91 research outputs found

    Capacity of Coded Index Modulation

    Full text link
    We consider the special case of index coding over the Gaussian broadcast channel where each receiver has prior knowledge of a subset of messages at the transmitter and demands all the messages from the source. We propose a concatenated coding scheme for this problem, using an index code for the Gaussian channel as an inner code/modulation to exploit side information at the receivers, and an outer code to attain coding gain against the channel noise. We derive the capacity region of this scheme by viewing the resulting channel as a multiple-access channel with many receivers, and relate it to the 'side information gain' -- which is a measure of the advantage of a code in utilizing receiver side information -- of the inner index code/modulation. We demonstrate the utility of the proposed architecture by simulating the performance of an index code/modulation concatenated with an off-the-shelf convolutional code through bit-interleaved coded-modulation.Comment: To appear in Proc. IEEE Int. Symp. Inf. Theory (ISIT) 2015, Hong Kong, Jun. 2015. 5 pages, 4 figure

    CRC-Aided High-Rate Convolutional Codes With Short Blocklengths for List Decoding

    Full text link
    Recently, rate-1/n zero-terminated (ZT) and tail-biting (TB) convolutional codes (CCs) with cyclic redundancy check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRC polynomials for rate- (n-1)/n ZT and TB CCs with short blocklengths. This paper considers both standard rate-(n-1)/n CC polynomials and rate- (n-1)/n designs resulting from puncturing a rate-1/2 code. The CRC polynomials are chosen to maximize the minimum distance d_min and minimize the number of nearest neighbors A_(d_min) . For the standard rate-(n-1)/n codes, utilization of the dual trellis proposed by Yamada et al. lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128. This paper compares the FER performance (gap to the RCU bound) and complexity of the CRC-aided standard and punctured ZTCCs and TBCCs. This paper also explores the complexity-performance trade-off for three TBCC decoders: a single-trellis approach, a multi-trellis approach, and a modified single-trellis approach with pre-processing using the wrap around Viterbi algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0792

    Viterbi algorithm in continuous-phase frequency shift keying

    Get PDF
    The Viterbi algorithm, an application of dynamic programming, is widely used for estimation and detection problems in digital communications and signal processing. It is used to detect signals in communication channels with memory, and to decode sequential error-control codes that are used to enhance the performance of digital communication systems. The Viterbi algorithm is also used in speech and character recognition tasks where the speech signals or characters are modeled by hidden Markov models. This project explains the basics of the Viterbi algorithm as applied to systems in digital communication systems, and speech and character recognition. It also focuses on the operations and the practical memory requirements to implement the Viterbi algorithm in real-time. A forward error correction technique known as convolutional coding with Viterbi decoding was explored. In this project, the basic Viterbi decoder behavior model was built and simulated. The convolutional encoder, BPSK and AWGN channel were implemented in MATLAB code. The BER was tested to evaluate the decoding performance. The theory of Viterbi Algorithm is introduced based on convolutional coding. The application of Viterbi Algorithm in the Continuous-Phase Frequency Shift Keying (CPFSK) is presented. Analysis for the performance is made and compared with the conventional coherent estimator. The main issue of this thesis is to implement the RTL level model of Viterbi decoder. The RTL Viterbi decoder model includes the Branch Metric block, the Add-Compare-Select block, the trace-back block, the decoding block and next state block. With all done, we further understand about the Viterbi decoding algorithm

    On the performance of video resolution, motion and dynamism in transmission using near-capacity transceiver for wireless communication

    Get PDF
    This article investigates the performance of various sophisticated channel coding and transmission schemes for achieving reliable transmission of a highly compressed video stream. Novel error protection schemes including Non-Convergent Coding (NCC) scheme, Non-Convergent Coding assisted with Differential Space Time Spreading (DSTS) and Sphere Packing (SP) modulation (NCDSTS-SP) scheme and Convergent Coding assisted with DSTS and SP modulation (CDSTS-SP) are analyzed using Bit Error Ratio (BER) and Peak Signal to Noise Ratio (PSNR) performance metrics. Furthermore, error reduction is achieved using sophisticated transceiver comprising SP modulation technique assisted by Differential Space Time Spreading. The performance of the iterative Soft Bit Source Decoding (SBSD) in combination with channel codes is analyzed using various error protection setups by allocating consistent overall bit-rate budget. Additionally, the iterative behavior of SBSD assisted RSC decoder is analyzed with the aid of Extrinsic Information Transfer (EXIT) Chart in order to analyze the achievable turbo cliff of the iterative decoding process. The subjective and objective video quality performance of the proposed error protection schemes is analyzed while employing H.264 advanced video coding and H.265 high efficient video coding standards, while utilizing diverse video sequences having different resolution, motion and dynamism. It was observed that in the presence of noisy channel the low resolution videos outperforms its high resolution counterparts. Furthermore, it was observed that the performance of video sequence with low motion contents and dynamism outperforms relative to video sequence with high motion contents and dynamism. More specifically, it is observed that while utilizing H.265 video coding standard, the Non-Convergent Coding assisted with DSTS and SP modulation scheme with enhanced transmission mechanism results in Eb/N0 gain of 20 dB with reference to the Non-Convergent Coding and transmission mechanism at the objective PSNR value of 42 dB. It is important to mention that both the schemes have employed identical code rate. Furthermore, the Convergent Coding assisted with DSTS and SP modulation mechanism achieved superior performance with reference to the equivalent rate Non-Convergent Coding assisted with DSTS and SP modulation counterpart mechanism, with a performance gain of 16 dB at the objective PSNR grade of 42 dB. Moreover, it is observed that the maximum achievable PSNR gain through H.265 video coding standard is 45 dB, with a PSNR gain of 3 dB with reference to the identical code rate H.264 coding scheme.Web of Science235art. no. 56

    Iterative decoding scheme for cooperative communications

    Get PDF

    OFDM-IDMA for Uplink Transmission in Passive Optical Networks

    Full text link
    In this paper, we propose the orthogonal frequency-division multiplexing-interleaved division multiplexing access (OFDM-IDMA) technique for passive optical networks (PONs). We evaluate the performance of such systems and compare it with the already proposed OFDM-Access (OFDMA) technique by means of the bit error rate versus received power for two different coding schemes and different number of iterations. Results show that OFDM-IDMA technique with an unequal power allocation distribution among the different optical network units (ONUs) offers similar performance to OFDMA when used with a simple convolutional code at an aggregated rate of 4 and 8 Gbits/s. Dynamic bandwidth allocation can be easily implemented with this technique. © 2011 IEEE.Sánchez Costa, C.; Ortega Tamarit, B.; Capmany Francoy, J. (2012). OFDM-IDMA for Uplink Transmission in Passive Optical Networks. IEEE Photonics Journal. 4(1):1-13. doi:10.1109/JPHOT.2011.2177450S1134

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200
    corecore