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ABSTRACT

This paper presents a generalized approach for controlling various cases of the constrained 
robot system. To accomplish specific tasks successfully by a constrained robot system, both the 
constraint forces/torques and the motion of the manipulator end-effector must be specified and 
controlled. Using the Jacobian matrix of the constraint function, the generalized coordinates of 
the constrained robot system can be partitioned into two sets; this leads to partitioning the con­
strained robot system into two subsystems. The constraint forces/torques in each subsystem can 
be decomposed into two components: the motion-independent and the motion-dependent 
forces/torques. Using the constraint function in the Cartesian space, the motion-independent 
forces/torques can be expressed by a generalized multiplier vector and the Jacobian matrix of the 
constraint function. The motion-dependent forces/torques can be determined by the motion of 
the manipulator end-effector, the motion-independent forces/torques, and other known quanti- 
ties. This decomposition of the constraint robot system into subsystems leads to the design of a 
nonlinear decoupled controller with a simple structure, which takes the constraints into con- 
sideration for controlling the constrained robot system. Applying the proposed nonlinear decou- 
pled controller to each subsystem and using the relation between the motion-independent 
forces/torques in the subsystems, we can show that both the errors in the manipulator end- 
effector motion and the constraint forces/torques approach zero asymptotically. Typical exam- 
ples of the constrained robot systems are analyzed and discussed.

This work was supported in part by the National Science Foundation under Grant CDR 8803017 to die Engineering 
Research Center for Intelligent Manufacturing Systems and a grant from the Ford Fund.
Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and do 
not necessarily-reflect the views of the funding agencies.
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1. Introduction
Depending on the task performed by a robot system, the robot system can be classified into 

two categories: unconstrained and constrained robot systems. In the unconstrained robot sys­
tem, the manipulator end-effector moves freely in the workspace and does not interact with the 
environment to complete the task, and there is no force/torque which cannot be determined by 
the motion of the manipulator. These tasks, in general, can be specified in terms of the pre­
planned motion trajectory of the manipulator end-effector. Since the motion trajectory contains 
only position/orientation information, existing positional controllers can be used successfully to 
control the unconstrained robot system [I]. In the constrained robot system, the manipulator 
end-effector is actively interacting with its environment to complete the task. Due to the con­
straints imposed by the task geometry and the environment, the manipulator end-effector motion 
is confined by the constraints and the motion has to comply with the constraints. Typical exam­
ples are the peg-and-hole insertion task, a robot with its end-effector contacting a rigid surface, 
and two robots manipulating a common object. For these tasks, the contact exists between the 
manipulator end-effector and the environment In other cases of the constrained robot system, 
the contact may be at points other than the manipulator end-effector. In this paper, a generalized 
approach for controlling various cases of the constrained robot system in which the manipulator 
end-effector is interacting with its environment will be addressed.

Since the constraint forces/torques resulting from the contact between the manipulator 
end-effector and the environment cannot be determined by the motion of the manipulator end- 
effector, the tasks performed by the constrained robot system cannot be specified only in terms 
of the motion trajectory. To accomplish the task successfully, the constraint forces/torques as 
well as the motion of the manipulator end-effector must be specified and controlled. At present, 
several strategies/architectures for controlling these constraint forces/torques have been pro­
posed, that include, for example, the stiffness control [2], the hybrid control [3], the damping 
control [4], and the operational space approach [5]. However, none of these controls considers 
the dynamic model of the constrained robot system incorporating the constraint effects. 
Recendy, significant progress has been made on the dynamic model of the constrained robot sys­
tem [6-11]. In particular, the dynamic model of the constrained robot system in [8,11] was used 
to control both the motion of the manipulator end-effector and the constraint forces/torques in 
tasks which are characterized by physical contacts between the manipulator end-effector and a 
constraint surface. Using the constraint function, nonlinear transformations were introduced to 
develop the equations of motion for the constrained robot system [8,11]. These equations of 
motion are written in a reduced model consisting of two sets of equations. One set of the equa­
tions of motion contains no constraint forces/torques and characterizes the motion of the mani­
pulator end-effector on the constraint surface. The other set of the equations is used to calculate 
the constraint forces/torques which are caused by the interaction between the manipulator end- 
effector and the environment. Nonlinear decoupled controllers are then proposed to track die 
preplanned motion and the constraint forces/torques of the manipulator end-effector.
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Other cases of the constrained robot system involving two cooperating robot systems have 
also been studied. Most of the research on two cooperating robot systems focuses on the load 
distribution [12-14], the master-slave scheme [15], and the extended hybrid control [16,17]. 
Some of the research considered the constraint effects of the internal forces/torques in two 
cooperating robot systems. Since these internal forces/torques cause stress (compression, ten­
sion, and shear) in the load and do not contribute to the motion of the load because the summa­
tion of these forces/torques is zero [14,18,19], the internal forces/torques as well as the motion 
of the manipulator end-effector must be controlled for the general manipulation of the load. 
Although the above methods considered the constraint effects in two cooperating robots, no con­
straint equations were derived explicitly to show that the relation of the internal forces/torques 
can be obtained from the constraint equations. In this paper, considering a two cooperating 
robot system as a constrained robot system, we will show that the relation of the internal 
forces/torques in two cooperating robots can be derived from the constraint equations.

This paper presents a generalized approach for controlling various cases of the constrained 
robot system. To accomplish specific tasks successfully by a constrained robot system, both the 
constraint forces/torques and the motion of the manipulator end-effector must be specified and 
controlled. Using the Jacobian matrix of the constraint function, the generalized coordinates of 
the constrained robot system can be partitioned into two sets, and an influence coefficient matrix 
can be constructed to relate the time derivatives of the dependent variables to the independent 
variables [20,21]. The equations of motion of the constrained robot system are partitioned 
according to the partitioned coordinates, and the dependent variables are replaced by functions 
of the independent variables. This results in partitioning the constrained robot system into two 
subsystems, which are different from the two subsystems generated from the nonlinear transfor­
mation technique [8,11]. Although this two subsystem representation is in a redundant form 
from the mathematical point of view, the decomposition of the constraint forces/torques can be 
easily performed and a nonlinear decoupled controller for the constrained robot system, which 
has a much simpler structure than other controllers, can be constructed and realized. The con­
straint forces/torques resulting from the interaction of the manipulator end-effector and the 
environment can be decomposed into two components: the motion-independent and the 
motion-dependent forces/torques. Using the constraint function in the Cartesian space, the 
motion-independent forces/torques can be expressed by a generalized multiplier vector and the 
Jacobian matrix of the constraint function. The motion-dependent forcesAorques can be 
expressed by the motion of the manipulator end-effector, the motion-independent forcesAorques, 
and other known quantities. Thus, the control problem of the constrained robot system reduces 
to controlling only the motion of the manipulator end-effector and the motion-independent 
forces/torques. Applying the proposed nonlinear decoupled controller to each subsystem and 
using the relation between the motion-independent forces/torques in the subsystems, we can 
show that both the errors in the manipulator end-effector motion and the constraint 
forces/torques approach zero asymptotically. Utilizing this approach, typical examples of the 
constrained robot system are analyzed and discussed.



2. A Generalized Approach for the Control of Constrained Robots
Let us consider a constrained robot system whose equations of motion in the joint-variable 

space are expressed as [8,10,11]

D(q)q(r) + H (q,q) + G(q) = r fl(r) + J(q)7’fc(r) (I)

and its associated constraint function is expressed in a vector algebraic equation of the form

0  (q) = 0 (2)

where D(q) e R nxn is a positive definite matrix function, q(r) e R n is the vector of generalized 
coordinates (or joint variables), H(q, q) e R n and G(q) e R n are vector functions, ra(f) e R n 
is the vector function consisting of actuator joint forces/torques, fc(r) e R n is the vector function 
consisting of generalized forces/torques due to constraints in the Cartesian space [22], 
J(q) e R nxn is the matrix function consisting of robot Jacobian matrices, the superscript 'T" 
denotes vector or matrix transpose, and the constraint function 0  : R n -4 R m with m < n. As 
discussed in [11], if the constraint function 0 (q )  = O is identically satisfied, then also

q = 0. Thus, q(r) and q(f) are restricted to the manifold S.\ in R 2n defined by

rather than to the space R 2n.

