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Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine,
healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab
environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on
convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching
for better algorithms to improve recognition. However, progress is insufcient. Despite being the main resource for automatic
learning, few works focus on improving the quality of datasets.We propose a novel data-centric method to tackle misclassifcation,
a problem commonly encountered in facial image datasets.Te strategy is to progressively refne the dataset by successive training
of a CNNmodel that is fxed. Each training uses the facial images corresponding to the correct predictions of the previous training,
allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model
performs automatic reclassifcation of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or
augmenting facial images. Experimental results on three representative datasets proved the efectiveness of the proposed method,
improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AfectNet, respectively. Te rec-
ognition rates on the reclassifed versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art
performance.

1. Introduction

Our facial gestures speak more than a thousand words.
Among the dynamic activities of the human body, the
muscular movements of the face have meaning and potential
interpretation. Facial expressions associated with the emo-
tional state of a person are considered universal and the
main signal to manifest and infer our feelings and sensations
[1, 2]. An important study [3] quantifed the degree of in-
fuence of the elements involved in the communication of
emotions, determining the nonverbal part (facial and body
gestures) as the most infuential with 55%, whereas the tone
of voice with 38%, and only 7% for verbal language. In
a conversational context, the exclusively verbal manifesta-
tion of anger or happiness must be accompanied by a facial

gesture to convey the credibility and conviction of the in-
terlocutor. Even the gesture would be enough to describe the
emotion we are experiencing, as we often pay more attention
to the face than to the words. Te recent pandemic has
shown that when a facial mask is present, the human ca-
pacity to infer emotions is reduced [4]. Terefore, facial
expressions that communicate emotions are essential in
daily life at the individual, interpersonal and social levels [5].
Apart from interacting with other people, we are in-
creasingly surrounded by machines trying to imitate human
behavior, so there is a need to interact. In near future, this
will be a common practice and it is intended to make such
interaction as natural as possible. In the same way that
people can infer the emotional state of others from facial
expressions, computers and robots may also be able to
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recognize expressions and interpret human emotions. In
recent years, automatic facial expression recognition (FER)
has become an important area of research and development
to improve human-machine interaction (HMI), leading
communication to a more emotional, afective, and in-
telligent level [6, 7]. Tis can be applied to many activities
and felds such as human behavior, healthcare, medicine,
psychology, psychiatry, marketing, digital advertisement,
customer feedback assessment, video games, video security,
video surveillance, mobile phone unlocking, crime in-
vestigation (lie detection), online learning, and automobile
safety [8–11].

1.1. Problem. Humans can easily recognize facial expressions,
however, it is still a challenge for machines [12]. Automatic
FER is one of the key tasks in the feld of computer vision.Tis
problem has motivated competitions such as the one orga-
nized on the Kaggle platform [13]. A popular approach is to
classify the facial expression in a static image of a human face
and associate it with one of the seven basic universal human
emotions: happiness, surprise, anger, sadness, fear, disgust,
and neutral [14, 15]. Some models measure emotions with
continuous values (e.g., valence and arousal). However, there
are very limited annotated facial databases [16]. In contrast,
for a discrete (categorical) model, a wider range of available
datasets can be found. Deep learning is preferred for this task
avoiding the high cost of time and efort of manually defning
multiple and complex features of facial expressions. In par-
ticular, convolutional neural networks (CNNs) have shown
promising results from diferent facial image datasets. Images
captured in a specifc and controlled environment (in the lab)
are taken of a few people, do not present variations in en-
vironmental conditions, and gestures have a high degree of
expressivity, so a good level of accuracy can be achieved.
Another way is collecting images in real-world situations
from the Internet, which is referred to as in the wild [17]. Te
heterogeneity of human faces, people less expressive than
others, subtle diferences between expressions, variations in
head pose, diferent body postures, lighting changes in the
environment, and occlusions, are some of the factors that
make FER outside the laboratory a difcult task even for
humans [9, 18–20].

1.2.Motivation. A deep learning solution consists of a model
and data. Te vast majority of work follows a model-centric
approach, whose purpose is fnding new algorithms to achieve
better performance on a certain facial image dataset. Several
CNN architectures have been proposed, both customized
(created from scratch) and pretrained using transfer learning
and fne tuning techniques. Each one tests diferent hyper-
parameters and includes regularization mechanisms such as
data augmentation, dropout, and batch normalization [9]. In
practice, this process is very time-consuming and has not
achieved the aim of ideal performance. On the other side,
there is research data-centric guided by the principle that data
is the most important resource and its quality directly in-
fuences the performance of learningmodels. Very few studies
have focused on improving FER datasets even though the

same creators admit the problems in the quality of the data
[8]. Te lack of remarkable results of the model-centric ap-
proach, the little work focused on the data, and the premise
that the data would be more important than the model,
motivate us to propose a novel data-centric method to im-
prove existing FER datasets to achieve better performance of
recognition models.

1.3. Hypothesis. Te quality of the dataset is a prerequisite
for improving the accuracy of FER models. If the inherent
drawbacks of the dataset are not reduced, it is very difcult to
improve the performance of a FER system. In other words,
better performance and higher accuracy are expected if the
dataset is improved.

1.4. Method. Improving the main resource of a FER model,
i.e., the dataset, implies improving the accuracy of the
recognition. To validate our proposal, we used some rep-
resentative datasets of this domain, which sufer from well-
known problems such as imbalance, irrelevant images, and
misclassifed images. Our interest is to deal with mis-
classifcation, since balancing or removing irrelevant images
would modify the size of the dataset. In contrast, a reclas-
sifcation would generate a new distribution of the available
images in a better-quality dataset. Te strategy is a pro-
gressive refnement of the dataset over several trainings of
the same CNN-based model. After each training, the pre-
diction of all facial images is performed, and only the correct
ones are selected to form the dataset for the next training.
Tis process is repeated until there are few incorrect pre-
dictions, usually single-digit numbers. As a result, the last
trained model achieves very high accuracy, so it is in charge
of relabeling all the images of the original dataset. Terefore,
a new distribution of the dataset is generated without al-
tering its size or modifying the images. In the fnal step, the
same CNNmodel is trained on the reclassifed version of the
dataset, and the accuracy is higher compared to the original
dataset. Te experiments performed in the present work
show an increase of 20.45%, 14.47%, and 39.66% for the
FER2013, NHFI, and AfectNet datasets, respectively. State-
of-the-art performance was also achieved for these datasets.

1.5. Contributions. Our research work provides: (1) a novel
data-centric method to reclassify the images of a dataset that
allows a higher precision of a FER model, (2) a methodology
applicable to other datasets from diferent domains and
supported by computer tools, especially Python and deep
learning libraries, and (3) a reclassifed version of each
dataset, which may be useful for further research, publicly
available for FER2013 and NHFI, whereas for AfectNet this
is not possible due to licensing restrictions.

