34 research outputs found

    A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture

    Full text link
    Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.Comment: 25 pages, 2 figures and lots of large tables. Supplementary materials section included here in main pd

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry

    Get PDF
    Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This path is already being taken by the recent and fast-developing research in computational fields, however, some issues related to computationally expensive processes in the integration of multi-source sensing data remain. Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields concentrate most applications and are widely studied. Many challenges are currently being overcome by recent methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are presented.European Commission 1381202-GEU PYC20-RE-005-UJA IEG-2021Junta de Andalucia 1381202-GEU PYC20-RE-005-UJA IEG-2021Instituto de Estudios GiennesesEuropean CommissionSpanish Government UIDB/04033/2020DATI-Digital Agriculture TechnologiesPortuguese Foundation for Science and Technology 1381202-GEU FPU19/0010

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Transfer Learning of Deep Learning Models for Cloud Masking in Optical Satellite Images

    Get PDF
    Los satélites de observación de la Tierra proporcionan una oportunidad sin precedentes para monitorizar nuestro planeta a alta resolución tanto espacial como temporal. Sin embargo, para procesar toda esta cantidad creciente de datos, necesitamos desarrollar modelos rápidos y precisos adaptados a las características específicas de los datos de cada sensor. Para los sensores ópticos, detectar las nubes en la imagen es un primer paso inevitable en la mayoría de aplicaciones tanto terrestres como oceánicas. Aunque detectar nubes brillantes y opacas es relativamente fácil, identificar automáticamente nubes delgadas semitransparentes o diferenciar nubes de nieve o superficies brillantes es mucho más difícil. Además, en el escenario actual, donde el número de sensores en el espacio crece constantemente, desarrollar metodologías para transferir modelos que funcionen con datos de nuevos satélites es una necesidad urgente. Por tanto, los objetivos de esta tesis son desarrollar modelos precisos de detección de nubes que exploten las diferentes propiedades de las imágenes de satélite y desarrollar metodologías para transferir esos modelos a otros sensores. La tesis está basada en cuatro trabajos los cuales proponen soluciones a estos problemas. En la primera contribución, "Multitemporal cloud masking in the Google Earth Engine", implementamos un modelo de detección de nubes multitemporal que se ejecuta en la plataforma Google Earth Engine y que supera los modelos operativos de Landsat-8. La segunda contribución, "Transferring deep learning models for Cloud Detection between Landsat-8 and Proba-V", es un caso de estudio de transferencia de un algoritmo de detección de nubes basado en aprendizaje profundo de Landsat-8 (resolución 30m, 12 bandas espectrales y muy buena calidad radiométrica) a Proba-V, que tiene una resolución de 333m, solo cuatro bandas y una calidad radiométrica peor. El tercer artículo, "Cross sensor adversarial domain adaptation of Landsat-8 and Proba-V images for cloud detection", propone aprender una transformación de adaptación de dominios que haga que las imágenes de Proba-V se parezcan a las tomadas por Landsat-8 con el objetivo de transferir productos diseñados con datos de Landsat-8 a Proba-V. Finalmente, la cuarta contribución, "Towards global flood mapping onboard low cost satellites with machine learning", aborda simultáneamente la detección de inundaciones y nubes con un único modelo de aprendizaje profundo, implementado para que pueda ejecutarse a bordo de un CubeSat (ϕSat-I) con un chip acelerador de aplicaciones de inteligencia artificial. El modelo está entrenado en imágenes Sentinel-2 y demostramos cómo transferir este modelo a la cámara del ϕSat-I. Este modelo se lanzó en junio de 2021 a bordo de la misión WildRide de D-Orbit para probar su funcionamiento en el espacio.Remote sensing sensors onboard Earth observation satellites provide a great opportunity to monitor our planet at high spatial and temporal resolutions. Nevertheless, to process all this ever-growing amount of data, we need to develop fast and accurate models adapted to the specific characteristics of the data acquired by each sensor. For optical sensors, detecting the clouds present in the image is an unavoidable first step for most of the land and ocean applications. Although detecting bright and opaque clouds is relatively easy, automatically identifying thin semi-transparent clouds or distinguishing clouds from snow or bright surfaces is much more challenging. In addition, in the current scenario where the number of sensors in orbit is constantly growing, developing methodologies to transfer models across different satellite data is a pressing need. Henceforth, the overreaching goal of this Thesis is to develop accurate cloud detection models that exploit the different properties of the satellite images, and to develop methodologies to transfer those models across different sensors. The four contributions of this Thesis are stepping stones in that direction. In the first contribution,"Multitemporal cloud masking in the Google Earth Engine", we implemented a lightweight multitemporal cloud detection model that runs on the Google Earth Engine platform and which outperforms the operational models for Landsat-8. The second contribution, "Transferring deep learning models for Cloud Detection between Landsat-8 and Proba-V", is a case-study of transferring a deep learning based cloud detection algorithm from Landsat-8 (30m resolution, 12 spectral bands and very good radiometric quality) to Proba-V, which has a lower{333m resolution, only four bands and a less accurate radiometric quality. The third paper, "Cross sensor adversarial domain adaptation of Landsat-8 and Proba-V images for cloud detection", proposes a learning-based domain adaptation transformation of Proba-V images to resemble those taken by Landsat-8, with the objective of transferring products designed on Landsat-8 to Proba-V. Finally, the fourth contribution, "Towards global flood mapping onboard low cost satellites with machine learning", tackles simultaneously cloud and flood water detection with a single deep learning model, which was implemented to run onboard a CubeSat (ϕSat-I) with an AI accelerator chip. In this case, the model is trained on Sentinel-2 and transferred to theϕSat-I camera. This model was launched in June 2021 onboard the Wild Ride D-Orbit mission in order to test its performance in space

