constrained robot system Taking the snmlar steps as in section 2 2 and
usmg (28), we obtain '

v"ad)WT 'a(l) \NT
‘ - A = A} -
HEINE IS S U I
fn= [a_ x'= r .‘\T = \T fOI"A.ER6. - (29)
‘X ' aﬁ A 'r_")_q_)_ A o ' |
"av 6x2

The above motmn-mdependent forccs/torques f, are contnbuted by each mampulator end-

effector as | )
: | _ | fln‘ - | CL s
= [fzn] o 0

v ‘where fy, ,f, € RS are the respective motion-independent fbrces/torques of each manipulator
end-effector. Then usmg (27), (29), and (30), f;,, and f,, can be expressed as

N or; T A ]
fip= ng =B TEy, A= | :
_— R or, T - -A 1 :
o® | . _13 : _
fon=|=— | A= xy | A= |92 7. . |, @31)
| L aleJ | e o, .. »(axz’) A -2, | o
" where ; A= [t] , llz,lze R3.

- Smce the following relations hold (see Appendlx A),

al'l _b
2 s

T | o
al‘z . . o '
&;] 2.1 =TI Xll ’ » (32).

cquatioh (31) cafx be expressed, respectively; as

N R -
| fl," B [“l‘l,x A+ A2 ] and_ ‘f?"‘_. [rz XA —7&2] :

" ‘Let f}" be the }forcé/to‘rqué,' g¢n_eratéq by fi., at 'the_ center of mass of the load. Then f1" is found

.t_o_.bé _ o -
T fln : . . . 11 . xl . _. ’
T r1x2.1+(—r1><2.1 +M) -
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Similarly, the force/torque 7", generated by fz,,, at the center of mass of the load can be
expressed as

2 = A _ M
T 7 rax(=A1) + (rphg = ) - 2 |

"Thus, the summation of the forces/torques at the center of mass of the load, Wthh are generated
by f1, and f2,, is zero, -

flr+fr=0. | : (33)

This result is}ex‘pected because the net effect of the forces/torques, which are not eontributing to
the motion of the load, is null at the center of mass of the load [14, 18, 19]. Also, (33) shows that
the motion-independent forces/torques play the same role as the internal forces/torques [18]. -

For the constraint forces/torques, fj. and f,., let us express them as

fiep | fa | o

fic=1¢% [, f i 4

e = [flcr] %= [chr v | - (34)
where i, € R? and fi., € R are, respectively, the force and torque vector components of the
constraint forces/torques of the first robot, and fy, € R? and fy, € R? are, respectively, the
force and torque vector components of the constraint forces/torques of the second robot. Then

“the forces/torques, f}* € RS and f# e RS, at the center of mass of the load which are generated
- by these constraint forces/torques, can be written as '

[ fl 7 f2c
fie = P 20 P .
T [l‘l Xflcp + flcr ] and v fT ry Xf?.cp + f2cr
Thus, the equations of motion of the load can be written as | |
(MO (1) | 0 mg | _ _elc _ g2
[OL] (;)(t)]+[a)XL(D:I+[O B fT _ (35)
~ where M e R¥3 is the diagonal matrix whose non-zero elements denote the mass of the load,
m € R! is the mass of the load, L € R¥3 is the diagonal matrix  whose non- zero elements
denote the principal moments of inertia of the load about its center of mass, g € R3 is the gravity
vector, z(1) € R3? and w(t) e R?3 are the vectors of the Cartesian coordinates describing the posi-

N tion of the center of mass and the angular velocity of the load, respectively. For ease of notation,
let us denote the left hand side of equation (35) as Fioaq, then (35) becomes

Fioas =~} ~1F . |
To discuss the effect of the motion-dependent forces/torques on the motion of the load, let us-
express the motion-dependent forces/torques of each respective manipulator ‘end-effector as fy,,
and fy,,, respectively. Since the constraint forces/torques are decomposed into the motion-
dependent and the motion-independent forces/torques, f}° and f# can also be decomposed into
two components which are contributed by the motlon-dependent forces/torques and the motion-
- independent forces/torques
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f=fr+ff ad F=tpatp (36)

where £} and f#" are, respectively, the forces/torques at the center of mass of the load, which
are generated by fy,, and fy,,, and £17 and f#* are the forces/torques at the center of mass of the
load, which are generated by fi, and f,,, respectively. Since the motion-independent
forces/torques do not have any effect on the motion of the load as in (33), the equations of
motion of the load can be rewritten as ‘

Fiood = *f'}‘m - sz*m .
To distribute the forces/torques, the mmlmum exerted force/torque criterion [13], which makes

f1” and 37 pointing to the same d1rect10n as Fj,qq, is used. Then, the £} and f# can be com-
puted, respectively, as

f}"=-NFpw and 7" =-(1-1)Fiu
for some 0 < < 1. The optimal N can be determined by minimizing the energy consumption.