Te content of this work is organized as follows: Section
2 reviews the data-centric works. Section 3 presents the FER
datasets. Section 4 describes in detail the methodology.
Section 5 explains the experimentation, and the results
obtained in Section 6. Finally, Section 7 includes the con-
clusions and mentions future work.
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2. Related Work

Our bibliographic search on improving the performance of
FER in the wild using deep learning reports supremacy of
model-centric research. Tis approach focuses on better
architectures, hyperparameter tuning, and regularization
techniques [21]. However, no signifcant progress can be
expected when the data used are not reliable. On the other
hand, data-centric eforts are scarce. Tere are few studies
that deal with the dataset to improve the performance of
a FER system. After analyzing the related literature, we can
say the techniques frequently used under this approach
include: image preprocessing, removing noise, deleting
images with errors, data augmentation, and reclassifcation.
For instance, Liu et al. [11] analyzed expression recognition
considering the importance of data preprocessing by im-
proving the image contrast. More discriminative facial
features are obtained using a hybrid method for extraction,
and a classifcation network combining EGG-16 and ResNet.
Experiments on three benchmark datasets: CK+, FER2013,
and AR achieved state-of-the-art recognition rates: 98.6%,
94.5%, and 97.2%, respectively. Kim et al. [22] designed an
image and video preprocessing system called FIT (facial
image threshing) machine capable of eliminating irrelevant
facial images, cropping, resizing, and reorganizing the
classifcation of facial images before training the Xception
algorithm, improving the validation accuracy by 16.95%
with the FER2013 dataset. Mazen et al. [8] applied the
following operations on the dataset: (1) nonface images, text
images, and profle images are deleted, (2) wrongly labeled
images are relabeled using a CNN, and (3) data augmen-
tation to overcome the class imbalance, generating new face
images for the minority classes with a cycle generative
adversarial network (CycleGAN). As a result, the average
test accuracy was increased from 64% for the original
FER2013 dataset to 91.76% for the modifed balanced ver-
sion. Te cited works address the preprocessing of the
dataset before the training of a model, however, the oper-
ations applied to change the total number of images either by
removing or augmenting. In addition, the images are
modifed by cropping, resizing, or retouching the contrast.
Our goal is to preserve the images and size of the dataset, so
we focus on misclassifcation, one of the most infuential
problems in the lower performance of the FER models. For
instance, Kim and Wallraven [23] presented a study of the
quality of the labeling on AfectNet. Due to the large size of
the dataset, a subset with a total of 800 difcult-to-recognize
images of the diferent categorical expressions was selected
to be relabeled by 13 human annotators. After the crowd
reannotation, 83.25% of the total number of votes did not
match the original dataset labels. In addition, the predictions
of several ResNets trained on the original AfectNet are
compared with the labels assigned by the human crowd,
fnding that there is no good coincidence for categorical
expression.Tis pilot test suggests the low labeling quality of
the original dataset for these difcult facial images, infu-
encing the poor performance of a deep learning model. It is
mentioned that more extensive reannotation work is in
progress to check more accurate performance, however,

manual annotation demands great efort and time. Our work
does not require any kind of preparation or modifcation of
the images, and avoids decreasing or increasing their
number. It aims to automatically reclassify images to reduce
intraclass variability and interclass overlapping of the
original dataset. As a consequence, improve recognition
performance.

3. Datasets

Tere are multiple image datasets created for automatic
emotion recognition based on facial expressions. We have
considered FER2013, AfectNet, and NHFI (natural human
face image), mainly due to availability, size, image format,
and categories of facial expressions.

3.1. Characteristics. Te FER2013 dataset (created by Pierre-
Luc Carrier and Aaron Courville) and AfectNet (Ali
Mollahosseini, Behzad Hasani, andMohammadH.Mahoor)
are standards taken as benchmarks for competitions [24],
whereas NHFI (Sudarshan Vaidya) is a novel dataset, created
for the purpose of providing more data with better manual
annotation, which we propose to analyze in the present
study. Table 1 summarizes the most relevant characteristics
of these datasets.

Te quality of the datasets is more afected as the size of
the dataset increases, so we selected a dataset at diferent
scales: small (thousands of images), mid (tens of thousands),
and large scale (hundreds of thousands). Te facial images
included are static, not video sequences, with a 2D or fat
appearance, in contrast to the 3D images that generate
a perception of depth [1]. Each image has a facial expression
category assigned to it, this is a task performed entirely by
humans, except for AfectNet, where one part was manually
annotated and the rest automatically annotated using
a neural network trained on all manually annotated training
set samples [16]. Te datasets are not balanced, i.e., they do
not have the same number of images for each category, or at
least a similar number. Tis drawback is discussed later. To
examine the infuence of image color and size on recognition
performance, we have images in grayscale and RGBmode, as
well as in small and medium sizes. JPG and PNG are
standard image formats and are easy to convert to each
other. Te datasets encompass difcult naturalistic condi-
tions (in the wild), with images far from a controlled en-
vironment, closer to reality, diferent lighting levels, ages,
poses, intensity of expression, and occlusions, making
recognition a challenging task [19].

3.2. Acquisition. Te FER2013 (https://www.kaggle.com/
datasets/deadskull7/fer2013) and NHFI (https://www.
kaggle.com/datasets/sudarshanvaidya/random-images-for-
face-emotion-recognition) datasets are publicly available in
Kaggle, whereas AfectNet requires permission for use via
a request form to the authors (request form:
mohammadmahoor.com/afectnet-request-form/).
FER2013 can be obtained in a comma-separable value (CSV)
format whose columns represent the following attributes:
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a value between 0 and 6 for each of the 7 possible emotions
(0: angry, 1: disgust, 2: fear, 3: happy, 4: neutral, 5: sad, and 6:
surprise), a list of 2304 integer values, each equivalent to one
pixel of the image of size 48× 48, and fnally the subset to
which it belongs: training or test. Since the images are not
directly visible, we used a Python script with the Pandas and
NumPy libraries to read the fle, store the integer values as
pixel arrays, and convert them to image fles. A total of 35886
images are obtained after transforming the pixel arrays to
image fles in JPG format, in grayscale and with a resolution
of 48× 48 pixels, divided into two subsets: training and test,
28708 and 7178 images, respectively. Each subset includes 7
folders, each one for a particular type of facial expression.
NHFI downloading is a compressed fle, which after de-
compression generates 8 folders, whose names are practi-
cally the same as the previous dataset, only the “contempt”
category is excluded for a fair comparison. Inside each folder
are images in PNG format. In the case of AfectNet, the link
provided in response to the request allows for the download
of two compressed archives for training and validation. After
the extraction of each archive, an “images” folder containing
the JPG fles and another one called “annotations” con-
taining the NPY fles of the corresponding labels are created.
We developed a Python script (github.com/cimejia/FER-
datasets/blob/main/createAfecnet.py) to read the facial
expression category from the NPY fle and move the JPG fle
to the corresponding folder. It is worth mentioning that
AfectNet has two versions of the dataset, we used the small
one containing only the manually annotated images with 8
labels (but contempt is omitted) released in March 2021.Te
full AfectNet dataset is huge (122GB) and a specifc request
is necessary [16].