    Short-Term Forecasting of Satellite-Based Drought Indices Using Their Temporal Patterns and Numerical Model Output

    Get PDF
    Drought forecasting is essential for effectively managing drought-related damage and providing relevant drought information to decision-makers so they can make appropriate decisions in response to drought. Although there have been great efforts in drought-forecasting research, drought forecasting on a short-term scale (up to two weeks) is still difficult. In this research, drought-forecasting models on a short-term scale (8 days) were developed considering the temporal patterns of satellite-based drought indices and numerical model outputs through the synergistic use of convolutional long short term memory (ConvLSTM) and random forest (RF) approaches over a part of East Asia. Two widely used drought indices-Scaled Drought Condition Index (SDCI) and Standardized Precipitation Index (SPI)-were used as target variables. Through the combination of temporal patterns and the upcoming weather conditions (numerical model outputs), the overall performances of drought-forecasting models (ConvLSTM and RF combined) produced competitive results in terms of r (0.90 and 0.93 for validation SDCI and SPI, respectively) and nRMSE (0.11 and 0.08 for validation of SDCI and SPI, respectively). Furthermore, our short-term drought-forecasting model can be effective regardless of drought intensification or alleviation. The proposed drought-forecasting model can be operationally used, providing useful information on upcoming drought conditions with high resolution (0.05 degrees)

    A window to the past through modern urban environments: Developing a photogrammetric workflow for the orientation parameter estimation of historical images