The above dynamic model is used in most of previous work on constrained robot systems. 
However, since most of the task specifications for robot motion and constrained forces/torques 
can be easily specified in the Cartesian space, the dynamic model of the constrained robot sys­
tem in the Cartesian space must be considered. For the dynamic model in the Cartesian spaeet, 
we shall assume that the robot is nonredundant and always at a nonsingular configuration. 
Extensions of the proposed approach to the redundant robot and to the robot in a singular 
configuration require further research. Let us consider a constrained robot system whose equa­
tions of motion in the Cartesian space are expressed as [5,7]

A(x)x + c(x,x) + p(x) = Fa(t) + fc(0 (3)

and its associated constraint function is expressed in a vector algebraic equation of the form

O(X) = O (4)

where x(t) e R n is the vector of generalized coordinates (or Cartesian variables) of the con­
strained robot systemf, A(x)e R nxn is a positive definite matrix function, c (x ,x )e R n and 
p(x) e R n are vector functions, Fa (t) e R n is the vector of generalized forces/torques, and the

t All the quantities in the Cartesian space are referenced to the global reference coordinate frame.
tThroughout this paper, the instantaneous angular rotations are used for the description o f orientation error of the
manipulator end-effector.
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constraint function O : R n R m with m < n. As in the joint-variable space, if the constraints 
are identically satisfied, x(r) and x(t) are restricted to the manifold S2 in R 2n defined by

rather than to the space R 'S 2 = ' (x,x) : (x) = 0, a<i>(x)'
dx x = 0 -

2.1. Partitioning of Generalized Coordinates
One of the major differences between the constrained and the unconstrained robot systems 

is the existence of the constraint function in (4). Using this constraint function (4), the order of 
the dynamic model of the constrained robot system can be reduced via nonlinear transformation 
[8] or the dynamic model can be transformed into two equivalent subsystems, one containing 
motion component and the other containing force/torque and motion components [11]. In our 
approach, we use the constraint function and the implicit function theorem to partition the con­
strained robot system into two subsystems, both containing motion and force/torque components. 
The result of this partitioning will yield a nonlinear decoupled controller with a much simpler 
structure. To partition the Cartesian coordinates into two sets of coordinates [21], let us use the 
implicit function theorem [23]. Suppose that a constant vector xc e R n satisfies the following 
properties:

(i) The constraint function O (x) is twice continuously differentiable in some neighbor­
hood of xc .

(ii) (xc) = 0 .

(iii) Rank dx m .
K. J i  = Jlt

After a reordering of the variables and using the implicit function theorem, an open set 
V c .R n~m and a twice continuously differentiable function Q : V —*Rm can be obtained such 
that

0(£2(v), v )  = 0 f o r a l lv e V .  (5)

Assuming that (5) holds with V = R n~m, a set of generalized coordinates x can be partitioned 
into two sets of coordinates,

X = where u € R m and v € R n-m

Using the partitioned coordinates, the equations of motion in (3) can be partitioned

Ak k v) A kv(UjV) 
Avk(UjV)Avv(UjV)

cK(u,v,u,v)
cv(u,v,u,v)

Pu(U,v)
Pv(U»v) F/iv

where FflK e R m and Fav e R n m. Differentiating the constraint function (4) with respect to
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time and expressing the resultant equations in terms of the partitioned coordinates, we have 

* (* )
80>
8 x

X =

_ *
8 0

U +
8u

d& a o
8u 8v

u
V

v = 0 .

Since is nonsingular, the time derivative of u can be expressed as

u = -

t-----

e(X)

- I
8 0

d u - 8 v
v .

Because u is expressed by £2(v) on the constraint manifold, we can define a function of v, 
W(v) e R mx(n~m\  called the influence coefficient matrix by some authors [21], as

W(v) 4 -
8Q
0U

8 0
8v

(8)

Using the influence coefficient matrix, the first and second time derivatives of u can be 
expressed as

u = W(v)v and U = W(v, v)v + W(v)v .

If there is no confusion, we shall omit v and v in all the functions of v and v for clarity and ease 
of notation. Substituting u, u and U with functions of v, v and V, the partitioned equations of 
motion (7) become

Auu A uv
A vu A vv

W v+ Wv 
v

This results in partitioning the constrained robot system into two subsystems according to the 
partitioned coordinates u and v

(AubW + Auv)v + ctt + AttuWv + ptt = Tau + fc« (subsystem l) ,

(AvttW + Avv )v + cv + AvttWv + Pv = Fav + fcv (subsystem 2). (9)

These two subsystems as in (9) are equivalent to the constrained robot system as in (3) and (4). 
Considering that the constrained robot system as in (3) and (4) has ( n - m ) degrees of freedom, 
the above two subsystems with n equations of motion is in a redundant form. Thus, as in [8,21], 
the number of equations of motion can be reduced from n to ( n - m ) .  However, as will be 
explained later, this redundant representation as in (9) together with the decomposition of the 
constraint forces/torques will yield a very simple nonlinear decoupled controller structure for the 
constrained robot system.
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In (9), the constraint forces/torques fc(r) have been partitioned into fCtt(r) and f^fr). Due to 
the interactions between the manipulator end-effector and the environment, some of these con­
straint forces/torques are independent of the manipulator end-effector motion, while the others 
are dependent. In the next subsection, the constraint forces/torques in (9) will be decomposed 
into two components depending on their charteristics.

2.2. Decomposition of Constraint Forces/Torques
To accomplish specific tasks successfully by a constrained robot system, the constraint 

forces/torques as well as the motion of the manipulator end-effector must be specified and con­
trolled. The constraint forces/torques resulting from the interaction of the manipulator end- 
effector and the environment can be decomposed into two components: the motion-independent 
and the motion-dependent forces/torques. That is,

fc(0 = f„(f) + U 0  (10)

where fc e R n is the constraint forces/torques, fn e R n is the motion-independent 
forces/torques, and fm € R n is the motion-dependent forces/torques. These two types of con­
straint forces/torques are characterized by the following:

(i) The motion-independent forces/torques are the forces/torques which are independent of the 
motion of the manipulator end-effector. The motion-dependent forces/torques are the 
forces/torques which are equal to fc - f n. In other words, the motion-independent 
forces/torques do not contribute to the motion of the manipulator end-effector, while the 
motion-dependent forces/torques contribute to the motion of the manipulator end-effector.

(ii) As a result of (i), the motion-independent forces/torques perform no virtual work, while the 
motion-dependent forces/torques perform work.

(iii) In the case of a robot with its end-effector contacting a rigid friction surface, the motion- 
independent forces/torques cause the normal forces on the surface and the motion- 
dependent forces/torques react to the surface friction force during the motion of the mani­
pulator end-effector on a surface.

(iv) In the case of two robots manipulating a common object, the motion-independent 
forces/torques play the same role as the internal forces/torques [18] and the motion- 
dependent forces/torques contribute directly to the motion of the common object.

(v) Using the constraint function in the Cartesian space, the motion-independent forces/torques 
can be determined by a generalized multiplier vector and the Jacobian matrix of the con­
straint function. The motion-dependent forces/torques can be expressed by the motion of 
the manipulator end-effector, the motion-independent forces/torques, and other known 
quantities. Thus, the control problem of the constrained robot system reduces to controlling 
only the motion of the manipulator end-effector and the motion-independent forces/torques.