3.3. Drawbacks. Automatic collection from the Internet and
label crowdsourcing are the main reasons for the quantity
and quality drawbacks of FER datasets. Regarding quantity,
the major disadvantage is the imbalance, even with cate-
gories that largely exceed the number of facial images in
other categories. On the other hand, the quality of the

content is highly afected by the presence of irrelevant
images and misclassifcation. Tese problems are widely
mentioned in the literature and increase as the size of the
dataset grows [8].

3.3.1. Imbalance. An imbalanced dataset could lead to
a recognition model biased in favor of the majority classes.
Having the same number of images per category is a difcult
task. Facial images are usually sourced from the Internet and
collected manually or automatically through browser plug-
ins or programming scripts. Tese images are posted by
people who tend to show smiling or happy faces, so this
category predominates, in contrast to categories such as
disgust, anger, or sadness, which users do not usually post.
Table 2 indicates the number of images per facial expression
category in each dataset.

All three datasets show a signifcant imbalance (Fig-
ure 1). In FER2013 (Figure 1(a)), the “happy” category
predominates, and the “disgust” category has few samples,
and it is approximately regular for the rest of the categories.
NHFI (Figure 1(b)) presents a similar behavior, but is less
irregular. In AfectNet (Figure 1(b)), the diference in the
number of images between all categories is much more
pronounced.

Comparing the distributions on the same scale
(Figure 1(d)), the imbalance is much more signifcant in
AfectNet. A common pattern is the higher number of
samples for the happy category and the lowest number for
the disgust category. As mentioned before, this is because
people tend to post images of happy faces and avoid showing
other types of expression.

3.3.2. Misclassifcation and Irrelevant Images. Here, we join
both problems related to the content of the datasets.
Misclassifcation or mislabeling refers to placing facial
images in the wrong directories. Among the factors that
lead to this problem are: (a) emotions are subjective, it is
common that two people to have diferent opinions on the

Table 1: Datasets considered and their main characteristics.

Characteristic FER2013 NHFI AFFECTNET
Number of images 35886 5558 287401
Expression model Discrete Discrete Discrete/continuous
Categories 7 8 8
Type 2D facial image 2D facial image 2D facial image
Labelers Humans Humans Automated and humans
Balanced No No No
Resolution (pixels) 48× 48 224× 224 224× 224
Color Grayscale Grayscale RGB color
Format JPG PNG JPG
Space 300MB 50MB 4GB
Availability Free Free Under request
Data source Internet Internet Internet
Size Mid Small Large
Environment In-the-wild In-the-wild In-the-wild
Year 2013 2020 2017
Structure CSV fle Folders and fles Image and NumPy fles
Subsets (%) Train/test (80/20) None Train/val (99/1)
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same facial image, (b) there are slight diferences between
certain facial expressions, e.g., fear and surprise, disgust
and anger, and contempt and sadness, (c) the degree of
expressiveness varies from person to person, so gestures
may appear exaggerated in one case and inhibited in others,
and (d) human beings can feel multiple emotions in a given
instant, something that is difcult to combine in a facial
expression and can be confusing, e.g., smiling carrying
tears is a combined emotion mistaken for sadness
[9, 25, 26]. As irrelevant images are those with watermarks,
occlusions, no faces, poorly visible or very dark, cartoons,
text or symbols, half-side, sleeping faces or closed eyes,
cropped, rotated, retouched, and duplicated images. It is
important to check for these drawbacks in each dataset,
however, an exhaustive manual and visual review of a large
number of images are impractical. We designed the fol-
lowing procedure to easily locate such errors.

Search for facial images with errors follows the fowchart
shown in Figure 2. We reused the CNN for facial expression
recognition designed by Akshit Bhalla [27]. During the
training on each dataset, we monitored the accuracy of the
validation set at each iteration (epoch) to save the best model
parameters. Tis model is used to perform the prediction on
all the images of the validation set. Te confusion matrix is
obtained from these predictions, where the of-diagonal
positions allow us to identify the failures and their corre-
sponding images. As a result, we have a smaller set of images
in each class that is stored in a separate folder. We then
visually reviewed to select examples of mislabeling and ir-
relevant images with their respective fle names
(Figures 3–5).

In this section, we examined the problems of the FER
datasets, which can be summarized as class imbalance, the
existence of a signifcant number of images that are

Table 2: Distribution of categories and number of images in FER datasets.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
FER2013 4953 547 5121 8988 6198 6077 4002 35886
NHFI 890 439 570 1406 524 746 775 5350
AfectNet 25382 4303 6878 134915 75374 25959 14590 287401
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Figure 1: Imbalance in (a) FER2013; (b) NHFI; and (c) AfectNet; (d) overall.
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irrelevant, or that do not correspond to the correct category.
Combined or separately, these problems cause the perfor-
mance of a FER model to degrade considerably, as well as
learning to be biased in favor of the dominant classes
[8, 9, 18, 22]. Terefore, the search for more convenient
architectures and confgurations for recognition models is
a waste of time when the data used are of low quality. Firstly,
it is necessary to address these problems to improve the
datasets. Dealing with both the imbalance and the irrelevant
images involves changing the size of the original dataset. Our
work focuses on the problem of misclassifcation by keeping
the number of available images of the dataset. To this end, we
propose a novel data-centric method based on deep learning
for the automatic relabeling of facial images.

4. Proposed Method

Our goal is to achieve increased accuracy in facial expression
recognition through deep learning by previously improving
the dataset used. We proposed a data-centric approach that
specifcally addresses the misclassifcation typically en-
countered in FER datasets. Tis drawback is likely the most

infuential in the lower performance of recognition models
in the wild scenarios. Since a visual inspection of every facial
image in a dataset would be an extremely time-consuming
and tedious task, we designed a method to automatically
reclassify images of a dataset and improve the performance
of a FER model.

4.1. Workfow. Te proposed method consists of a series of
steps represented by a workfow diagram in Figure 6.

(1) Te dataset is organized in a folder-based structure,
where each facial expression category is a folder
containing the corresponding facial image fles.