    Get PDF
    The ongoing process of digitization in archives is providing access to ever-increasing historical image collections. In many of these repositories, images can typically be viewed in a list or gallery view. Due to the growing number of digitized objects, this type of visualization is becoming increasingly complex. Among other things, it is difficult to determine how many photographs show a particular object and spatial information can only be communicated via metadata. Within the scope of this thesis, research is conducted on the automated determination and provision of this spatial data. Enhanced visualization options make this information more eas- ily accessible to scientists as well as citizens. Different types of visualizations can be presented in three-dimensional (3D), Virtual Reality (VR) or Augmented Reality (AR) applications. However, applications of this type require the estimation of the photographer’s point of view. In the photogrammetric context, this is referred to as estimating the interior and exterior orientation parameters of the camera. For determination of orientation parameters for single images, there are the established methods of Direct Linear Transformation (DLT) or photogrammetric space resection. Using these methods requires the assignment of measured object points to their homologue image points. This is feasible for single images, but quickly becomes impractical due to the large amount of images available in archives. Thus, for larger image collections, usually the Structure-from-Motion (SfM) method is chosen, which allows the simultaneous estimation of the interior as well as the exterior orientation of the cameras. While this method yields good results especially for sequential, contemporary image data, its application to unsorted historical photographs poses a major challenge. In the context of this work, which is mainly limited to scenarios of urban terrestrial photographs, the reasons for failure of the SfM process are identified. In contrast to sequential image collections, pairs of images from different points in time or from varying viewpoints show huge differences in terms of scene representation such as deviations in the lighting situation, building state, or seasonal changes. Since homologue image points have to be found automatically in image pairs or image sequences in the feature matching procedure of SfM, these image differences pose the most complex problem. In order to test different feature matching methods, it is necessary to use a pre-oriented historical dataset. Since such a benchmark dataset did not exist yet, eight historical image triples (corresponding to 24 image pairs) are oriented in this work by manual selection of homologue image points. This dataset allows the evaluation of frequently new published methods in feature matching. The initial methods used, which are based on algorithmic procedures for feature matching (e.g., Scale Invariant Feature Transform (SIFT)), provide satisfactory results for only few of the image pairs in this dataset. By introducing methods that use neural networks for feature detection and feature description, homologue features can be reliably found for a large fraction of image pairs in the benchmark dataset. In addition to a successful feature matching strategy, determining camera orientation requires an initial estimate of the principal distance. Hence for historical images, the principal distance cannot be directly determined as the camera information is usually lost during the process of digitizing the analog original. A possible solution to this problem is to use three vanishing points that are automatically detected in the historical image and from which the principal distance can then be determined. The combination of principal distance estimation and robust feature matching is integrated into the SfM process and allows the determination of the interior and exterior camera orientation parameters of historical images. Based on these results, a workflow is designed that allows archives to be directly connected to 3D applications. A search query in archives is usually performed using keywords, which have to be assigned to the corresponding object as metadata. Therefore, a keyword search for a specific building also results in hits on drawings, paintings, events, interior or detailed views directly connected to this building. However, for the successful application of SfM in an urban context, primarily the photographic exterior view of the building is of interest. While the images for a single building can be sorted by hand, this process is too time-consuming for multiple buildings. Therefore, in collaboration with the Competence Center for Scalable Data Services and Solutions (ScaDS), an approach is developed to filter historical photographs by image similarities. This method reliably enables the search for content-similar views via the selection of one or more query images. By linking this content-based image retrieval with the SfM approach, automatic determination of camera parameters for a large number of historical photographs is possible. The developed method represents a significant improvement over commercial and open-source SfM standard solutions. The result of this work is a complete workflow from archive to application that automatically filters images and calculates the camera parameters. The expected accuracy of a few meters for the camera position is sufficient for the presented applications in this work, but offer further potential for improvement. A connection to archives, which will automatically exchange photographs and positions via interfaces, is currently under development. This makes it possible to retrieve interior and exterior orientation parameters directly from historical photography as metadata which opens up new fields of research.