thesis

Viterbi algorithm in continuous-phase frequency shift keying

Abstract

The Viterbi algorithm, an application of dynamic programming, is widely used for estimation and detection problems in digital communications and signal processing. It is used to detect signals in communication channels with memory, and to decode sequential error-control codes that are used to enhance the performance of digital communication systems. The Viterbi algorithm is also used in speech and character recognition tasks where the speech signals or characters are modeled by hidden Markov models. This project explains the basics of the Viterbi algorithm as applied to systems in digital communication systems, and speech and character recognition. It also focuses on the operations and the practical memory requirements to implement the Viterbi algorithm in real-time. A forward error correction technique known as convolutional coding with Viterbi decoding was explored. In this project, the basic Viterbi decoder behavior model was built and simulated. The convolutional encoder, BPSK and AWGN channel were implemented in MATLAB code. The BER was tested to evaluate the decoding performance. The theory of Viterbi Algorithm is introduced based on convolutional coding. The application of Viterbi Algorithm in the Continuous-Phase Frequency Shift Keying (CPFSK) is presented. Analysis for the performance is made and compared with the conventional coherent estimator. The main issue of this thesis is to implement the RTL level model of Viterbi decoder. The RTL Viterbi decoder model includes the Branch Metric block, the Add-Compare-Select block, the trace-back block, the decoding block and next state block. With all done, we further understand about the Viterbi decoding algorithm

    Similar works