(2) Split the dataset into training and validation subsets,
with the same folder and fle structure. Te training
subset is larger and has the images to ft the model,
whereas the validation subset is used to evaluate the
model at training time.We omit a test subset because
as many images as possible are needed for the next
step. Tus, the input is ready for the deep
learning model.

Train CNN
on FER
dataset

Save model
with best
validation
accuracy

Make
prediction

for validation
subset

Generate
confusion

matrix

Save images
of incorrect
predictions

(of-diagonal)

Visual
selection of

error samples

Figure 2: Workfow for selecting and showing some error samples.

Category

Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

PrivateTest_12766285.jpg PrivateTest_87187926.jpg PrivateTest_14225810.jpg PrivateTest_28973429.jpg PrivateTest_30521631.jpg PublicTest_36374107.jpg PublicTest_24449829.jpg

Watermark

PrivateTest_98865793.jpg PublicTest_97476336.jpg PublicTest_94855961.jpg PrivateTest_27068178.jpg PublicTest_87314736.jpg PublicTest_90965793.jpg PrivateTest_41450476.jpg

Occlusion

PrivateTest_93290935.jpg PrivateTest_4407805.jpg PrivateTest_95232250.jpg PrivateTest_37884040.jpg PrivateTest_19262460.jpg PrivateTest_21734160.jpg PrivateTest_39436840.jpg

Non-face, 
not visible, 
darkness 

PublicTest_5543497.jpg PrivateTest_53414692.jpg PrivateTest_26257014.jpg PublicTest_21832858.jpg PublicTest_69342366.jpg PrivateTest_94692871.jpg PrivateTest_23514058.jpg

Non-real 
(drawing) 

PrivateTest_48897228.jpg PublicTest_30164595.jpg PrivateTest_66836766.jpg PublicTest_454273.jpg PrivateTest_52362781.jpg PrivateTest_46864083.jpg PrivateTest_91967730.jpg

Text or 
symbols

PrivateTest_26784100.jpg PrivateTest_98799539.jpg PrivateTest_65872116.jpg PublicTest_97297069.jpg PrivateTest_1844176.jpg PrivateTest_82792706.jpg PublicTest_53795000.jpg

Sleeping

PrivateTest_91160429.jpg PrivateTest_26306320.jpg PublicTest_58756471.jpg PrivateTest_90198447.jpg PrivateTest_9952944.jpg PrivateTest_6060400.jpg PublicTest_17047937.jpg

Cropped

PrivateTest_62009733.jpg PrivateTest_11895083.jpg PrivateTest_24920316.jpg PrivateTest_46585222.jpg PrivateTest_71031944.jpg PrivateTest_37840020.jpg PublicTest_88046230.jpg

Figure 3: Some errors in the FER2013 dataset.
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(3) A CNN created from scratch or pretrained via the
transfer learning technique is trained on the FER
dataset. Both alternatives are shown in this work.
Training is an iterative optimization process in which
the model reduces an error as it learns to associate
images and category labels.

(4) Te training is monitored to save in a model fle the
parameters (weights and biases) corresponding to
the iteration (epoch) of the best validation accuracy.

(5) Te best model is used to perform the prediction of
all facial images in the dataset. Te results obtained
allow us to generate the confusion matrix.

Category
Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

06T004143.206_face.png 06T000631.294_face.png 06T184259.817_face.png 06T192033.234_face.png 06T002032.621_face.png 06T200641.686_face.png 06T202547.679_face.png

Watermark

06T004044.155_face.png 06T001238.324_face.png 05T231353.346_face.png 06T193927.857_face.png 06T002837.319_face.png 06T195146.513_face.png 06T202534.234_face.png

Occlusion

06T004023.186_face.png 05T231351.955_face.png 06T190401.859_face.png 06T193605.586_face.png 06T003037.275_face.png 06T201634.437_face.png 06T203019.480_face.png

Not visible, 
darkness 

2971847861_5c6fe61308_
b_face.png

06T000351.467_face.png 06T185544.051_face.png 4798260287_5893de9068_n
_face.png

2Q__ (4)_face.png 6256737200_68c25fd0da_n
_face.png

images (89)_face.png

Non-real 
(drawing), 
pixeled 

06T004132.251_face.png 06T001003.097_face.png 06T190315.037_face.png 06T194437.614_face.png 06T002001.793_face.png 06T005838.928_face.png 06T203454.403_face.png

Text or symbols

06T004023.186_face.png images – 2020-11-
06T000258.682_face.png

06T001959.683_face.png 06T192012.714_face.png 34437285633_d66f32cb2b_
n_face.png

06T200646.019_face.png 06T203736.516_face.png

Sleeping, closed 
eyes 

06T004430.698_face.png 06T000133.149_face.png 06T184434.657_face.png 06T193907.786_face.png 06T002345.157_face.png 06T002800.372_face.png 06T203729.263_face.png

Cropped, 
rotated 

06T003426.416_face.png 06T001331.896_face.png 06T185658.127_face.png 06T194439.621_face.png 06T002449.634_face.png 06T195158.652_face.png 06T202859.293_face.png

Figure 4: Some errors in the NHFI dataset.
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Category

Error Angry Disgust Fear Happy Neutral Sad Surprise

Mislabeled

1366.jpg 748.jpg 2939.jpg 95.jpg 5180.jpg 402.jpg 226.jpg

Occlusion

1880.jpg 1215.jpg 991.jpg 840.jpg 3639.jpg 4407.jpg 5292.jpg

Not visible, 
darkness

304.jpg 2992.jpg 364.jpg 4220.jpg 1146.jpg 4774.jpg 3783.jpg

Non-real 
(drawing), 
pixeled, 
retouched 

4214.jpg 2602.jpg 1115.jpg 5353.jpg 4984.jpg 1788.jpg 3556.jpg

Text or 
symbols 

4067.jpg 2244.jpg 4307.jpg 2754.jpg 2143.jpg 4004.jpg 5427.jpg

Sleeping, 
closed eyes 

2334.jpg 2029.jpg 2835.jpg 4147.jpg 659.jpg 641.jpg 2547.jpg

Cropped,
rotated

2509.jpg 4492.jpg 682.jpg 1281.jpg 800.jpg 445.jpg 2579.jpg

Repeated, 
distorsioned, 
miscolored 

536.jpg 2501.jpg 1387.jpg 3472.jpg 4718.jpg 1036.jpg 1695.jpg

2516.jpg 2215.jpg 933.jpg 3472.jpg 2201.jpg 4330.jpg 1874.jpg

Figure 5: Some errors in the AfectNet dataset.
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(6) Te confusion matrix is evaluated considering
a good dataset when the precision of each category
exceeds 90% or the numbers outside the main di-
agonal are single digits. Several successive trainings
will be necessary to meet these criteria.