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.4 Initial parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.6 Dense reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.7 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Generation of a benchmark dataset using historical photographs for the evaluation of feature matching methods 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 Image differences based on digitization and image medium . . . . . . . 30 2.1.2 Image differences based on different cameras and acquisition technique 31 2.1.3 Object differences based on different dates of acquisition . . . . . . . . 31 2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 The image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Comparison of different feature detection and description methods . . . . . . 35 2.4.1 Oriented FAST and Rotated BRIEF (ORB) . . . . . . . . . . . . . . . 36 2.4.2 Maximally Stable Extremal Region Detector (MSER) . . . . . . . . . 36 2.4.3 Radiation-invariant Feature Transform (RIFT) . . . . . . . . . . . . . 36 2.4.4 Feature matching and outlier removal . . . . . . . . . . . . . . . . . . 36 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Photogrammetry as a link between image repository and 4D applications 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IX Contents 3.2 Multimodal access on repositories . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Conventional access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Virtual access using online collections . . . . . . . . . . . . . . . . . . 48 3.2.3 Virtual museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Workflow and access strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Browser access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.5 VR and AR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 An adapted Structure-from-Motion Workflow for the orientation of historical images 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Historical images for 3D reconstruction . . . . . . . . . . . . . . . . . 72 4.2.2 Algorithmic Feature Detection and Matching . . . . . . . . . . . . . . 73 4.2.3 Feature Detection and Matching using Convolutional Neural Networks 74 4.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Step 1: Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 Step 2.1: Feature Detection and Matching . . . . . . . . . . . . . . . . 78 4.4.3 Step 2.2: Vanishing Point Detection and Principal Distance Estimation 80 4.4.4 Step 3: Scene Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.5 Comparison with Three Other State-of-the-Art SfM Workflows . . . . 81 4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Fully automated pose estimation of historical images 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Feature Detection and Matching . . . . . . . . . . . . . . . . . . . . . 101 5.3 Data Preparation: Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Experiment and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2.1 Layer Extraction Approach (LEA) . . . . . . . . . . . . . . . 104 5.3.2.2 Attentive Deep Local Features (DELF) Approach . . . . . . 105 5.3.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Camera Pose Estimation of Historical Images Using Photogrammetric Methods 110 5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.1.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1.2 Retrieval Datasets . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4.2.1 Feature Detection and Matching . . . . . . . . . . . . . . . . 115 5.4.2.2 Geometric Verification and Camera Pose Estimation . . . . . 116 5.4.3 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Related publications 129 6.1 Photogrammetric analysis of historical image repositores for virtual reconstruction in the field of digital humanities . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Feature matching of historical images based on geometry of quadrilaterals . . 131 6.3 Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history . . . . . . . . . . 132 6.4 An automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Software and content design of a browser-based mobile 4D VR application to explore historical city architecture . . . . . . . . . . . . . . . . . . . . . . . . 134 7 Synthesis 135 7.1 Summary of the developed workflows . . . . . . . . . . . . . . . . . . . . . . . 