Using the partitioned coordinates u and v in (6), the motion-independent and the motion- 
dependent forces/torques in (10) can be partitioned as

(H)



To express the motion-independent forces/torques in another form, let us use the Lagrange 
multiplier method [24]. Since the motion-independent forces/torques are independent of the 
manipulator morion, they perform no work in the virtual displacement 8x. Hence we have

fJ  8x = 0 . -  (12)

From the constraint equation in (4), the virtual displacement 8x satisfies

3 0
9x

8x = 0 for X e R t (13)

Subtracting (13) from (12) and expressing the resultant equations in terms of virtual displace­
ments of partitioned sets, 8u and 8v, we have

I fL-X1 9 0
9u

]8u + [ f jv -X r
9 0
9v

] 8v = 0 (14)

Since u is expressed by Q(v), we treat u as dependent variables and v as independent variables. 
By appropriately choosing the values of the multiplier X, the coefficient of 8u,V - 1N C
f  - X tl ItU A*

9 0
9u

can be set to zero. As a result, the coefficient of 8v, f Jv -  Xv ’
9 0
9v , also

becomes zero because the components in 8v are independent of each other. Thus, the partitioned 
motion-independent forces/torques can be expressed as follows:

T ' 7V-
;X7,-V/'-V V, (15)

• . V-' ■ 7 ' ;
9 $

TV-V' 9 0
tnu = I u

X and fw = 9v

From these relations and the fact that the constraint forces/torques consist of the motion- 
independent and the motion-dependent forces/torques, the two subsystems as in (9) can be 
rewritten as (i.e., use (11) and (15))

(subsystem I) , 

(subsystem 2). (16)

The above two subsystems as in (16) are equivalent to the constrained robot system as in 
(3) and (4). In addition, the constraint forces/torques have been decomposed into the motion- 
independent and the motion-dependent components. Although these two subsystems are in a 
redundant representation, this representation leads to the design of a simple nonlinear decoupled 
controller, which takes the constraints into consideration for controlling the constrained robot 
,system.- .V -

,, v ; ■ ■ 9 0
T ■■

= Fa,, + f„w + 9u x
: .. ^ T

9 0 X= f  av 4" m̂v 9v
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2.3. Design of Nonlinear Decoupled Controller
In this section, a nonlinear decoupled controller is proposed for controlling the constrained 

robot system as in (3) and (4). The desired generalized coordinates, xd, and the desired con­
straint forces/torques, ff ,t are assumed to be consistent with the constraints of the robot [11]. 
Then, the control problem can be stated as: Given (i) a constrained robot system as in (3) and 
(4), and its equivalent subsystems as in (16), (ii) the initial conditions of x and x satisfying the 
constraint equation, (iii) the desired generalized coordinates, xd, and (iv) the desired constraint 
forces/torques, f f ,  find a feedback control, Fa, based on xd, xd, xd, fi , x, x, and fc such that both 
the generalized coordinates of the manipulator and the constraint forces/torques approach the 
desired values asymptotically.

Since the motion-dependent forces/torques can be determined from the motion-independent 
forces/torques and the motion of the manipulator end-effector, the above control problem can be 
restated as finding a feedback control, Fa, based on xd, xd, xd, f£, x, x, and fc such that both the 
generalized coordinates of the manipulator and the motion-independent forces/torques approach 
the desired values asymptotically.

Since the motion-independent and the motion-dependent forces/torques, f„ and fm, can be 
determined from the measured values of fc, x, and x, the partitioned motion-independent and

are measurable quantities. Thus,
T ^-1

dO
du

Tnu is also a measurable quantity. With these measurable quantities, a non­

linear decoupled controller using (16) can be computed as

FflttCO = (AiwW-HAuv) ( \ d(t) + Kv M O + Kp M O ) + cu + AuuWv + Pu - I mu

d o
du

T
U d - M -

d o
du

T
Xd >

Fav(r) = (AvuW + Avv) ( vd(r) + Kv MO + Kp MO) + Cv + AvuWv + pv -  fmv ,

d o
dv

T
(Xd - X ) - 0 7 )

where Cv = (vd -  v) e R n~m, Kfil e R mym and Kfv e R(n-m)x(n-m) f0rce/torque feedback
gain matrices, Kv,Kp e respectively, the velocity and position feedback gain
matrices.

Substituting the controller from (17) into (16), we obtain the error equations of the subsys­
tems

t  Throughout this paper, the notations (•)** or (-)d are used to represent the desired value o f (•)•
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(AuuW + Auv) ( ev(T) + Kv Cv(T) + Kp Cv(T)) = (K/u + Im) 3u

(AvuW + Avv) ( Cv(T) + Kv Cv(T) + Kp Cv(T) ) -  (Kyv + Irt_m) (Xd - X )

(18)

(19)

'( K ril-HmT 1 0 ^UU ^uv W
0 (K a  + W T ^ Avtt Avv -m

where Im € R mxm is the identity matrix. Choosing Kyu and Kyv to be positive semidefinite, then 
the matrices, (Kyu + Im) and (Kyv + In_m), are positive definite and therefore nonsingular. 
Premultiplying (18) and (19) with Wr (Kyu + Im)-1 and (Kyv + Irt_m)_1, respectively, and adding 
the resultant equations together, and using (8), we have

A ( ev(T) + Kv ev(r) + Kp ev(r)) = 0 (20)

where the matrix A e R(n~m)x(n~m'> is given as

A = Wr OCril + I „ r ‘ (A1111 W + A „) + (Ka + W r t A ^ W  + Avv)

= IW r W ]

and the matrix A can be proved to be nonsingular. If Kyu and Kyv are positive semidefinite, it 
can be easily shown that the matrix

( Kyu + Im r1 o
« (K A + w r ‘

is positive definite and therefore nonsingular. The matrix

A UU A uv 
A vu Avv

is nonsingular because it is equivalent to the matrix A which is positive definite.
W n - m .  Thus, Rank A = n-m  , and matrixFurthermore, Rank ^Wr  Irt _m j = Rank Yn_n 

A is nonsingular.
Since matrix A is nonsingular, (20) reduces to

ev(T) + Kv ev(r) + Kp ev(r) = 0 .

Choosing the feedback gain matrices Kv and Kp to be positive definite, Cv(T) will approach zero 
asymptotically. From the given assumption, the error in the partitioned Cartesian coordinate u 
also approaches zero asymptotically. Thus, the generalized coordinates x of die constrained 
robot system in the Cartesian space will approach the desired value xd asymptotically,

Iim x(T)-+ Xd(T).

Since the matrices, (Kyu + Im) and du
, are nonsingular, from (18) and (19), we know that
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the multiplier X approaches the desired value asymptotically,

Iim X —» Xd .
t — > OO

Since the desired motion-independent forces/torques also satisfy the constraint equation (4), they 
can be expressed as

du U=Uj
V=Vj

Xd and fi v U=Uj
V=Vj

Thus, the motion-independent forces/torques approach the desired value asymptotically,

Iim f„(0 -4 fi( t) .
t <*>

In the above discussion, a generalized approach for controlling the constrained robot sys­
tem as in (3) and (4) has been presented. In the previous work for controlling the constrained 
robot system [3,8,11], their analyses are restricted to the case of the constrained robot system in 
which the direction of the constraint forces/torques Tc is orthogonal to the direction of the motion 
of the manipulator end-effector x. However, our proposed generalized approach is not restricted 
to this case and can be applied to other cases of the constrained robot system in which the direc­
tion of the constraint forces/torques fc is not orthogonal to the direction of the motion of the 
manipulator end-effector x. In other words, the proposed approach can be applied to controlling 
general cases of the constrained robot system.