(7) Te correct predictions on the main diagonal of the
confusion matrix allow us to select the corre-
sponding facial images, which will form a smaller but
much more reliable version of the dataset.

(8) Te new version of the dataset is automatically di-
vided into training and validation subsets, and
training is performed with the same CNN. Te
process is repeated until the conditions established
for a good dataset are reached.

(9) Te last saved model performs the prediction of
facial expression for all images in the original dataset.
Te result is the automatic reclassifcation generating
a new distribution with all facial images.

In summary, we propose a process of iterative trainings
to create successively more refned versions of the dataset.
Each version is smaller, only the correct predictions of facial
expression are included, but maintains a signifcant number
of images. At the last training, a much more reliable dataset
is obtained, as well as a model that produces a low number of
incorrect predictions (single-digit values for each class). Te
convolutional network is fxed in terms of its architecture
and hyperparameters along this process.

Te key idea is that feature extraction is a crucial part of
a FER system, and the expression classifcation accuracy will
improve with an efective extraction of facial features
[10, 11]. Te progressive refnement of the dataset produces
a smaller number of images in each training, but with less
variability of the gestures of the faces. Terefore, the model
can capture more distinctive features of each class gradually.
As a consequence, it is possible to increase intraclass sim-
ilarity and enlarge interclass diferences within a dataset,
thereby improving the accuracy of facial expression rec-
ognition in real-world scenarios.

4.2. Models. We leverage CNNs, current state-of-the-art
tools in Computer Vision, for facial expression prediction in
images. Te design of CNNs imitates the human visual
system, where a convolutional part would be the eyes of the
network whereas a classifer part would be the brain, which
decides the class of the object. CNNs can be created from
scratch or pretrained using the transfer learning technique.
In this work, we demonstrate the use of both alternatives,
describing the architecture implemented for each of the
datasets selected.

4.2.1. FER2013. We reutilized the CNN presented on the
Kaggle site (https://www.kaggle.com/bhallaakshit/facial-
expression-recognition), whose performance has shown
good results in the task of facial expression recognition on
this dataset (Figure 7).

Te 48× 48 pixel grayscale input image is passed
through 4 convolutional layers, each layer applies a number
of flters (kernels) to generate feature maps that include
hierarchically detected patterns, from the simplest to the
most complex. Here, 64, 128, 512, and 512 flters of size
3 × 3, 5× 5, 3 × 3, and 3× 3 pixels, respectively, are applied.
A ReLU activation function then turns the negative values
to zero and maintains the positive values. Next, a max-
pooling operation reduces the image dimensions by half,
but preserves the found features. Batch normalization
stabilizes the result of a convolution whereas dropout
enables the active participation of all neurons in the
learning process. Both are recommended regularization
techniques to avoid possible overftting. Te fatten oper-
ation converts the feature maps into a vector of values
suitable as input for the classifer, which is a traditional
fully connected neural network with an input layer that
receives the features in vector shape, two hidden layers of
256 and 512 neurons, and an output layer with a Softmax
activation function for 7 probability values, one for each
facial expression class.

4.2.2. NHFI. We tested the same CNN model with this
dataset, however, the results after the frst fltering indicated
an insignifcant increase in accuracy (approx. 1.5%) as
shown in Table 3.

Train/val split FER dataset

CNN training

Save best model

Prediction of
all facial images

Confusion ma-
trix evaluation

Higher
accuracy?

Select images from
correct predictions

New FER dataset

Reclassification New FER dataset

no

yes

Figure 6: Workfow to automatically reclassify a FER dataset.
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Terefore, we searched for other architectures to achieve
higher accuracy. A model using the transfer learning
technique showed the best performance for this dataset. In
the frst fltering, the accuracy improved from 0.5597 to
0.8367 (27.7%) as opposed to 1.5% with the CNN from
scratch.Tus, we were able to demonstrate that the proposed
method works for both cases (pretrained and from scratch
models). With transfer learning, the training phase will be
much faster, since we only train the classifer parameters
while keeping fxed the convolutional base that would have
already learned features that are useful for most computer
vision problems. Te structure is presented in Figure 8.

Te model is based on the EfficientNet, a very popular
CNN pretrained on the ImageNet dataset [28]. We used
version B0, whose convolutional base is kept for feature ex-
traction. Te advantage is that the image with the original size
of 224× 224 pixels is accepted as input. Te classifer receives
the features in the form of a fattened vector to decide the class
to which the input image belongs bymeans of a fully connected
neural network with two dense layers of 256 and 512 neurons,
towhich the ReLU activation function is applied, plus the batch
normalization and dropout regularization techniques to reduce
possible overftting. Te Softmax function in the last dense
layer outputs a distribution of probabilities corresponding to
each of the 7 categories of facial expression.

4.2.3. AfectNet. We performed several tries with diferent
architectures to determine the most suitable CNN for this
dataset. Te best result was obtained with the CNN used for
the FER2013 dataset (Figure 7). It is only necessary to change
the size and color mode of the AfectNet images from
224× 224 pixels in RGB to 48× 48 pixels in grayscale. Tis
conversion is performed automatically using the image
generator of Python.

5. Experiments

Te core of the experimentation is the run of trainings of
each CNN-based model on the respective dataset. Te main
characteristics of the computational platform used are
a processor Intel(R) Core(TM) i9-7920X, 2.90 GHz, RAM
64GB, GPU NVIDIA GeForce RTX208 with RAM 12GB,
and the operating system Linux Ubuntu 18.04.5 LTS. Te
CNN architectures described in the previous section are
implemented using Python version 2.7.17, supported by
standard libraries such as OS, NumPy, and Matplotlib, to
manage directories and fles, numeric arrays, and visuali-
zation, respectively. For deep learning work, we used li-
braries such as TensorFlow, Keras, and scikit-learn, as well
as the Image Data Generator utility for image
preprocessing.

Te learning process is aimed at model learning to as-
sociate facial images and labels of expression categories. A
series of values known as hyperparameters must be explicitly
defned by the programmer before training. Tere are no
fxed rules for determining these values, they are the result of
several tests to fnd the most convenient ones. Table 4 shows
the hyperparameters for each model and dataset, which are
maintained for all experiments.

Conv1
BatchNorm
ReLU

Conv2
BatchNorm
ReLU

Input
48×48×1 MaxPool

Dropout

Conv3
BatchNorm
ReLU

MaxPool
Dropout

Conv4
BatchNorm
ReLU

MaxPool
Dropout

FC5
BatchNorm
ReLU
Dropout

FC6
BatchNorm
ReLU
Dropout

1×256
MaxPool
Dropout

3×3×5126×6×512
6×6×512

12×12×512

12×12×128
24×24×64

24×24×128
3×33×35×5

48×48×64
3×3 1×512

1×4608
Flatten

Softmax
1×7

Figure 7: Architecture of the CNN for the FER2013 dataset.

