1,382 research outputs found

    Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks

    Full text link
    The propagation of sound in a shallow water environment is characterized by boundary reflections from the sea surface and sea floor. These reflections result in multiple (indirect) sound propagation paths, which can degrade the performance of passive sound source localization methods. This paper proposes the use of convolutional neural networks (CNNs) for the localization of sources of broadband acoustic radiated noise (such as motor vessels) in shallow water multipath environments. It is shown that CNNs operating on cepstrogram and generalized cross-correlogram inputs are able to more reliably estimate the instantaneous range and bearing of transiting motor vessels when the source localization performance of conventional passive ranging methods is degraded. The ensuing improvement in source localization performance is demonstrated using real data collected during an at-sea experiment.Comment: 5 pages, 5 figures, Final draft of paper submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15-20 April 2018 in Calgary, Alberta, Canada. arXiv admin note: text overlap with arXiv:1612.0350

    A Deep Learning Framework in Selected Remote Sensing Applications

    Get PDF
    The main research topic is designing and implementing a deep learning framework applied to remote sensing. Remote sensing techniques and applications play a crucial role in observing the Earth evolution, especially nowadays, where the effects of climate change on our life is more and more evident. A considerable amount of data are daily acquired all over the Earth. Effective exploitation of this information requires the robustness, velocity and accuracy of deep learning. This emerging need inspired the choice of this topic. The conducted studies mainly focus on two European Space Agency (ESA) missions: Sentinel 1 and Sentinel 2. Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of information for the entire remote sensing community, thanks to their unprecedented combination of spatial, spectral and temporal resolution, as well as their open access policy. The increasing interest gained by these satellites in the research laboratory and applicative scenarios pushed us to utilize them in the considered framework. The combined use of Sentinel 1 and Sentinel 2 is crucial and very prominent in different contexts and different kinds of monitoring when the growing (or changing) dynamics are very rapid. Starting from this general framework, two specific research activities were identified and investigated, leading to the results presented in this dissertation. Both these studies can be placed in the context of data fusion. The first activity deals with a super-resolution framework to improve Sentinel 2 bands supplied at 20 meters up to 10 meters. Increasing the spatial resolution of these bands is of great interest in many remote sensing applications, particularly in monitoring vegetation, rivers, forests, and so on. The second topic of the deep learning framework has been applied to the multispectral Normalized Difference Vegetation Index (NDVI) extraction, and the semantic segmentation obtained fusing Sentinel 1 and S2 data. The S1 SAR data is of great importance for the quantity of information extracted in the context of monitoring wetlands, rivers and forests, and many other contexts. In both cases, the problem was addressed with deep learning techniques, and in both cases, very lean architectures were used, demonstrating that even without the availability of computing power, it is possible to obtain high-level results. The core of this framework is a Convolutional Neural Network (CNN). {CNNs have been successfully applied to many image processing problems, like super-resolution, pansharpening, classification, and others, because of several advantages such as (i) the capability to approximate complex non-linear functions, (ii) the ease of training that allows to avoid time-consuming handcraft filter design, (iii) the parallel computational architecture. Even if a large amount of "labelled" data is required for training, the CNN performances pushed me to this architectural choice.} In our S1 and S2 integration task, we have faced and overcome the problem of manually labelled data with an approach based on integrating these two different sensors. Therefore, apart from the investigation in Sentinel-1 and Sentinel-2 integration, the main contribution in both cases of these works is, in particular, the possibility of designing a CNN-based solution that can be distinguished by its lightness from a computational point of view and consequent substantial saving of time compared to more complex deep learning state-of-the-art solutions

    Land cover and forest segmentation using deep neural networks

    Get PDF
    Tiivistelmä. Land Use and Land Cover (LULC) information is important for a variety of applications notably ones related to forestry. The segmentation of remotely sensed images has attracted various research subjects. However this is no easy task, with various challenges to face including the complexity of satellite images, the difficulty to get hold of them, and lack of ready datasets. It has become clear that trying to classify on multiple classes requires more elaborate methods such as Deep Learning (DL). Deep Neural Networks (DNNs) have a promising potential to be a good candidate for the task. However DNNs require a huge amount of data to train including the Ground Truth (GT) data. In this thesis a DL pixel-based approach backed by the state of the art semantic segmentation methods is followed to tackle the problem of LULC mapping. The DNN used is based on DeepLabv3 network with an encoder-decoder architecture. To tackle the issue of lack of data the Sentinel-2 satellite whose data is provided for free by Copernicus was used with the GT mapping from Corine Land Cover (CLC) provided by Copernicus and modified by Tyke to a higher resolution. From the multispectral images in Sentinel-2 Red Green Blue (RGB), and Near Infra Red (NIR) channels were extracted, the 4th channel being extremely useful in the detection of vegetation. This ended up achieving quite good accuracy on a DNN based on ResNet-50 which was calculated using the Mean Intersection over Union (MIoU) metric reaching 0.53MIoU. It was possible to use this data to transfer the learning to a data from Pleiades-1 satellite with much better resolution, Very High Resolution (VHR) in fact. The results were excellent especially when compared on training right away on that data reaching an accuracy of 0.98 and 0.85MIoU

    ENHANCED MULTI-LABEL CLASSIFICATION OF HETEROGENEOUS UNDERWATER SOUNDSCAPES BY CONVOLUTIONAL NEURAL NETWORKS USING BAYESIAN DEEP LEARNING

    Get PDF
    The classification of underwater soundscapes is a challenging task for humans as well as machine learning systems. This is largely due to the heterogenous nature of these soundscapes, especially in coastal zones close to human settlements, where multiple ships and other man-made and natural sound sources are often present simultaneously. This thesis proposes a Bayesian deep learning approach that can accurately classify multiple ships simultaneously present in the vicinity of a sensor (multi-label classification) while also providing an uncertainty measurement for the classification. This is achieved by assuming a Bayesian formulation of standard convolutional neural network architectures to not only assign multi-labels per inference but also to provide per inference uncertainty. The best performing Bayesian architecture on the multi-label task achieves a weighted F1 score of 0.84, where each prediction is accompanied by a measurement of uncertainty that is used to further enhance the understanding of model predictions. Ships, submarines, and unmanned underwater vehicles can use this classification system to aid in the identification, tracking, and/or targeting of contacts to help maintain safety of navigation, to aid in the real-time interdiction of illicit activities (such as drug or human smuggling and covert vessel transits), and to provide port security monitoring while uncertainty filters can help sonar operators prioritize contacts for further analysis.Lieutenant Commander, United States NavyApproved for public release; distribution is unlimited

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Tracking the Fine Scale Movements of Fish using Autonomous Maritime Robotics: A Systematic State of the Art Review

    Get PDF
    This paper provides a systematic state of the art review on tracking the fine scale movements of fish with the use of autonomous maritime robotics. Knowledge of migration patterns and the localization of specific species of fish at a given time is vital to many aspects of conservation. This paper reviews these technologies and provides insight into what systems are being used and why. The review results show that a larger amount of complex systems that use a deep learning techniques are used over more simplistic approaches to the design. Most results found in the study involve Autonomous Underwater Vehicles, which generally require the most complex array of sensors. The results also provide insight into future research such as methods involving swarm intelligence, which has seen an increase in use in recent years. This synthesis of current and future research will be helpful to research teams working to create an autonomous vehicle with intentions to track, navigate or survey
    • …
    corecore