~ Instead of using the minimum exerted force/torque criterion, if another optimization cri-
terion such as the minimum energy consumption [12] is used, then f}” and f7* may point to a
different direction from Fy,.4, and thus causing stress in the load as f}* and f#* do. Therefore, if
other than the minimum exerted force/torque criterion is used, we have to consider the effect of

£} and f#" on the stress of the load before the motion-independent forces/torques are deter-
mined. This is necessary to achieve the required stress in the load. Thus, if the effect of the
motion-dependent forces/torques on the stress in the load is considered before the determination
of the motion-independent forces/torques, it does not make much difference which criterion is

" used because the motion-dependent forces/torques will be compensated by a feedforward com-
ponent in the proposed nonlinear decoupled controller.

With the constrained robot system given as in (26) and (27), the control problem can be
stated as: Given (i) the initial condition that the common rigid load is firmly gmsped by two
manipulator end-effector, (i) the desired pose of both manipulator end-effectors x¢ and x%),
and the desired motlon-mdependent forces/torques fé= (f‘f,, R f‘%n) which are consistent with

1 Fia .d .d .d
the constraints, find a feedback control, F, = an , based on x‘f, X1, X1, X4, X5, x2, £4,, 5.,

X1, X1, X2, X2, fi¢, and fo. such that the poses of both the manipulator end-effectors and the
motion independent forces/torques approach the desired values asymptotically. Since f,and f,
can be computed from the measured values of f;. and f,. (see Appendix B), fy,, f2,, fin, and f2,,,

od

. T
are measurable quantities. Thus, A = E] | fy,isalsoa measurable quantity. Again,

taking the similar steps as in section 2.3, this constrained robot system can be controlled by the
nonlinear decoupled controller which has a similar structure as in (17). Applying this nonlinear
decoupled controller to this constrained robot system, the motion of each manipulator end-
effector in the Cartesian space approaches the desired motion asymptotically,
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lim x;(t) = x%() and  lim x,(r) = x5(?)
l o0 l ~y o0

and the motion-independent forces/torques also approach the desired value asymptotically,

lim £,(r) - £4@) .

1o e

5. Two Cooperating Robots Handling Two Rigid Bodies Connected by a Revolute
Joint ’ ‘

 We shall extend the concept and results that we obtained in the last section to the case of
controlling two cooperating robots handling two rigid bodies connected by a revolute joint. For
this constrained robot system (see Figure 2), in addition to the three assumptions that we made in
section 4, we need to add one more assumption (the fourth asSumption):

(iv) Except the rotational motion about the axis of motion of the revolute joint of the load, no ’
fotational motion of these two bodies exists. The axis of motion of the revolute joint of
the load is parallel to one of the coordinate axes of the global reference coordinate frame.

To partition this constrained robot system into two subsystems, we use the same notations
and equations as in (25) and (26). Let us express X; and x; as

‘sz

1p
X X X b
X = p|_ |*la Xy = % {_ [*2
X1r |- X1B X2r X28
‘ X1y X2y

where Xy, X2, € R 3 are the respective Cartesian variable vectors describing the position of each
manipulator end-effector, x;,, Xy, € R?3 are the respective Cartesian variable vectors describing
the orientation of each manipulator end-effector, and x 14, X1, X1y> X20» X28> X2y € R? are the
Cartesian variables describing the orientation of both manipulator end-effectors,

X1la X20a,
X;,= | %18 |, Xor= X2

The constraint equation for this constrained robot system is described as

X, Xijp —Xgp—T1 tIN
D (x)=D( )= | Xie—X2a-¢1 [=0 - (37
2 X1p —X28 =2

where @ : R12 — RS is the constraint function, ry, r, € R are the respective Cartesian position
vectors from the axis of motion of the revolute joint of the load to the gripping position of each
manipulator end-effector (see Figure 2), and ¢1, ¢2 € R! are, respectively, fixed by the initial
values of x;, and Xy, because each body is rigid and no relative motion exists between each
manipulator end-effector and its gripped body. Similarly, r; and r; can be determined from x;,
and x,,, respectively, and they can be written as ‘
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ry=ri(x;,) and ry=ry(xy ).