Table 3: Refnement of the NHFI dataset using the CNN from
scratch.

Training Images (train) Images (val) Total Accuracy
1 4278 1072 5350 0.5732
2 3211 616 3827 0.5885
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Our method of dataset refnement required fve suc-
cessive trainings for each dataset to meet the quality criteria.
At each training, the model is fed with the facial images from
the training subset of each dataset in batches of 64 images
(batch size). We used the Image Data Generator utility from
Keras to work with an image generator in batches, due to the
large number and size of the images would cause a storage
problem in memory. It also allows us to pass the images
directly to the training model from directories, as well as
automatically labeling the image with the respective cate-
gory, and performing data augmentation. For each batch,
predicted and actual labels are compared, obtaining a loss
and an accuracy using the categorical_cross entropy function.
Backpropagation and Adam (based on gradient descent)
algorithms are applied to update the model weights
according to the learning rate value. When all batches are
completed, one epoch is accomplished, i.e., one iteration of
all training images. Te accuracy and loss values are mea-
sured after each epoch using the images from validation the
subset. One hundred epochs have been run for FER2013,
whereas for NHFI and AfectNet ffty epochs were sufcient
to know the maximum level of accuracy since beyond this
value, the behavior of the model remains practically stable
and an improvement is not appreciable. Te callback utility
from Keras is leveraged to perform certain actions during
training such as setting a checkpoint and reducing the
learning rate. Te model will only be saved to disk if the
validation accuracy in the current epoch is greater than what

it was in the last epoch. On the other hand, the learning rate
tells us howmuch the weights will be updated each time, and
is often between 0 and 1. It will decrease from an initial value
to a minimum if the loss does not improve after a certain
number of epochs, which usually results in better training.

6. Results

Te results of the experimentation are presented graphically
by means of learning curves and confusion matrices,
whereas the numerical metric used for comparison is the
validation accuracy. Tese tools allow us to evaluate the
performance of the model and the improvement of the
dataset. During the training and validation of each model,
loss and accuracy values have been collected, respectively.
Tis generates the so-called learning curves, where the
horizontal axis represents the number of epochs and the
vertical axis represents either the accuracy or the error. Te
confusion matrix, also known as the error matrix, is a table
to visualize the model performance as presents information
about actual and predicted classifcations carried out by
a classifer model. Rows represent the instances of actual
classes, whereas columns represent the instances the clas-
sifer predicts [29]. From this matrix, several performance
metrics can be obtained, however, we focus on accuracy,
which compares the number of correct predictions (on
diagonal) divided by the total number. Te results obtained
for each one of the analyzed datasets are presented next.

Input
(224×224) Convolutional

base

EfficientNet B0
(pre-trained model)

Flatten
ReLU

Batch Normalization
Dropout (0.25)

Dense (256)

ReLU
Batch Normalization

Dropout (0.25)

Softmax
Angry
Disgust
Fear
Happy
Neutral
Sad
Surprise

Dense (7)

Output

Dense (512)

Figure 8: Architecture of the CNN with transfer learning for the NHFI dataset.

Table 4: Training hyperparameters set for our experiments.

Hyperparameter FER2013 NHFI AfectNet
Input shape 48, 48, 1 224, 224, 3 48, 48, 3
Train-val (%) 80–20 80–20 80–20
Batch size 64 64 64
Learning rate 0.01 to 0.00001 0.01 to 0.00001 0.001 to 0.00001
Optimizer Adam Adam Adam
Loss function categorical_cross entropy categorical_cross entropy categorical_cross entropy
Metrics Loss and accuracy Loss and accuracy Loss and accuracy
Number of classes 7 7 7
Epochs 100 50 50
Data augmentation Yes No No
Number of training 5 5 5
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6.1. FER2013. Te learning curves and confusion matrix for
each of the fve trainings required for the FER2013 dataset
are shown in Figure 9. For each training (including vali-
dation), the following are presented: the accuracy curves
(left), the loss curves (middle), and the corresponding
confusion matrix (right). As more trainings are performed,
the accuracy curves (training and validation) reach higher
values, whereas the loss curves are decreasing in height and
near to zero. In addition, the pairs of curves are very close to
each other in all the graphs. Terefore, the accuracy of the
model is higher, the error is lower, and there is no over-
ftting. Tis ideal behavior is the product of successive fl-
tering of the dataset. Te confusion matrices include the
predictions of facial expressions for all the images in the
dataset used for each training. Te progressive trainings
cause the desired efect in each matrix, that is, to reduce the
values outside the main diagonal and to increase the values
in this diagonal. Te model is each time more accurate
because wrong predictions are discarded in subsequent
training. As a result, more distinctive features of each class
are captured. In this way, the intraclass variability of the
facial images is decreased and the interclass variability is
increased.

Te process of the dataset refnement is summarized in
Table 5. Five trainings (four fltering operations) on the
FER2013 dataset were necessary to achieve the expected
performance metric (validation accuracy). Another training
was not necessary because there is no signifcant im-
provement in the accuracy. Te number of images gradually
decreases, but it is still considerable for each training. Te
model with the highest accuracy (97.7%) has captured the
most distinctive features of each facial expression category
and is convenient for reclassifying all images in the dataset.
Te predict() method is used to assign the category of every
facial image of the original dataset, generating a new dis-
tribution of the FER2013 dataset. Te comparison is pre-
sented in Table 6.

Figure 10 shows that the categories “disgust” and “sad”
have minimal variation, those of “angry,” “happy,” and
“surprise” vary moderately, and the most afected categories
are “fear” (decreasing) and “neutral” (increasing), indicating
that the original FER2013 dataset sufers from misclassifed
facial images, especially between these two categories.

Te decisive test of the efectiveness of our method is to
train the same CNN on the reclassifed FER2013 dataset.
Figure 11 shows that better learning curves are obtained, as
well as the confusion matrix indicates more correct and
fewer incorrect predictions. Higher accuracy and lower loss
are verifed in Table 7.

Te results confrm a more reliable dataset keeping the
number of images. Te reclassifed FER2013 enabled a very
signifcant increase in the validation accuracy of the model
by 20.45% and the loss is much lower (0.34). Te training
accuracy is acceptable (88.76%), very close to the validation
accuracy and the loss is lower. Tere is no overftting and no
signifcant diference between training loss and validation
loss. All the categories show improved accuracy, in partic-
ular, there is a remarkable improvement for “angry” (an
increase of 26%), “fear” (an increase of 38%), and “sad” (an

increase of 25%), i.e., those that showed the most over-
lapping or confusion. According to the experiments, only 40
epochs in each training would be sufcient, since the be-
havior remains practically stable beyond this number.