Utilizing this approach, typical examples of the constrained robot systems are analyzed and 
discussed. Section 3 considers the case of one robot with its end-effector contacting a rigid fric­
tion surface; section 4 considers the case of two cooperating robots handling a common rigid 
load; sections 5 and 6 will consider the cases of two cooperating robots handling two rigid 
bodies connected by a revolute joint and a spherical (ball-and-socket) joint, respectively.

3. One Robot with Its End-Effector Contacting a Rigid Friction Surface
In this section, the proposed generalized approach for controlling the constrained robot sys­

tem will be applied to controlling a robot with its end-effector contacting a rigid surface. A 
review of the previous work shows that the friction of the constraint surface was not included in 
the control of this constrained robot system [8,11]. And [6,7] included the frictional effects in 
the dynamic model of this constraint robot system, while no controller was designed to control 
this constraint robot system with the frictional effects taken into consideration. However, [6] 
provides a detailed account of the frictional effects in the dynamic model of this constraint robot 
system. For ease of discussion, we assume that:
(i) There is no effect of the static friction between the manipulator end-effector and the con­

straint surface.
(ii) The manipulator end-effector is in a frictional point contact with the surface. This assump­

tion implies that the manipulator end-effector does not exert any torque to the surface, and
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the torque component in the constraint forces/torques is always zero.
(iii) Initially, the manipulator end-effector is in contact with the constraint surface and its velo­

city is zero or tangent to the constraint surface.
In this constrained robot system, the constraint force is the contact force between the mani­

pulator end-effector and the constraint surface, the motion-independent force is the normal force 
on the constraint surface, and the motion-dependent force reacts to the surface sliding friction. 
Thus, the equations of motion of this constrained robot system in the Cartesian space are 
described as

A (x)x + c (x,x) + p (x) = Fa(r) + fc(t) (21)

fc(0 = fm(0 + f„(0 (22)

X Yf )
. .  V O  = -HlI V O I I 11 f „ (23)

IIipWlI

where x e R 6 denotes the vector of generalized coordinates (or Cartesian variables) describing 
the position/drientation (i.e. pose) of the manipulator end-effector, A(x) e R 6x6 is the robot iner­
tia matrix in the Cartesian space, c(x, x) e R 6 is the vector of Coriolis and centrifugal 
forces/torques in the Cartesian space, p(x) e R 6 is the vector of gravitational forces/torques in 
the Cartesian space, and Fa( t ) e R 6 is the vector of generalized forces/torques. 
Xnp(0, Xp(0 e are the vectors of the force components in fm(0> X(0> respectively, 
xp(t) e R 3 is the vector of the Cartesian variables describing the position of the manipulator 
end-effector, Ji is the sliding friction coefficient, and || -|| denotes the Euclidean norm. The 
motion constraints of this constrained robot system can be described by the constraint surface 
equation

O (x) = 0 (24)

where the constraint surface function <b:R6 -* R m. If m = 1, the motion of the manipulator 
end-effector is constrained on a surface. If m = 2, it is constrained on a curve. Let us assume 
that the constraint surface function O (x) and a function Q(v) .R f̂ m -> R m satisfy the following 
condition,

0 (Q (v ) , v )  = 0 for all v e R  .

Then the proposed generalized approach can be applied to control this constrained robot system. 
Using the constraint function in (24) and following the similar procedures as discussed and out­
lined in sections 2.1 and 2.2, this constrained robot system can be partitioned into two subsys­
tems whose equations have the similar form as in (16).

The control problem of this constrained robot system can be stated as: Given (i) the con­
strained robot system as in (21)-(24), (ii) the initial conditions that the manipulator end-effector 
is in contact with the constraint surface and its end-effector velocity is zero or tangent to the con­
straint surface, (iii) the desired position/orientation of the manipulator end-effector, xd, and the 
desired contact force/torque on the constraint surface, if , which are consistent with the
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constraints, find a feedback control, Fa, based on xd, xd, xd, fd, x, x, and fc such that both the 
position/orientaticn of the manipulator end-effector and the contact forces/torques approach the 
desired values asymptotically.

Since the motion-dependent forces/torques can be determined by the motion-independent 
forces/torques and the manipulator motion as in (23), the above problem can be restated as 
finding a feedback control, Fa, based on xd, xd, xd, f^, x, x, and fc such that both the 
position/orientation of the manipulator end-effector and the normal force/torque on the con­
straint surface force/torque approach the desired values asymptotically.

Taking the similar steps as in section 2.3, the nonlinear decoupled controller which has a 
similar structure as in (17) can be derived. Applying this nonlinear decoupled controller, the 
motion of the manipulator end-effector in the Cartesian space approaches the desired motion 
asymptotically,

Iim x(r) xd(t)
t — »  OO

and the motion-independent force/torque approaches the desired value asymptotically,

Iim fn(t) -> f%(t).
t —¥ o o

4. Two Cooperating Robots Handling a Common Rigid Load
The constrained robot system also arises when two robots are cooperatively manipulating a 

load. In this section, the proposed generalized approach for controlling the constrained robot 
system will be applied to controlling two cooperating robots handling a rigid load. For this con­
strained robot system (see Figure I), we assume that:
(i) The gripping pose of each manipulator end-effector with respect to a rigid load is fixed. 

This assumption is valid for a broad range of tasks.
(ii) No relative motion between the load and each manipulator end-effector exists. We do not 

consider the slipping effect between the load and the manipulator end-effector. Thus, if the 
mass and the inertia of the load are known, the motion of the load can be determined from 
the motion of each manipulator end-effector.

(iii) Initially, the common rigid load is firmly grasped by both manipulator end-effectors.
In this constrained robot system, the motion-independent forces/torques play the same role 

as the internal forces/torques [18] and the motion-dependent forces/torques contribute direcdy to 
the motion of the common load. To form the equations of motion for this constrained robot sys­
tem, we select a set of generalized coordinates by augmenting the vectors of generalized coordi­
nates (or Cartesian variable) of both manipulators, Xj € R 6 and Xj e R 6, into an x vector as

x(t)A
Xl (0 
X2(0

x e R n (25)

Then, from the equations of motion of each robot manipulator as in (21), the equations Of motion
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of this constrained robot system in the Cartesian space can be augmented and written as

A(x) x + c(x,x) + p(x) = Fa + fe

where A(x)
Ai(X1) o 

0 A2(X2) ’ c(x,x) Cl(Xl1Xl)
C2 (X2 ,X2 )

(26)

Pl(Xl) 17 — Fia ' f — V
P2(x2) 9 ~~ F2a V *c ~ hC

Ai(xi), Ci(xi, xi), Pi(Xi), Fia, and fie have corresponding meanings as in (21) for the first 
robot’s end-effector, A2(X2), c2(x2, x2), p2(x2), F2a, and have corresponding meanings as in 
(21) for the second robot’s end-effector, Xi (f) e R 6 and x2(r) e R 6 are the respective vectors of 
generalized coordinates in the Cartesian space of each robot manipulator, and these two vectors 
describe the pose of both manipulator end-effectors.

To partition this constrained robot system into two subsystems, let us discuss the con­
straints of this constrained robot system. The constraint equation for this robot system is 
described as

0 ( x )  = 0 ( Xl

X2
Xip -  X2p -  r i + r2

Xjr - X 2r -<j>
0 (27)

where the constraint function : R u  R 6, Xlp tX2p e R 3 are the respective vectors of the 
Cartesian variables describing the position of each manipulator end-effector, Xi r v X2r e R 3 are 
the respective vectors of the Cartesian variables describing the rotation of each manipulator 
end-effector, Ti , r 2 e R 3 are the respective Cartesian position vectors from the center of mass of 
the load to the gripping position of each manipulator end-effector (see Figure I), and <|> € R 3 is 
fixed from the initial values of xir and X2r because the load is rigid and no relative motion exists 
between the load and each manipulator end-effector. Similarly, Ti and r2 can be determined 
from xir and X2r, respectively, and they can be written as

T i = T i ( X i r ) and T2 = T2 ( X2 r ) .  