Thus, for a function Q : R 7 - R such that

X2q + 01 X2,
[« Xop +r1(| X238 +92 |)—r2(|X28 |)
Q( 1Y ) = X1y X2y ,
X2+ Oq
X2+ 2

we have
D (Qx1y,X2),X1y,%2) =0  forall x)y€ R, x; € RS .

Hence, the sets,

le '
x
ud {xy |€eR? and v2 [xlg} eR7,
xlg

partition the set of generalized coordinates of this constraint robot system, x = [xi }, into the

dependent and the independent sets. Let us express

u v
u=[ 1], v= |V (38)

[15) v

- 3 . _ |*la 2

where U =xpeR’, u= x1p eR”,
v1=xlyeR1, v2=x2peR3, and v3=x,, € R3. 39)

Using the partitioned coordinates, u and v, the equations of motion (26) can be partitioned into

i, |a@vey) | @y | Fa |

v c,(u,v,u,v) py(u,v) Fa fev

where Fy, € R and F,, € R'. Proceeding with the similar steps as in sections 2.1 and 2.2, the
two subsystems for this constrained robot system can be obtained as in (16).

Auuv) A, @,y)
A,,(u,v) A, (u,v)

As in section 2.2, the motion-independent forces/torques f, € R % can be partitioned and
expressed as

. E RN
r a0 |
£ od . J
f,= f, = X A= ) T ,
o),
ov
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' where f.,< R’ anid f,,v e R7 have similar meamng as in (11), and Ae R5 Usmg the constramt o

equation of this constramt robot system as | m (37), f,, and f,,,, can be expressed as’

SR (7 ") (P § i B I A
s [ ] A=l A= ST |

au : 0 L | | 0w P
£ = [av]x_ SF TR - v I YO R A .
10 0 -Lo ;| | _aE_)Tx _ Ml |
R R A 1} 1ol

“where 7\. [A, 3\2] 11 € R3 and A e R2 As in (30), let us express the respecnve motlon-'
- independent forces/torques of each mampulator end-effector as fl,,, f2,l € RS, :

fln ]

B fo, | -

“Then, usmg the relauon of the partitioned sets and the Carteslan vanables of each manipulator
end-effector as in (38) and (39), the respective motlon-mdependent forces/torques of each mani- -

pulator end-effector can be expressed by the partmoned motlon-mdependent forces/torques f .

and f,, as L
0 ,
B . 0 1
- ¢ o . ‘fﬂm‘ | and f _ 0 IU f :
- ha=1110000001f, | ¢ T 076 | m-
Thus,we have . - n " ,'
) g T g A -
tom | R s | 2y ]
. ' arl T v av3 1 0
(a =) A : B
- Vi o
Agam usmg (38) and (39), we have |
]
_ or ,
= (al.l: )Tl al'1 T ra T
| ary g _=.(5;‘.—) A (—v—') AM=(=—)h
(eyTay | T 3
av1 v

~ Using the.identity in Appendix A, we have
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)TM , r, :
= ri XxA; and (E)Txl =ry XA .

~ Thus, f1, and fy, are expressed, respectively, as o
o Rl | A
M= ik A+ [lz] and. f, = ry XA — )E)z:l

Let f3* be the force/torque generated by fl,, at the axis of motion of the load. Then f}* can be
expressed as ~ - '

: Ao : | A
n_ | o ' _
fT‘ -'. l'1Xl1 +:(—I‘1Xll + [)g:l) - ;E)z i

‘ Slrmlarly, the force/torque £z generated by force/torque f5, at the axis of motion of the load can’
be expressed as i s ' '

2n 25 = | =
ir= l‘2’><(-’~1)+v(l‘2><7~1 '_[)62]) N (;)'2

Thus, we obtaln the same result as in (33),
fl" +fT =0,

which indicates that the net effect of the motron-mdependent forces/torques on the motlon of the '
load is zero. : '