6.2.NHFI. Teaccuracy curves for theNHFI dataset (left side
in Figure 12) start quite separated from the other, evidencing
the presence of overftting, but as the trainings are performed,
the curves become closer and reach high accuracy, similar to
the loss curves, but in the opposite direction, becoming closer
and nearer to the horizontal axis. Te confusion matrices
show higher values on the main diagonal and lower values of
this diagonal, indicating the progressive improvement of the
model accuracy, as well as the quality of the dataset used in
each training. Despite successive discarding of incorrect
predictions, the number of images is signifcant with respect
to the original quantity. Table 8 shows the evolution of the
trainings on the NHFI dataset.

Te reclassifcation of the original NHFI dataset is
performed with the highest accuracy model (96.66%). A new
distribution of the dataset is generated, which is shown in
Table 9. In Figure 13, we can note that the “angry” and
“neutral” categories had the greatest changes, indicating that
these categories have the most intraclass variability in the
original dataset.

To demonstrate improved recognition, the same CNN is
trained on the reclassifed NHFI dataset and the result is
compared to the original dataset (Figure 14). Te overftting
was not reduced, but the accuracy is higher, both in the
training and validation subsets. Te loss is decreased for the
reclassifed NHFI dataset, as well as the values of-diagonal
from the confusion matrix.

Te performance results for the original and reclassifed
distributions of the NHFI dataset are presented in Table 10.
We have been able to signifcantly increase the accuracy in
both training and validation subsets, by 18.74 and 14.47%,
respectively. Except for the “angry” and “happy” categories,
the validation accuracy is highly increased in the rest of the
categories, particularly in the “sad” category from 49 to 85%.
Te methodology based on successive fltering with
a transfer learning model has been successfully applied on
a diferent dataset than FER2013.

6.3. AfectNet. Te version of the AfectNet dataset we se-
lected contains 287401 images with a large imbalance be-
tween the categories (Figure 1(c)). Training on this dataset
can lead to biases and erroneous assessment of model ac-
curacy. Terefore, we applied downsampling to balance all
categories by considering the one with the lowest number of
images. Te “disgust” category limited the other categories
with 4300 images, of which 3800 have been randomly se-
lected for training by using the split-folders (https://pypi.
org/project/split-folders/) library, whereas 500 images by
default come with the dataset for validation. Te balanced
version is shown in Table 11.

Te refnement process is performed on this balanced
version of the AfectNet dataset. Te accuracy curves for the
training and validation subsets (Figure 15) start with a small
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Figure 9: Learning curves and confusion matrices for fve successive trainings of the FER2013 dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.
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separation, which decreases as successive trainings are
performed, even the validation curve fnishes outperforming
the training curve in accuracy. Te same behavior, but in the
opposite direction, is presented for the loss curves. Te
values on the main diagonal of the confusionmatrix increase
with each training and decrease of this diagonal, indicating
a higher accuracy of the model due to a better dataset. Te
evolution of the successive training is summarized in
Table 12.

Te model in the last training reaches a higher validation
accuracy (95.9%), which allows us to reclassify the balanced
dataset. A new distribution of the AfectNet of 30100 images
is generated, whose number of images per category is
presented in Table 13.

After the reclassifcation of the balanced dataset, the new
distribution is imbalanced (Figure 16). Te categories of
happy and fear have increased signifcantly, whereas the
category of anger has increased slightly. In the remaining
cases, there is a decrease, mainly in the categories of disgust
and surprise.

Next, the CNN-based model is trained on the new
version of the AfectNet dataset to verify that our method
works. Figure 17 presents the learning curves of both
versions of the dataset, where the new AfectNet
(Figure 17(b)) allows to achieve better performance with
higher accuracy.

Tere is a notable improvement in accuracy compared to
the frst training of the balanced dataset (Table 14). Due to
downsampling, the split ratio is 88 and 12%, for the training
and validation subsets, respectively. For the new version of
the dataset, the proportion is 80 and 20% and having more
validation images, the accuracy percentage is almost du-
plicated (39.66%).

We successfully applied our method to a smaller and
more balanced version of the AfectNet dataset. Te purpose
is to improve the original AfectNet dataset, which is larger
and imbalanced. To this end, the last trained model is used to
reclassify the facial images in the full version of AfectNet.
Te new distribution is presented in Table 15.

Te bar plot in Figure 18 shows that the shape of the
distribution of the new reclassifed AfectNet is similar,
however, there is a clear increase of images in the categories
of fear, disgust, and surprise. Tis suggests that many facial
images of these categories were misclassifed as happy or
neutral.

Te following demonstrates the improved perfor-
mance in facial expression recognition. Te reclassifed
version of the AfectNet dataset is used to train the same
CNN-based model, resulting in the learning curves and
confusion matrix displayed in Figure 19. Te accuracy
curves of the training and validation subsets are increasing
from the frst epoch and reach a very high level, close to
90%. Also, both curves stay very near to each other. Te
error curves decrease together to levels near to zero, which
is desirable. By using the validation results as suggested by
the creators of the dataset, we calculated the accuracy with
the evaluate() method and generated the normalized
confusion matrix. Te accuracy on the reclassifed vali-
dation set is 89.17%, and for each facial expression, cat-
egory fuctuates between 86% and 96%, which
demonstrates a high rate of recognition and no bias for
any of the categories as opposed to the original dataset.
Tis behavior confrms better FER performance on the
reclassifed AfectNet dataset.

Finally, in Table 16, the results of the proposed method
are compared with the state-of-the-art performance on the
same datasets used in the present work. Tese are single
network models that did not use extra images to the existing
ones in the datasets. In all cases, our reclassifed versions of
the datasets allow us the highest accuracy values for both the

Table 5: Summary of experimental results for the FER2013 dataset.

Training Images (train) Images (val) Total Accuracy
1 28708 7178 35886 0.6702
2 25415 4810 30225 0.9089
3 24001 4379 28380 0.9582
4 23654 4179 27833 0.9761
5 23488 4079 27567 0.9770
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Figure 10: Graphical comparison of both distributions.

Table 6: Distribution of the original and reclassifed FER2013 dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
FER2013 (original) 4953 547 5121 8988 6198 6077 4002 35886
FER2013 (reclassifed) 4817 532 3842 9202 7074 6090 4329 35886
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Figure 11: Comparison between the original and reclassifed FER2013 dataset. (a) FER2013 dataset (original) and (b) FER2013 dataset
(reclassifed).

Table 7: Comparison of the training results for the original and reclassifed FER2013 datasets.