Thus, for a function Q : 6 —»R 6 such that

Q(X2) = Q( X2p
X2T )

X2P + Tl (X2r + $) -  T2(X2r) 
X2 r+ $

we have

O  ( Q ( x2 ) ,x2 ) =  0  fo r  all X2 e  R 6 .

Therefore, the pose vectors of both manipulator end-effectors, Xi and x2, partition the set of gen­
eralized coordinates of this constrained robot system, x, into the dependent set and the indepen­
dent set. As in section 2.1, letting u be the dependent set and v be the independent set, we have

u = Xi and v = X2 . (28)
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Taking the similar steps as in sections 2.1 and 2.2, the constrained robot system is partitioned 
into two subsystems.

Let us discuss the effects of the motion-independent and the motion-dependent 
forces/torques on this constrained robot system. Taking the similar steps as in section 2.2 and 
using (28), we obtain

f«  =

B O

d u

T

X ■ a o  '
Oxi

T

X

Iic< ' T1 =
T

' d o

d \
 ̂ .. y

I

X
o o  '
Ox2* J

I

X
_

for X e  R 6 . (29)

The above motion-independent forces/torques f„ are contributed by each manipulator end- 
effector as

fIn 
hn

(30)

where fin Sin e are the respective motion-independent forces/torques of each manipulator 
end-effector. Then using (27), (29), and (30), fi„ and f2n can be expressed as

+ x2
Oxlr

BO '
3xi

' ■■

T
X =

[, dr‘ I
3 Sxir
°  I3

>> Il

* BO 
Ox2

T
X =

’ T Or2 '
3 Ox2r
0 - I 3

T

X =

where X2

-Xi
(31)

, XivX2 e R 3 .

"I r2 x X1 (32)

Since the following relations hold (see Appendix A)
T

Xi -  Ti XX1 , 

equation (31) can be expressed, respectively, as 

fin

Let ff" be the force/torque, generated by fi„, at the center of mass of the load. Then f}rt is found 
to be ' .

’ Xi ' -X 1
.-iTi- X Xi + X2 and f 2n = r2 X X1 -  X2

X 1 ;; ' ’Xl'
xXi + (-Ti xXi + X 2) == X2



- 15-

Similarly, the force/torque fp 1, generated by f^ , at the center of mass of the load can be 
expressed as

- X i '
"X2 ‘

Thus, the summation of the forces/torques at the center of mass of the load, which are generated 
by fin and f^ , is zero,

r2><(- î) + (i*2xXi -X 2)

f r" + f£n = 0 . (33)

This result is expected because the net effect of the forces/torques, which are not contributing to 
the motion of the load, is null at the center of mass of the load [14,18,19]. Also, (33) shows that 
the motion-independent forces/torques play the same role as the internal forces/torques [18].

For the constraint forces/torques, fic and f^ , let us express them as

flc (34)

where f\cp e R 3 and f\cr e R 3 are, respectively, the force and torque vector components of the 
constraint forces/torques of the first robot, and i^p  e R 3 and f^r  e R 3 are, respectively, the 
force and torque vector components of the constraint forces/torques of the second robot. Then 
the forces/torques, e R 6 and i j  s  R 6, at the center of mass of the load, which are generated 
by these constraint forces/torques, can be written as

fl cp
t"l Xfjcp flcr and fj^ l̂cp

r2 x 2̂cp + l̂cr

Thus, the equations of motion of the load can be written as

MO m _L. 0 _1_ mg
OL _<b(0 _ ©xLco I 0 (35)

where M e / ? 3*3 is the diagonal matrix whose non-zero elements denote the mass of the load, 
m e Z?1 is the mass of the load, L e  R 3x3 is the diagonal matrix whose non-zero elements 
denote the principal moments of inertia of the load about its center of mass, g e R 3 is the gravity 
vector, z(r) e R 3 and (o(t) e R 3 are the vectors of the Cartesian coordinates describing the posi­
tion of the center of mass and the angular velocity of the load, respectively. For ease of notation, 
let us denote the left hand side of equation (35) as FioaJ, then (35) becomes

Ffci = -Tjf - I f f .

To discuss the effect of the motion-dependent forces/torques on the motion of the load, let us 
express the motion-dependent forces/torques of each respective manipulator end-effector as flm 
and T2m, respectively. Since the constraint fdrces/torques are decomposed into the motion- 
dependent and the motion-independent forces/torques, f}c and fj^ can also be decomposed into 
two components which are contributed by the motion-dependent forces/torques and the motion- 
independent forces/torques,
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■u'

f^ = ffm+fY  and t?  = ^  + f}n (36)

where ffm and ffr* are, respectively, the forces/torques at the center of mass of the load, which 
are generated by flm and f ^ ,  and ff" and f j 1 are the forces/torques at the center of mass of the 
load, which are generated by flw and f^, respectively. Since the motion-independent 
forces/torques do not have any effect on the motion of the load as in (33), the equations of 
motion of the load can be rewritten as

To distribute the forces/torques, the minimum exerted force/torque criterion [13], which makes 
fj ” and f j 71 pointing to the same direction as F / ^ ,  is used. Then, the f j ” and f f 71 can be com­
puted, respectively, as

i \m = -r \F load and i f 1 = —( I - T l ) Fioad

for some 0 < Tj < I. The optimal r\ can be determined by minimizing the energy consumption.
Instead of using the minimum exerted force/torque criterion, if another optimization cri­

terion such as the minimum energy consumption [12] is used, then f jm and f j ” may point to a 
different direction from F ^ ,  and thus causing stress in the load as and f j 1 do. Therefore, if 
other than the minimum exerted force/torque criterion is used, we have to consider the effect of 
i \m and f j ” on the stress of the load before the motion-independent forces/torques are deter­
mined. This is necessary to achieve the required stress in the load. Thus, if the effect of the 
motion-dependent forces/torques on the stress in the load is considered before the determination 
of the motion-independent forces/torques, it does not make much difference which criterion is 
used because the motion-dependent forces/torques will be compensated by a feedforward com­
ponent in the proposed nonlinear decoupled controller.

With the constrained robot system given as in (26) and (27), the control problem can be 
stated as: Given (i) the initial condition that the common rigid load is firmly grasped by two 
manipulator end-effector, (ii) the desired pose of both manipulator end-effectors (xf and x2), 
and the desired motion-independent forces/torques, f i  = (ff„ , tin)7, which are consistent with

the constraints, find a feedback control, F6
Flfl
F  2a.

,  j  d • d - d d ' d " d  ed cd, based on xf, X 1, X 1, xf, x2, x2, f ln , I 2n,

X1, X1, x2, x2, flc, and T2c such that the poses of both the manipulator end-effectors and the 
motion independent forces/torques approach the desired values asymptotically. Since f„ and fm

are measurable quantities. Thus, X;

r ■ T
dO
dx!