For the constraint forces/torques f;. and fzc, they can be expressed as

. flcp» | _ f?.cp
fier } ,»and = [fw |
where f 1cp> T1ers T2cp, Tocr € R3 have the same meaning as in (34). The forces/torques at the axis

of motion of the load, f}* € R® and f¥ e R®, which are generated by these constraint
forces/torques, can be wntten respectively as -

e f ,
fle = lep 2cp
: fT , {Pl Xflcp +f1cr] and va [rz X f2cp +f2cr:|
Thus, the equauons of mouon of the load can be written as

Mz(t>+(m1+m2>g-—[130]<f +f%c>',

flck=




-21-

[100](§™ xmg)+[100] (r§" xmyg)=-[000100] ff - [000100]fF ,
[010](@§” xm,g)+[010] (r§” xm,g8)=—[000010]f} —[000010] % ,

Lio)y(t)+[001] (r{" xm;g)=—[000001] ff* ,

Lowpy () +[001] (r§" xmpg)=—[00000116F , . (40)
where M € R3S is the diagonal matrix whose non-zero elements denote the mass of the load,
‘my,mpe R! are the respective masses of the rigid bodies, L; , L, € R are the respective -
moments of inertia of each body about the axis of motion of the load, r{”, r§™ € R* are the

respective Cartesian position vectors from the axis of motion of the load to the center of mass of -

each body, g € R3 is the gravity vector, z(t) € R3 is the Cartesian vector describing the position
of the axis of motion of the load, w;y(r), Wyy() € R are the respective angular velocities of
each body about the axis of motion of the load. '

To discuss the effect of the motion-dependent forces/torques on the motion of the load, let
.us express the motion-dependent forces/torques of each manipulator end-effector as f;,, and fy,,.
Using the relation of the partitioned sets and the Cartesian variables of each manipulator end-
effector as in (38) and (39), the respective motion-dependent forces/torques of each manipulator :
end-effector can be expressed by the partitioned motion-dependent forces/torques f,,, and f,,, as

0
0.

fnu _10
f1m=!:[1000000]fmv} and fon=1ols | b -
| 0
0

Decomposing f}¢ and f¥ into the motion-dependent and the motion-independent components as
in (36), we have o

=t} +f}" and ¥ =" +1p

where 1™ and 3" are, respectively, the forces/torques at the axis of motion of the load, which
are generated by fy,, and f,,,, and f}* and f7* are, respectively, the forces/torques at the axis of
motion of the load, which are generated by f;, and f,. Since the motion-independent
forces/torques do not have any effect on the motion of the load, f}¢ and f# in the right hand side
of equation (40) can be replaced by fl” and f#", respectively. Using the minimum exerted
force/torque criterion, f}™ and f #" are computed as ' '

MZ+(m;+my)g

" =-
ri" xm,g+rs" xmyg

COOCOO

(1-1)[001] (r{"xm18) =1 [001] (r§"xm2g) + L coyy
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MEZ+(n,+ma)g

B =—(1-1) | .
P | e myg+ 187 xmag

OO0

~(1-1)[001] 5 mmyg)+1 [001] (15 ><ng>+L2cozY

~. for some O <m<1. The optlmal N can be determined by minimizing the energy consumption.

, leen (i) the consu'amed robot system as in (26) and (37), (ii) the initial condition that the
two rigid bodies of the load are firmly graspcd by both manipulator end-effectors, (iii) the
desired poses of both mampulator end-effectors (x1 and x%), and the desired motlon-mdependent

forces/torques
{1 e,
ﬁ= in = | "nu :
] ]

L .

which are cbnsistent with the constraints, the control problem is to find a feedback control,

'F = FM = Fu‘
a- Fm JFn |
d.d 4o.d.d g g
based on x‘f, X1, X1, xz, X3, X2, 4, 14 x,, xl, X7, X2, fi¢, and fo, such that the poses ofboth the

manipulator end-effectors and the motion- independent forces/torques approach the desired
vaJues asymptotically. Since f, and f,, can be determined from the measured values of flcl and

fo. (see Appendlx B), f,,u, frvs Sus and f,,,v are measurable quanunes, and A= [(—— )T ] |

is also a measurable quantity. Wlth these measurable quantities, a nonlinear decoupled con-
troller which has a similar structure as in (17) can be constructed for this constrained robot sys-
tem. Applying this nonlinear decoupled controller, the motion of ‘each manipulator end-effector
- in the Cartesian space approaches the desxred motion asymptoucally,

lim xl(t)—-)xl(t) and lim x,(2) - x4(@),
t e o : t oo :

and the motion-independent forces/torques also ,approach the desired vValvues asympto_tical_ly,
| lim £,(2) - £2() .
t—yoo o i

6. Two Cooperatlng Robots Handlmg Two ngld Bodles Connected by a Spheri-
cal Joint

This constrained robot system is sumlar to the constramcd tobot system d1scussed in the
previous section (see Figure 3), except that the two rigid bodies of the load are connected by a
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spherical joint, Similar assumptions in section 5 are made for this constrained robot system,
except that rotational motxon about the center of the spherical joint of the load is allowed.