Dataset Images (training) Images (validation) Total Accuracy
FER2013 (original) 28708 7178 35886 0.6626
FER2013 (reclassifed) 28708 7178 35886 0.8671
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Figure 12: Continued.
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model from scratch and transfer learning. For the novel
NHFI dataset, there is no formal report on classifcation
accuracy, so we set as a baseline the accuracy achieved by the
transfer learning model on the original dataset and contrast

it with the reclassifed version.Tese results demonstrate the
efectiveness of our data-centric method, as it improves the
performance of the FER models even achieving state-of-
the-art accuracy values.
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Figure 12: Learning curves and confusion matrices for fve successive trainings of the NHFI dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.

Table 8: Summary of experimental results for the NHFI dataset.

Training Images (train) Images (val) Total Accuracy
1 4278 1072 5350 0.5597
2 3284 600 3884 0.8367
3 2936 502 3438 0.9382
4 2786 471 3257 0.9533
5 2713 449 3162 0.9666

Table 9: Distribution of the original and reclassifed NHFI dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
NHFI (original) 890 439 570 1406 524 746 775 5350
NHFI (reclassifed) 336 514 383 1585 1042 962 528 5350
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Figure 13: Graphical comparison of both distributions.
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Figure 14: Comparison between the original and reclassifed NHFI dataset. (a) NHFI dataset (original) and (b) NHFI dataset (reclassifed).

Table 10: Comparison between the original and reclassifed NHFI dataset.

Dataset Images (train) Images (val) Total Train_acc Val_acc
NHFI (original) 4278 1072 5350 0.7676 0.5597
NHFI (reclassifed) 4278 1072 5350 0.9550 0.7044

Table 11: Balanced distribution of the AfectNet dataset.

Subset Angry Disgust Fear Happy Neutral Sad Surprise Total
Train set 3800 3800 3800 3800 3800 3800 3800 26600
Val set 500 500 500 500 500 500 500 3500
Total 4300 4300 4300 4300 4300 4300 4300 30100
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Figure 15: Learning curves and confusion matrices for fve successive trainings of the AfectNet dataset. (a) Training #1, (b) training #2, (c)
training #3, (d) training #4, and (e) training #5.
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Table 12: Summary of results for the balanced AfectNet dataset.

Training Images (train) Images (val) Total Accuracy
1 26600 3500 30100 0.4686
2 17587 4393 21980 0.7612
3 16268 4064 20332 0.9016
4 15843 3956 19799 0.9401
5 15617 3902 19519 0.9590

Table 13: Distribution of the balanced and reclassifed AfectNet dataset.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
AfectNet (balanced) 4300 4300 4300 4300 4300 4300 4300 30100
AfectNet (reclassifed) 4394 3893 5004 4594 4224 4071 3920 30100
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Figure 16: Graphical comparison of both distributions.
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Figure 17: Comparison between the balanced and reclassifed AfectNet dataset. (a) AfectNet dataset (balanced), (b) AfectNet dataset
(reclassifed).
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7. Conclusions and Future Work

Facial expression recognition in the wild is a challenging
problem for computer systems. Promising results have been
achieved with deep learning methods, where the model and the
data share responsibility. Te vast majority of the research is

oriented towards designing better models, which is not suf-
cient when the data sufers from drawbacks. One of the most
infuential problems in FER datasets is misclassifcation. In this
work, we presented and implemented a method to reclassify all
the facial images of a dataset by generating a new distribution
that increases the accuracy of the FER models. Te proposed

Table 14: Comparison of the training results for the balanced and reclassifed AfectNet datasets.

Dataset Images (train) Images (val) Total Train_acc Val_acc
AfectNet (balanced) 26600 3500 30100 0.6763 0.4686
AfectNet (reclassifed) 24084 6016 30100 0.9013 0.8652

Table 15: Distribution of the original and new AfectNet datasets.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise Total
AfectNet (original) 25382 4303 6878 134915 75374 25959 14590 287401
AfectNet (new) 30827 17475 19145 114275 52760 29160 23759 287401
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Figure 18: Graphical comparison of both distributions.
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Figure 19: Te learning curves and confusion matrix for the reclassifed AfectNet dataset.

Table 16: Comparison of state-of-the-art performance on the FER datasets considered.

Dataset Work Model Accuracy (%)
FER2013 [9] VGG fne tuning 73.28
FER2013 (reclassifed) Ours CNN from scratch 86.71
NHFI Ours EfcientNet-B0 transfer learning 55.97
NHFI (reclassifed) Ours EfcientNet-B0 transfer learning 70.44
AfectNet [30] CNN-attention mechanism 65.69
AfectNet (reclassifed) Ours CNN from scratch 89.17
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method keeps the convolutional network fxed and iteratively
improves the data over successive trainings. After each training,
the dataset is evaluated with the confusionmatrix, and the facial
images corresponding to the correct predictions (on-diagonal)
are selected to form the subsequent training data. Tis process
gradually generates amore accuratemodel andmore distinctive
features for each category of facial expression. Te model from
the last training is used to reclassify all the images creating a new
distribution of the dataset. We experimented with popular FER
datasets and CNNs created from scratch and Transfer Learning.
Te increase in validation accuracy by 20.45%, 14.47%, and
39.66%, for FER2013, NHFI, and AfectNet, respectively, cor-
roborates the efcacy of the proposed method. Te results
suggest that the quality and size of the dataset determine the
most appropriate type of model. NHFI is a small and better-
annotated dataset, so a pretrained model is convenient, unlike
larger and lower quality datasets, which need a model from
scratch, with longer training and more parameters. Te
reclassifed versions of these datasetsmaintain the same number
of images as the original dataset, but with less overlapping
between categories, and less variability within the same category
of facial expression.Tis allows us to achieve the state-of-the-art
performance of single network FER models with 86.71%,
70.44%, and 89.17%, for FER2013, NHFI, and AfectNet, re-
spectively.Te recognition rates improvedmost signifcantly for
the largest and lowest classifed datasets, i.e., the proposed
method works best for datasets with a high level of misclassifed
images. Te refnement process of the dataset would enable
several models to work well, not only diverse architectures of
CNN, but others such as the transformer. Our proposal, beyond
the application to the FER domain, is also useful for a variety of
computer vision problems when the data are images. Fur-
thermore, it can serve as a debugging tool in the automatic
collection of image datasets. We maintained the size of the
dataset, considering that quantity is important. However, there
are irrelevant images that should be removed and the imbalance
could be addressed with data augmentation or GANs. We
believe that these contributions would improve the quality of
the dataset and the accuracy of the models. Terefore,
a methodology for automatic learning should consider the
quality of the dataset as a prerequisite to the search for better
network architectures and model confgurations.
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