4

fln is also a measurable quantity. Again,

UUVlU^ UXW OiiUUUI A** UVVWVA. — ------ ------------ ------------- -------  «

nonlinear decoupled controller which has a similar structure as in (17). Applying this nonlinear 
decoupled controller to this constrained robot system, the motion of each manipulator end- 
effector in the Cartesian space approaches the desired motion asymptotically,
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Iim x i( t) -¥ x (( t)  and Iim x2( f ) -» x 2(r)
r —> oo t —> oo

and the motion-independent forces/torques also approach the desired value asymptotically,

Um fn( 0 - * f * ( 0 .t oo

5. Two Cooperating Robots Handling Two Rigid Bodies Connected by a Revolute 
Joint

We shall extend the concept and results that we obtained in the last section to the case of 
controlling two cooperating robots handling two rigid bodies connected by a revolute joint. For 
this constrained robot system (see Figure 2), in addition to the three assumptions that we made in 
section 4, we need to add one more assumption (the fourth assumption):
(iv) Except the rotational motion about the axis of motion of the revolute joint of the load, no 

rotational motion of these two bodies exists. The axis of motion of the revolute joint of 
the load is parallel to one of the coordinate axes of the global reference coordinate frame.

To partition this constrained robot system into two subsystems, we use the same notations 
and equations as in (25) and (26). Let us express xj and X2 as

X1p _ _ X2p-
Xl p 
Xl r

Xla
Xip . X2 =

X̂ p
*2r =

X 2a 
X2P

Xly _ X2y

where xlp, X2p e R 3 are the respective Cartesian variable vectors describing the position of each 
manipulator end-effector, xlr, Xlr e R 3 are the respective Cartesian variable vectors describing 
the orientation of each manipulator end-effector, and Xitx, Xip, * iy, X2a, x 2p, x2y e R 1 are the 
Cartesian variables describing the orientation of both manipulator end-effectors,

• - 
Xla X2a
Xip . X2r = x2p
Xiy x 2y

The constraint equation for this constrained robot system is described as

Xip - X 2p -T l + r 2
0 ( x )  = 0 ( a I

X2
Xia -X 2a -<t>l 
Xip-  X2p — <J>2

where O : R 12 R 5 is the constraint function, r l5 r2 e R 3 are the respective Cartesian position 
vectors from the axis of motion of the revolute joint of the load to the gripping position of each 
manipulator end-effector (see Figure 2), and fo, <h € R 1 are, respectively, fixed by the initial 
values of xlr and X2r because each body is rigid and no relative motion exists between each 
manipulator end-effector and its gripped body. Similarly, ri and r2 can be determined from Xjr 
and X2r, respectively, and they can be written as
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T i = T i ( X l r ) and T2 = T2 (X 2 r ) 

Thus, for a function Q. : R 1 -+ R 5 such that

Xly
X2

X 2a +  01 X2a
X2p +  r i ( X 2p + 0 2 ) - r 2( x2p

X ly X 2y

. X 2 a -Hj>1
X 2p+<()2

we have

Hence, the sets,

O ( Q (X iy 5X2 )5X iy 5X2 ) = O for all X i y S  R 1 , X2 e R 6 .

Xlp
Xia
Xip

s  R 5 and v 4 Xly
X2

€ R 1 ,

partition the set of generalized coordinates of this constraint robot system, x 

dependent and the independent sets. Let usexpress

Xl
X2

, into the

Ul
«2

V =
v I
V2
V3

(38)

where Ui -Xip e R 3 , u2 Xla
Xip e * 2 ,

v i  = X i y e  R 1 , V2 = X2p e  R 3 , and V3 = X 2r e R : (39)

Using the partitioned coordinates, u and v, the equations of motion (26) can be partitioned into

A uu(U jV ) A mv(U5V) ii I cM(u,v,u,v) pM(u,v) ^ a u
f
1CU

A vm(U5V) A vv(U5V) V
+

Cv(U5V5U5V)
+

Pv(U5V) Fav + f
1CV

where Fau s  R 5 and Fav s  R 1. Proceeding with the similar steps as in sections 2.1 and 2.2, the 
two subsystems for this constrained robot system can be obtained as in (16).

As in section 2.2, the motion-independent forces/torques fB e R 12 can be partitioned and 
expressed as



where € R 5 arid fnv e R 1 have similar meaning as in (II), and X e R 5. Using the constraint 
equation of this constraint robot system as in (37), im and fw can be expressed as

X i

"Sr’T̂
t 3ri T

a o
3u

X=

0
1

1__
_=_

:_

X =

T 9ri di*2

11 3 0 11<< 3vi  ̂ 3v3
dv

1--
--- O , 0 & 0 3r2 T,

■ ■

* 2
0

where X= [X1 , X2/ ,  Xj e R3, and X2 e R 2. As in (30), let us express the respective motion- 
independent forces/torques of each manipulator end-effector as fin, e i?6,

'fin 
f:2n

Then, using the relation of the partitioned sets and the Cartesian variables of each manipulator 
end-effector as in (38) arid (39), the respective motion-independent forces/torques of each mani­
pulator end-effector can be expressed by the partitioned motion-independent forces/torques
and fw as

fi» =
f  '

[ 1 0 0 0 0 0 0 ]  fnv and T2n;

0
0

0 T
O l6
0
0

1HV *

Thus, we have

X i

OU2

- ( •P - fX i
OVi

h n  =

-Xi

( p - f x ,  -
OV3

X2
0

Again using (38) and (39), we have

. . : :;v
(|L )%

O VI

( 4 r - ) rXi and ( -^ r fX i = ( ^ “ )rXi
Sr2

Using the identity in Appendix A, we have
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(
I V

0U2
Brl

Ov1

> %

n i
= Tl X X-I and (rr— )T\ i  = T2 X X1 . 

OV3

Thus, fi„ and f ^  are expressed, respectively, as

-I*! X X1 + X2
0

and T2rt
-X i

r2 x X1 X2
0

Let f jn be the force/torque generated by fln at the axis of motion of the load. Then f j” can be 
expressed as

X1 x r

T1XX1 + ( - T 1XX1 +

I__
__

_

)
•

X2
O

Similarly, the force/torque i j 1 generated by force/torqueT2rt at the axis of motion of the load can 
be expressed as

' .-X i '- X 1 '

T2x C-X1) + (T2XX1 -

O
tT

• 
L_

_ _
:__

__
_

)
=

-X 2
O

Thus, we obtain the same result as in (33),

T ffn +$*=<) ,

which indicates that the net effect of the motion-independent forces/torques on the motion of the 
load is zero.

For the constraint forces/torques flc and X2c, they can be expressed as

fir — and T2c

where flcp, flcr, f2c/>, T2cr e R 3 have the same meaning as in (34). The forces/torques at the axis 
of motion of the load, fjf e R 6 and f j 7 € R 6t which are generated by these constraint 
forces/torques, can be written respectively as

and i f hcp
T2 Xf2cp +T2crr I xficp + f\cr

Thus, the equations of motion of the load can be written as

M z(t) + (m t + m2)g = — [ I3 O ] ( ffc + fj 7) ,
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[ 100] (rfm xmig)  + [ 100] ( r f  x m 2g) = - [ 0 0 0  IOOJffc - [ 0 0 0 1 0 0 ]  ,

[010]  ( r f 1 x m i g) + [ 0 1 O'] (rf* x m2g) = -  [ OOOOI O] ffc -  [ 0 0 0 0 1 0 ]  ,

LjCOj^r) + [ 0 0 1 ] Crfm Xmjg) = -  [ 0 0 0 0 0 1 ] f ,

L20)2Y(r) + [ 0 0 1 ](r§mx m 2g) = - [ 0 0 0 0 0 1 ] f ^  , (40)

where M e Z?3x3 is the diagonal matrix whose non-zero elements denote the mass of the load, 
mj , m2 € R 1 are the respective masses of the rigid bodies, L 1 , L 2 e Z?1 are the respective 
moments of inertia of each body about the axis of motion of the load, rfm , r 2m e R 3 are the 
respective Cartesian position vectors from the axis of motion of the load to the center of mass of 
each body, g e R 3 is the gravity vector, z(r) e /?3 is the Cartesian vector describing the position 
of the axis of motion of the load, O)jy(r), e R 1 are the respective angular velocities of 
each body about the axis of motion of the load.