Using the notations in (25) and (26), the constramt equatlon for this constrained robot sys- |
tem is described as

"(D(X)E(_D(ltzijl)“-:-q)( X ‘)EXIP—sz—l'l'I'l'Z:O - (41)

where the constraint function, ® : R'? — R3, X1ps X2ps X1, Xor € R? have similar meaning as in

(27), r; , T2 € R? are the respective Cartesian position vectors from the center of the spherical
joint of the load to the gripping position of each manipulator end-effector (see Figure 3).
Because each body is rigid and no relative motion between each manipulator end-effector and its
gripped body exists, ry and ry can be determined from x1, and x,,, rcspectlvcly, and they can be
written as :

rr=r(xy ), Fa=Ty(Xp).
Thus, for a fuhétion Q:R° - R? such that
Q([ }) = X2p+l'1(X1r) 1‘2(er)
- we have @Ry %), Xy X )=30 forall x;, € R3, X € RS .
Hence, the sets, | o '
Xp

uéx1p € R3 and v2 [xl'v] eR’, | @

partition the set of generalized coordinates of this robot system into the dependent and the
independent sets Let us express

Vl ' :
v=| v o | @3)
where vl—xl,eR vz-xzpeR , and V3-x2,eR3 | o (44)

Usmg the part1t10ncd coordmates, u and v, the cquauons of motion (26) can be partitioned into

Au.,(u,vmw(u,v)] 'ﬁ]+ C(Yi,Y) . [pu(u,w]

Av(u,v) Ay (u,v) ¢, (u,v,1,V) p.(u,v)
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‘where F, € R3 and F,, € R®. Again, proceeding with the similar steps as in sections 2.1 and
2.2, two decomposed subsystems for this constrained robot system can be obtained as in (16).

As in section 2.2, the motion-independent forces/torques f, € R 12 can be partmoned and
- expressed as in section 2.2, '

(20 )
SV B -

fnu aQ L <
Ll T el i Bl
T il A

ov

where f,, € R3 and f,,, € R® have similar meaning as in (11), and A € R3. Using the constraint
equation of this constrained robot system as in (41), f,,, and f,,, can be expressed as

\T
oD '
f,= [_GT | A=A,
o -
: r ( Iy )T}.
fo= | 22 | 2= ™
o v | ory . I
aV3)

As in (30), expressing the respective moﬁon-independent forces/torques of .each manipulator |
end-effector as fy, and f,,, and from the relation of the partitioned sets and the Cartesian vari-
ables of each manipulator end-effector as in (42)-(44), we have

A | -A
fin= | < 3?1 | = g:z A
From (44) and the identity in Appendix A, we have
| (——)Tl r xA, ( )Tl-rz XA,
Thus, 1, end f, are, respectively, expressed as _
fin = [—rlxxl] and - fp, = [rz—&l} :

Let f}* be the force/torque, generated by fin, at the center of the spherical joint of the load.
- Then f}* can be expressed as ’

wdonl- ]

= (45)

ri XA + (-r;x)
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Similarly, the force/torque £2, generated by fy,, at the center of the spherical joint of the load
can be expressed as

0 _ —A _ | A
fr= [mx(—m + (r2xA) } = [ 0 } : - (46)
Thus, the summation of (45) and (46) leads .us to the same result as in (33),
f+7 =0,

which agai-nbin'dicates that the net effect of the motion-independent forces/torques on the motion
of the load is null. '

