502 research outputs found

    Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers

    Full text link
    Group emotion recognition in the wild is a challenging problem, due to the unstructured environments in which everyday life pictures are taken. Some of the obstacles for an effective classification are occlusions, variable lighting conditions, and image quality. In this work we present a solution based on a novel combination of deep neural networks and Bayesian classifiers. The neural network works on a bottom-up approach, analyzing emotions expressed by isolated faces. The Bayesian classifier estimates a global emotion integrating top-down features obtained through a scene descriptor. In order to validate the system we tested the framework on the dataset released for the Emotion Recognition in the Wild Challenge 2017. Our method achieved an accuracy of 64.68% on the test set, significantly outperforming the 53.62% competition baseline.Comment: accepted by the Fifth Emotion Recognition in the Wild (EmotiW) Challenge 201

    DeepCoder: Semi-parametric Variational Autoencoders for Automatic Facial Action Coding

    Full text link
    Human face exhibits an inherent hierarchy in its representations (i.e., holistic facial expressions can be encoded via a set of facial action units (AUs) and their intensity). Variational (deep) auto-encoders (VAE) have shown great results in unsupervised extraction of hierarchical latent representations from large amounts of image data, while being robust to noise and other undesired artifacts. Potentially, this makes VAEs a suitable approach for learning facial features for AU intensity estimation. Yet, most existing VAE-based methods apply classifiers learned separately from the encoded features. By contrast, the non-parametric (probabilistic) approaches, such as Gaussian Processes (GPs), typically outperform their parametric counterparts, but cannot deal easily with large amounts of data. To this end, we propose a novel VAE semi-parametric modeling framework, named DeepCoder, which combines the modeling power of parametric (convolutional) and nonparametric (ordinal GPs) VAEs, for joint learning of (1) latent representations at multiple levels in a task hierarchy1, and (2) classification of multiple ordinal outputs. We show on benchmark datasets for AU intensity estimation that the proposed DeepCoder outperforms the state-of-the-art approaches, and related VAEs and deep learning models.Comment: ICCV 2017 - accepte

    An Investigation into Modern Facial Expressions Recognition by a Computer

    Get PDF
    abstract: Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose a new model containing a Hybrid Convolutional Neural Network with a Fusion Layer. The Fusion Layer utilizes a combination of the knowledge obtained from two different domains for enhanced feature extraction from the in-the-wild images. I tested my network on two publicly available in-the-wild datasets namely RAF-DB and AffectNet. Next, I tested my trained model on CK+ dataset for the cross-database evaluation study. I prove that my model achieves comparable results with state-of-the-art methods. I argue that it can perform well on such datasets because it learns the features from two different domains rather than a single domain. Last, I present a real-time facial expression recognition system as a part of this work where the images are captured in real-time using laptop camera and passed to the model for obtaining a facial expression label for it. It indicates that the proposed model has low processing time and can produce output almost instantly.Dissertation/ThesisMasters Thesis Computer Science 201

    Efficient Facial Feature Learning with Wide Ensemble-based Convolutional Neural Networks

    Full text link
    Ensemble methods, traditionally built with independently trained de-correlated models, have proven to be efficient methods for reducing the remaining residual generalization error, which results in robust and accurate methods for real-world applications. In the context of deep learning, however, training an ensemble of deep networks is costly and generates high redundancy which is inefficient. In this paper, we present experiments on Ensembles with Shared Representations (ESRs) based on convolutional networks to demonstrate, quantitatively and qualitatively, their data processing efficiency and scalability to large-scale datasets of facial expressions. We show that redundancy and computational load can be dramatically reduced by varying the branching level of the ESR without loss of diversity and generalization power, which are both important for ensemble performance. Experiments on large-scale datasets suggest that ESRs reduce the remaining residual generalization error on the AffectNet and FER+ datasets, reach human-level performance, and outperform state-of-the-art methods on facial expression recognition in the wild using emotion and affect concepts.Comment: Accepted at the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), 1-1, New York, US

    Towards a Better Performance in Facial Expression Recognition: A Data-Centric Approach

    Get PDF
    Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine, healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching for better algorithms to improve recognition. However, progress is insufficient. Despite being the main resource for automatic learning, few works focus on improving the quality of datasets. We propose a novel data-centric method to tackle misclassification, a problem commonly encountered in facial image datasets. The strategy is to progressively refine the dataset by successive training of a CNN model that is fixed. Each training uses the facial images corresponding to the correct predictions of the previous training, allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model performs automatic reclassification of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or augmenting facial images. Experimental results on three representative datasets proved the effectiveness of the proposed method, improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AffectNet, respectively. The recognition rates on the reclassified versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art performance.This work was funded by grant CIPROM/2021/17 awarded by the Prometeo program from Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital of Generalitat Valenciana (Spain), and partially funded by the grant awarded by the Central University of Ecuador through budget certification no. 34 of March 25, 2022, for the development of the research project with code: DOCT-DI-2020-37
    • …
    corecore