To discuss the effect of the motion-dependent forces/torques on the motion of the load, let 
us express the motion-dependent forces/torques of each manipulator end-effector as fjm and f^n. 
Using the relation of the partitioned sets and the Cartesian variables of each manipulator end- 
effector as in (38) and (39), the respective motion-dependent forces/torques of each manipulator 
end-effector can be expressed by the partitioned motion-dependent forces/torques f n̂u and fmv as

i ITUl

[1 0 0 0 0 0 0 ] f„ and f2m

0
0

0 T
O l6
0
0

1WV

Decomposing ffc and ( j  into the motion-dependent and the motion-independent components as 
in (36), we have

f \ c = ffm + f1Jn and f^  = fY  + f^

where ffm and f j ” are, respectively, the forces/torques at the axis of motion of the load, which 
are generated by flm and f ^ ,  and ff” and f j 1 are, respectively, the forces/torques at the axis of 
motion of the load, which are generated by fln and f . Since the motion-independent 
forces/torques do not have any effect on the motion of the load, f j c and in the right hand side 
of equation (40) can be replaced by ffm and f j ”, respectively. Using the minimum exerted 
force/torque criterion, i \m and f j ” are computed as

*lmI t -T]
M z + ( m j+ m 2)g 

rfm xmig + r ^  xm2g

0
0
0
0
0

( I -  Tl) [ 0 0 1 ] (rfmxrn i g) -  Tl [ 0 0 1 ] (rimxm2g).+L iCOjy
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- d -  Tl )
M z  + (mi + m 2)8

rf” X m ig + rf* x m2 g

-0'
' ■ 0  .

o
'■0-'
0  -

- (  I -Tl) [001] (rfmxmig) + ri [001] (r2mxm2 g) + ^2Gty

for some 0 < Tj < I. The optimal Tj can be determined by minimizing the energy consumption.
Given (i) the constrained robot system as in (26) and (37), (ii) the initial condition that the 

two rigid bodies of the load are firmly grasped by both manipulator end-effectors, (iii) the 
desired poses of both manipulator end-effectors (xf and xf), and the desired motion-independent 
forces/torques,

f t
H n i d*nu

f d1HV

which are consistent with the constraints, the control problem is to find a feedback control,

Ffl =
Fifl
F2fl

based on xf, xf, xf, xf, xf, xf, Hmi, Hv, X1, X1, x2, x2, flc, andf2c such that the poses of both the 
manipulator end-effectors and die motion independent forces/torques approach the desired 
values asymptotically. Since f„ and fm can be determined from the measured values of flc and

(l n )rduf2c (see Appendix B), fm , f m, fm„, and fmv are measurable quantities, and X -

is also a measurable quantity. With these measurable quantities, a nonlinear decoupled con­
troller which has a similar structure as in (17) can be constructed for this constrained robot sys­
tem. Applying this nonlinear decoupled controller, the motion of each manipulator end-effector 
in the Cartesian space approaches the desired motion asymptotically,

Iim x1(t)-> xf(r) and Iim x2(f)-»  x2(0 ,
t —» 00 t OO

and the motion-independent forces/torques also approach the desired values asymptotically,

Iim -f«(0 -4 
r-» 00 'tid) ■

6. Two Cooperating Robots Handling Two Rigid Bodies Connected by a Spheri­
cal Joint

This constrained robot system is similar to the constrained robot system discussed in the 
previous section (see Figure 3), except that the two rigid bodies of the load are connected by a
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spherieal joint. Similar assumptions in section 5 are made for this constrained robot system, 
except that rotational motion about the center of the spherical joint of the load is allowed.

Using the notations in (25) and (26), the constraint equation for this constrained robot sys­
tem is described as

O (x) s  <t> (

. _ x I^
x I ) =  0 (

x Ir
x 2 X2p

_x >  _

) = Xip - X 2p- T i + r2 (41)

where the constraint function, O :R n  -»i?3,x lp, Xl p , xlr, X2r € R 3 have similar meaning as in 
(27), ri , r2 e R 3 are the respective Cartesian position vectors from the center of the spherical 
joint of the load to the gripping position of each manipulator end-effector (see Figure 3). 
Because each body is rigid and no relative motion between each manipulator end-effector and its 
gripped body exists, T1 and r2 can be determined from xlr and X2 r, respectively, and they can be 
written as

^ l = I iI(Xlr), r2=r2(X2r).

Thus, for a function Q : R 9 —> R 3 such that

x Ir
x 2

) =  X2p + T 1(Xl r ) - T 2 (X2r) ,

we have 0 ( Q (  xlr, X2 ), xlr, X2 ) = 0 for all xlr e R 3 , X2 e R 6 . 

Hence, the sets,

u 4 X1n € R 3 and Y =
x Ir
x2

e R 9 , (42)

partition the set of generalized coordinates of this robot system into the dependent and the 
independent sets. Let us express

v =
Vl
V2
V3

(43)

where V1 = xlr e R 3 , Y2 = X 2p e R 3 , and V3 = X2r e R 3 . (44)

Using the partitioned coordinates, u and v, the equations of motion (26) can be partitioned into

Auu (11, v) Auv(U5V) 
Avu(u,v) Avv(U5V)

Cu(U5V5U5V)

Cv(U5V5U5V)

Pu(U 5V)
Pv(U5V)

t,
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where Fatt e R 3 and Fav e R 9. Again, proceeding with the similar steps as in sections 2.1 and 
2.2, two decomposed subsystems for this constrained robot system can be obtained as in (16).

As in section 2.2, the motion-independent forces/torques fn e R 12 can be partitioned and 
expressed as in section 2.2,

*nu ao
9x

9 0
du

9 0
9v

where fm e R 3 and fnv e R 9 have similar meaning as in (11), and X e R 3. Using the constraint 
equation of this constrained robot system as in (41), and f„v can be expressed as

9 0

du

9 0
9v

X = X,

- ( 3r’ A
9 v i  
-X

9t*2 t _
(-S -i A9v 3

As in (30), expressing the respective motion-independent forces/torques of each manipulator 
end-effector as fi„ and f^ , and from the relation of the partitioned sets and the Cartesian vari­
ables of each manipulator end-effector as in (42)-(44), we have

>>
 

__
I I—•f

I
I __

Il

- U 1 Aav I

H dr2 T 

Ov3

From (44) and the identity in Appendix A, we have

(-zr-^-)TX = T1 x X , (•=—̂-)r X = t 2 x  X . 
9 v !  9 v3

X -X
—i* i x X

IlI

T2 x X

Thus, fi„ and fin are, respectively, expressed as

fin

Let ff" be the force/torque, generated by fi„, at the center of the spherical joint of the load. 
Then ff" can be expressed as

(45)
X X

T1XX+ ( - I 11 xX) .== O



-25-

Similarly, the force/torque f f ,  generated by at the center of the spherical joint of the load 
can be expressed as

i f . -X  ' -X
r2x(-X) + (r2xX) = 0 (46)

Thus, the summation of (45) and (46) leads us to the same result as in (33),

ff" + f^  = 0 ,

which again indicates that the net effect of the motion-independent forces/torques on the motion 
of the load is null.