For the constraint forces/torques f;. and f,., they can be expressed as

flcp _ f2qu
facr ] and e = {fw
where ficp , ficr , focp , and for, € R? have the same meaning as in (34). The forces/torques at

the center of the spherical joint of the load, fie R 6 and f%c e RS, which are generated by these
constraint forces/torques, can be written respectively as

fic =

Thus, the equations of motion of the load can be written as |
Mi(r) + (my +mo)g=—[1 01 (ffF +1F),
L1@; (1) + @1 () X Loy (1) +1{" xm1g=-[ 0L 1f}°,
L@, (1) + @ (7) X Lzﬁ)z(t) +r§" xmag=—[0L 1fF, (47)

where M € R is the diagonal matrix whose non-zero elements denote the mass of the load,

mi,mg€ R! are the respective masses of each body, L; , L; € R¥3 are the respective diago-

nal matrices whose non-zero elements denote the principal moments of inertia of each body

about the center of the spherical joint of the load, r{” , r§" e R? are the respective Cartesian
position vectors from the center of the spherical joint of the load to the center of mass of each

body, g e R3 is the gravity vector, z(t) € R3 is the Cartesian vector describing the position of

" the center of the spherical joint of the load, @; (f) , @,() € R3 are the respective angular velo-

city vectors of each body about the center of the spherical joint of the load.

Expressing the respective motion-dependent forces/torques of each ‘manipulator end-
effector as fy,, and fy,,, then from the relation of the partitioned sets and the Cartesian variables
of each manipulator end-effector as in (42)-(44), f,,, and f,,, can be expressed by the partitioned
motion-dependent forces/torques f,,, and f,, as ' |

- T
flm:[[lgo)f,,w}’ f""‘[““]fm'
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~ Decomposing f} and % into the motion-dependent and the mbtion-independcnt components as
in (36), we have ’

ffF =" + 11", 1 =17 + 17

where £} and f#* are, respectively, the forces/torques at the center of the spherical joint of the
load generated by fy,, and f,,,, f}* and f3* are, respectively, the forces/torques at the center of
the spherical joint of the load generated by fy, and f,,. Again since the motion-independent
forces/torques do not have any effect on the motion of the load, fl¢ and f%c in the right hand side
of (47) can be replaced by f}™ and f7", respectively. Using the minimum exerted force/torque
criterion, £} and f#* are computed as

£ = N(MZ+(ny+m2)g)
Lio; +o; xLio; +r€"‘xm1g

g | (1= (M4 @m +mog)
Loy + @y XLy, +r§” Xmag

for some 0 <7 < 1. The optimal 1 can be determined by minimizing the energy consumption.

Given the constrained robot system as in (26) and (41), the initial condition that the two
rigid bodies of the load are firmly grasped by both manipulator end-effectors, the desired poses
of both manipulator end-effectors x¢ and x9), and the desired motion-independent

forces/torques,
f(lin ] _ fgu '
5| ||’

£ =

which are consistent with the constraints, the control problem is to find a feedback control,
Fla = Fau
F2a Fav ’
d 3 58 pd o8 ol g o
based on x{, X1, X1, X3, X2, X2, fau, v X1, X1, X2, X2, fy., and fp. such that both the pose of the

manipulator end-effectors and the motion independent forces/torques approach the desired

values asymptotically. Since f, and f,, can be determined from the measured values of flcl and

T
ag] .

F, =

ou

£ (sée Appendix B), fn, fav, fmu, and f,,, are measurable quantities, and‘ A=

is also a measurable quantity. With these measurable quantities, a nonlinear decoupled con-

- troller which has a similar structure as in (17) can be constructed for this constrained robot sys-

tem. Applying this nonlinear decoupled controller, the motion of each manipulator end-effector
- in the Cartesian space approaches the desired motion asymptotically,

lim x,() = x{@) and lim x,(r) - x5(r),
t >0 | e X .
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“and the motion-independent forces/torques approach the desired value asymptotically,

lim f,() = @) .
t —> oo

7. Conclusion

A generalized approach for controlling various cases of the constrained robot system was
developed. The proposed control scheme utilizes the Jacobian matrix of the constraint function
to partition the generalized coordinates of the constrained robot system into independent and
- dependent variables. This leads to partitioning the constrained robot system into two subsystems
and yields a much simpler nonlinear decoupled controller than other controllers for the con-
strained robot system. The constraint forces/torques in each subsystem were decomposed into
two componénts: the motion-independent and the motion-dependent forces/torques. Using the
~ constraint function in the Cartesian space, the motion-independent forces/torQues were expressed
by a generalized multiplier vector and the Jacobian matrix of the constraint function. The
- motion-dependent forces/torques were determined by the motion of the manipulator end-
effector, the motion-independent forces/torques, and other known quantities. Applying the pro-
posed nonlinear decoupled controller to each subsystem and using the relation between the
- motion-independent forces/torques in the subsystems, both the errors in the mampulator end-
effector motion and the constraint forces/torques were shown to approach zero asymptotically.
Finally, four cases of constrained robot systems were carefully analyzed and discussed: one
robot with its end-effector contacting a rigid friction surface, two cooperating robots handling a
common rigid load, two cooperating robots handling two rigid bodies connected by a revolute
joint, and two cooperating robots handling two ngld bodies connected by a sphencal (ball- and-
socket) joint. :

References

1. K. S.Fu,R. C. Gonzalez, and C. S G. Lee, Robotics: Control, Sensmg, Vision and Intelli-
gence, McGraw-Hill, 1987.

2. J.K. Salisbury, ‘‘Active stiffness control of a manipulator in CarteSian coordinates,’’ Proc.
19th IEEE Conf. on Decision and Control, pp. 95-100, Albuquerque, N.M., Dec. 1980.

3. M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,”” Trans.
ASME, J. of Dynamic Systems, Measurement and control, vol. 102, pp. 126-133, June
1981. ,

4. M. T. Mason, “Compliance and force control for computer controlled manipulators,”’
IEEE Trans. on System, Man, and Cybernetics, vol. 11, no. 6, pp. 418-432, June 1981.

5. - O. Khatib, ““A unified approach for motion and force control of robot mampulators The

operational space formulation,”” IEEE J. of Robotics and Automation, vol. 3, no. 1, pp. 43-
53, Feb. 1987.



6.

10.

11.

12.
13,
14.

15.
16.

17.
- 18.

19.

-28-

E J. Haug, S. C. Wu and S. M. Yang, “Dynamlcs of mechanica! systems with Coulomb
friction, stiction, impact and constraint addition-deletion I-Thecry, II-Planar System, and
III-Spatial system,’’ Mechanism and Machine Theory, vol. 21, no. 5, pp. 401-425, 1986.

R. Kankaanranta and H. N. Koivo, ‘‘A model for constrained motion of a serial link mani-
pulator,”” Proc. 1986 IEEE Int. Conf. on Robotics and Automation, pp. 1186- 1191 San

- Francisco, CA, April 1986.

R. K. Kankaanranta and H. N. Koivo, “Dynamics and simulation of compliant motion of a
manipulator,”’ IEEE J. of Robotics and Automation, vol. 4, no. 2, pp. 163-173, April 1988.

N. H. McClamroch and H. Huang, ‘‘Dynamics of a closed chain mampulator ” Proc. 1985

American Control Conf., pp. 50-54, Boston, MA, 1985.

N. H. McClamroch, ‘‘Singular systems of differential equations ‘as dynamic models for

_constrained robot systems,”” Proc. 1986 IEEE Int. Conf. on Robotics and Automauon PP

21-28, San Francisco, CA, April 1986.

N. H. McClamroch and D. Wang, “Feedback stabilization' and tracking of constrained
robots,  IEEE Trans on Automatic Control, vol. 33, no. 5, PP- 419-426, May 1988.

D. E. Orin and S. Y Oh, ““Control of force distribution i in robotic mechanisms containing
closed kinematic chains,”” Trans. ASME, J. of Dynamic Systems, Measurement, and Con-
trol, vol. 102, pp. 134-141, June 1981.

Y. F. Zheng and J. Y. S. Luh, ‘‘Optimal load dlsmbutmn for two mdustnal robots handlmg
a single ObJCCt * Proc. 1988 IEEE Int. Conf on Robotics and Automation, pp. 344-349,
Philadelphia, PA, Apnl 1988.

M. E. Pittelkau, “Adaptlve load-sharing force control for two-arm manipulators,’ Proc.
1988 IEEE Int. Conf on Robotics and Automation, pp. 498-503, Philadelphia, PA, April
1988. ' .

Y. F. Zheng and J. Y. S. Luh, ““Control of two coordinated robots in motion,”’ Proc. 24th
IEEE Conf. on Decision and Control, pp. 1761-1766, Ft. Lauderdale, FL, Dec. 1985. |

S. Hayati, ‘“Hybrid position/force control of multi-arm cooperating robots,”> Proc. 1986
IEEE Int. Conf. on Robotics and Automation, Pp. 82-89, San Francisco, CA, April 1986.

M. Uchiyama and P. Dauchez, ‘‘A symmetric hybrid position/force control scheme for the
coordination of two robots,”” Proc. 1988 IEEE Int. Conf. on Robotics and Automation, pp.
350-356, Philadelphia, PA, April 1988.