For the constraint forces/torques fic and f^ , they can be expressed as

and f2c

where i\cp , fic r» hcp » and i ^ e  R 3 have the same meaning as in (34). The forces/torques at 
the center of the spherical joint of the load, ffc e R 6 and i f  € R 6, which are generated by these 
constraint forces/torques, can be written respectively as

f T
cp

1*1 X fj Cp  + f \cr
and i f l̂cp

r 2 x 2̂cp + 2̂cr

Thus, the equations of motion of the load can be written as

M z(J) + (nii +  m 2)Z = -  [ I3 0 ] ( ffc +  t f ) >

Li ©1 (J) + COi (t) x L 1 (D1 (t) + rf*  x m 1 g = -  [ 0 13 ] ffc ,
L2OJ2(J) + OJ2(J) x L2OJ2(J) + r 2m x m2g = -  [ 0 13 ] i'r , (47)

where M e  R iy2 is the diagonal matrix whose non-zero elements denote the mass of the load, 
m \ , m2 e R 1 are the respective masses of each body, Li , L2 e i?3x3 are the respective diago­
nal matrices whose non-zero elements denote the principal moments of inertia of each body 
about the center of the spherical joint of the load, r f * , r f 1 e R 3 are the respective Cartesian 
position vectors from the center of the spherical joint of the load to the center of mass of each 
body, g e R 3 is the gravity vector, z(J) e R 3 is the Cartesian vector describing the position of 
the center of the spherical joint of the load, COi(J) , GJ2(J) e R 3 are the respective angular velo­
city vectors of each body about the center of the spherical joint of the load.

Expressing the respective motion-dependent forces/torques of each manipulator end- 
effector as fim and T2m, then from the relation of the partitioned sets and the Cartesian variables 
of each manipulator end-effector as in (42)-(44), fim and can be expressed by the partitioned
motion-dependent forces/torques Tmu and Tmv as

l̂m
imu

[I3 «] tnv
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Decomposing f f c and f  J r into the motion-dependent and the motion-independent components as 
in (36), we have

=  +  f t  = % " + * ¥

where and f j ” are, respectively, the forces/torques at the center of the spherical joint of the 
load generated by f j m and f ^ ,  f } ” and f t  are, respectively, the forces/torques at the center of 
the spherical joint of the load generated by fi„ and f^ . Again since the motion-independent 
forces/torques do not have any effect on the motion of the load, f t  and f t  in the right hand side 
of (47) can be replaced by f t  and f t ,  respectively. Using the minimum exerted force/torque 
criterion, f t  and f t  are computed as

Tl (M z  + ( m i+ m 2)g)
L1W1 +© i x L iO i + r f ” x m ig

( l - T i ) ( M z  + (m1+ m 2)g)
L2Q2 + CD2 x L2(I)2 + r 2m x m2g

for some O < Tj < I. The optimal T| can be determined by minimizing the energy consumption.
Given the constrained robot system as in (26) and (41), the initial condition that the two 

rigid bodies of the load are firmly grasped by both manipulator end-effectors, the desired poses 
of both manipulator end-effectors (xf and xf), and the desired motion-independent 
forces/torques,

f t = -

f t = -

which are consistent with the constraints, the control problem is to find a feedback control,

F i a

J 2a
based on xf, x f ,  x f ,  x2, x2, x2, f ^ ,  f^v, X1, X1, x2, x2, fic, and such that both the pose of the 
manipulator end-effectors and the motion independent forces/torques approach the desired 
values asymptotically. Since f„ and fm can be determined from the measured values of fic and

_ ^ T ^
I

?2c (see Appendix B), fm , fnv, Tmu, and fmv are measurable quantities, and X:

is also a measurable quantity. With these measurable quantities, a nonlinear decoupled con­
troller which has a similar structure as in (17) can be constructed for this constrained robot sys­
tem. Applying this nonlinear decoupled controller, the motion of each manipulator end-effector 
in the Cartesian space approaches the desired motion asymptotically,

Iim Xi (t) -> xf (f) and Urn x2(r) x2(r) ,
f » OO f —»oo



and the motion-independent forces/torques approach the desired value asymptotically,

Iim
t -4 00
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7. Conclusion
A generalized approach for controlling various cases of the constrained robot system was 

developed. The proposed control scheme utilizes the Jacobian matrix of the constraint function 
to partition the generalized coordinates of the constrained robot system into independent and 
dependent variables. This leads to partitioning the constrained robot system into two subsystems 
and yields a much simpler nonlinear decoupled controller than other controllers for the con­
strained robot system. The constraint forces/torques in each subsystem were decomposed into 
two components: the motion-independent and the motion-dependent forces/torques. Using die 
constraint function in the Cartesian space, the motion-independent forces/torques were expressed 
by a generalized multiplier vector and the Jacobian matrix of the constraint function. The 
motion-dependent forces/torques were determined by the motion of the manipulator end- 
effector, the motion-independent forces/torques, and other known quantities. Applying the pro­
posed nonlinear decoupled controller to each subsystem and using the relation between the 
motion-independent forces/torques in the subsystems, both the errors in the manipulator end- 
effector motion and the constraint forces/torques were shown to approach zero asymptotically. 
Finally, four cases of constrained robot systems were carefully analyzed and discussed: one 
robot with its end-effector contacting a rigid friction surface, two cooperating robots handling a 
common rigid load, two cooperating robots handling two rigid bodies connected by a revolute 
joint, and two cooperating robots handling two rigid bodies connected by a spherical (ball-and- 
socket) joint.
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Appendix A — The Proof of Equation (32)

The vectors T1 and xlr are, respectively,

Hi x Ia
ri = »*12 and xir = Xl$

ri3 Xly

where r n  , , r i3 , Xiot ,X i p5Xi ye / ?1. When the orientation xir is changed by an amount
of

Sxir
&Xia

8Xly

the corresponding change of r i , Sri , is

8ri = Sxir x ri
Sxipri3 - 8 x iYr 12
S x i Yr i i  - 8 x i a ri3

Thus, we have

Bvl

Bxlr

0 r I3 —r 12 
~r 13 0 r 11 
r .12 - r n  0

which is a skew symmetric matrix. It can be easily shown that

' B tl

Bxlr

T
Xl ri x Xi , for any Xi e R 3 .
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Appendix B—  Computation offn and fm from fc

Let us express

f t ,  — 2̂mp
l̂mr > *2m “ flmr

(B.l)

where flwp e f?3 and flmr e /?3 are the respective vectors of the force and torque components in 
the motion-dependent forces/torques of the first robot f\m e R 6, f^np e R i and e R 3 are 
the respective vectors of the force and torque components in the motion-dependent 
forces/torques of the second robot e R 6. Then i f 1 and if*  can be found to be

_ -'t. ■
rI x flmp + flmr

and i f **2 X ^2w

Since

i f  + i f  = i f 1 + i f

(B.2)

(B.3)

using the minimum force/torque criterion, we have

f}m=Tl(f}c + f ^ )  (B.4)

f j ” = ( I — T|) ( i f  + i f  ) .  (B.5)

Let us denote ( i f  + i f  ) by Fe, and it can be computed from the measured values of fic and 
f^ . Then

Fe = i f  + i f Fcr
(B.6)

where Fqp e R 3 and Fcr e R 3 are the respective vectors of the force and torque components in 
Fe e /? 6. From (B.2)-(B.6), we obtain

**i x fimp + h
*cP
Fcr

(B.7)

Thus, fim can be obtained as

»lm =

Similarly, f^n can be obtained as

l̂mp
hmr

Fcp
Fcr-ri X Fep CB 8)

( I -  Tl) Fcr “T2 xFcp (B.9)

Since fn = fc— fOT, fn can be obtained from the measured values of fic and f^.
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r2

Xl Q X2

End-effector 
of manipulator I

i r End-effector
mS of manipulator 2

Figure 1. Two cooperating robots handling a common rigid load.

Body 2 7

End-effector 
of manipulator 2

End-effector 
of manipulator I

Figure 2. Two cooperating robots handling two rigid bodies connected by a revolute joint.
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Body 2

End-Effector 
of Manipulator 2

End-Effector 
of Manipulator I

Figure 3. Two cooperating robots handling two rigid bodies connected by a spherical joint.
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