Y. Nakamura, K. Nagai, and T. Yoshikawa, “Mechamcs of coordmatlvc manipulation by
multiple robotic mechanisms,’’ Proc. 1987 IEEE Int. Conf. on Robotics and Automation,
pp. 991-998, Raleigh, NC, March 1987. '

H. Hanafusa, T. Yoshikawa, Y. Nakamura, and K. Nagal, ““Structural analysm -and robust
prehension of robotic hand-arm system,” Proc. ‘85 Int. Conf. on Advanced Robotics, pp.

- 311-318, Tokyo, Japan, 1985.



. 20.
21.
S22,

.23,
24.

-29-

M. Takegaki and S. Arimoto, ‘A new feedback method for dynamic control of mahip‘iila—' -
tors,”” Trans. ASME, J. Dynamic Systems, Measurement and Control vol. ]02 pp 119-

125, June 1981.

R. A. Wehage and E. J. Haug, “Gencrahzed coordmate partmomng for dlmensxon reduc—
tion in analy51s of constrained dynamic systems,” Trans. ASME, J. of Mechamcal Design,

‘,vol 104, pp. 247-255, Jan. 1982.

Y. Nakamura, *‘Force applicability of robot1c mecharusms,” Proc 26th IEEE Conf on
Decision and Control pp. 570-575, Los Angeles, CA, Dec. 1987. -

D.G. Lucnberger Linear and nonlinear programming, Addlson-Wesley, 1984.
H. Goldstem, Classzcal mechamcs, Admson-Wesley Press Inc., Cambndge MA 1950



-130-

Appendix A — The Proof of Equation (32)

The vectors r; and x;, are, respectively,

r X1a
ri={ri2 | and xy,= | X1p
ri3 X1y

where 13,712,713, X105 X18 - X1y € R'. When the orientation x;, is changed by an amount
of

' 8x1a
axlr = Bxlﬁ ’
the corresponding change of ry, 8ry, is
| dxppriz—dxyrn
8r; =8xy, xry = | &x1yr = O0x 19713
dx 10712 'leﬁrll

Thus, we have

ar 0 ri3 -1z

1

ax = -T13 0 '
1r rip -ri; 0

which is a skew symmetric matrix. It can be easily shown that

ar1 T - 3
Ay=r;xA;, forany A;€R"°.
ax]r
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| Appendlx B Computatlon of f and f,, from f

~ where fimp € R3 and fimr € R3 are the respective vectors of the force and torque components in
the motlon—dependent forces/torques of the first robot fy,, € RS s fomp € R3 and f,,, € R3 are

Letus express

(B-lel)_

the respective vectors of the force and torque components in the motlon-dependent_'_ o

forces/torques of the second robot f5,, € R®. Then f}* and 2 can be found to be

f%“m=l:r1xf:‘:,:p+f1w] o f%m=[r2 xfi,z’,:p+f2mr} (BZ) -
S o +tF=tmetyr, @y
usmg the minimum force/torque cntenon wehave =~ }, ' t L . | | _' |
| =1 (ff +f26) RS s B4
—a-maFsE). @

Let us denote (f%-c + fT ) by Fc, and it can be computed from the measured values of fio and: i
fy. Then :

'” 'Fc%f +f%c [FCP] 7‘ ;‘ | - n (B.6)_'

- where FCp € R " and F Cr € R? are the respectJve vectors of the force and torque components 1n\__ N
" Fce R6 From (B. 2)-(B.6), we obtain ' '

1 - ,lmp i Cp 7 g v . ¥ |
= xfw-+-fm] " [Fc,] . e
Thus, fy,, can be obta_inedv as R o S
Similarly, f2, can befobta"ined as o | S

- Slnce f = f f,,,, f can be obtamed from the measured values of f1c and f2c ‘
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: 1'1 T r2 |
— 0 x o) x, ¢ ——
End-effector ‘ End-effector
of manipulator 1 mg of manipulator 2

Figure 1. Two cooperating robots handling a common rigid load.

End-effector End-effector
of manipulator 1 of manipulator 2

Figure 2. Two cooperating robots handling two rigid bodies connected by a revolute joint.
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End-Effector , | End-Effector
of Manipulator 1 : of Manipulator 2

Figuré 3. Two cooperating robots handling two rigid bodies connected by a spherical joint.
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