135 7.1.1 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.2 Accuracy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.1.3 Transfer of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Developments and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8 Appendix 149 8.1 Setup for the feature matching evaluation . . . . . . . . . . . . . . . . . . . . 149 8.2 Transformation from COLMAP coordinate system to OpenGL . . . . . . . . 150 References 151 List of Figures 165 List of Tables 167 List of Abbreviations 169Der andauernde Prozess der Digitalisierung in Archiven ermöglicht den Zugriff auf immer größer werdende historische Bildbestände. In vielen Repositorien können die Bilder typischerweise in einer Listen- oder Gallerieansicht betrachtet werden. Aufgrund der steigenden Zahl an digitalisierten Objekten wird diese Art der Visualisierung zunehmend unübersichtlicher. Es kann u.a. nur noch schwierig bestimmt werden, wie viele Fotografien ein bestimmtes Motiv zeigen. Des Weiteren können räumliche Informationen bisher nur über Metadaten vermittelt werden. Im Rahmen der Arbeit wird an der automatisierten Ermittlung und Bereitstellung dieser räumlichen Daten geforscht. Erweiterte Visualisierungsmöglichkeiten machen diese Informationen Wissenschaftlern sowie Bürgern einfacher zugänglich. Diese Visualisierungen können u.a. in drei-dimensionalen (3D), Virtual Reality (VR) oder Augmented Reality (AR) Anwendungen präsentiert werden. Allerdings erfordern Anwendungen dieser Art die Schätzung des Standpunktes des Fotografen. Im photogrammetrischen Kontext spricht man dabei von der Schätzung der inneren und äußeren Orientierungsparameter der Kamera. Zur Bestimmung der Orientierungsparameter für Einzelbilder existieren die etablierten Verfahren der direkten linearen Transformation oder des photogrammetrischen Rückwärtsschnittes. Dazu muss eine Zuordnung von gemessenen Objektpunkten zu ihren homologen Bildpunkten erfolgen. Das ist für einzelne Bilder realisierbar, wird aber aufgrund der großen Menge an Bildern in Archiven schnell nicht mehr praktikabel. Für größere Bildverbände wird im photogrammetrischen Kontext somit üblicherweise das Verfahren Structure-from-Motion (SfM) gewählt, das die simultane Schätzung der inneren sowie der äußeren Orientierung der Kameras ermöglicht. Während diese Methode vor allem für sequenzielle, gegenwärtige Bildverbände gute Ergebnisse liefert, stellt die Anwendung auf unsortierten historischen Fotografien eine große Herausforderung dar. Im Rahmen der Arbeit, die sich größtenteils auf Szenarien stadträumlicher terrestrischer Fotografien beschränkt, werden zuerst die Gründe für das Scheitern des SfM Prozesses identifiziert. Im Gegensatz zu sequenziellen Bildverbänden zeigen Bildpaare aus unterschiedlichen zeitlichen Epochen oder von unterschiedlichen Standpunkten enorme Differenzen hinsichtlich der Szenendarstellung. Dies können u.a. Unterschiede in der Beleuchtungssituation, des Aufnahmezeitpunktes oder Schäden am originalen analogen Medium sein. Da für die Merkmalszuordnung in SfM automatisiert homologe Bildpunkte in Bildpaaren bzw. Bildsequenzen gefunden werden müssen, stellen diese Bilddifferenzen die größte Schwierigkeit dar. Um verschiedene Verfahren der Merkmalszuordnung testen zu können, ist es notwendig einen vororientierten historischen Datensatz zu verwenden. Da solch ein Benchmark-Datensatz noch nicht existierte, werden im Rahmen der Arbeit durch manuelle Selektion homologer Bildpunkte acht historische Bildtripel (entspricht 24 Bildpaaren) orientiert, die anschließend genutzt werden, um neu publizierte Verfahren bei der Merkmalszuordnung zu evaluieren. Die ersten verwendeten Methoden, die algorithmische Verfahren zur Merkmalszuordnung nutzen (z.B. Scale Invariant Feature Transform (SIFT)), liefern nur für wenige Bildpaare des Datensatzes zufriedenstellende Ergebnisse. Erst durch die Verwendung von Verfahren, die neuronale Netze zur Merkmalsdetektion und Merkmalsbeschreibung einsetzen, können für einen großen Teil der historischen Bilder des Benchmark-Datensatzes zuverlässig homologe Bildpunkte gefunden werden. Die Bestimmung der Kameraorientierung erfordert zusätzlich zur Merkmalszuordnung eine initiale Schätzung der Kamerakonstante, die jedoch im Zuge der Digitalisierung des analogen Bildes nicht mehr direkt zu ermitteln ist. Eine mögliche Lösung dieses Problems ist die Verwendung von drei Fluchtpunkten, die automatisiert im historischen Bild detektiert werden und aus denen dann die Kamerakonstante bestimmt werden kann. Die Kombination aus Schätzung der Kamerakonstante und robuster Merkmalszuordnung wird in den SfM Prozess integriert und erlaubt die Bestimmung der Kameraorientierung historischer Bilder. Auf Grundlage dieser Ergebnisse wird ein Arbeitsablauf konzipiert, der es ermöglicht, Archive mittels dieses photogrammetrischen Verfahrens direkt an 3D-Anwendungen anzubinden. Eine Suchanfrage in Archiven erfolgt üblicherweise über Schlagworte, die dann als Metadaten dem entsprechenden Objekt zugeordnet sein müssen. Eine Suche nach einem bestimmten Gebäude generiert deshalb u.a. Treffer zu Zeichnungen, Gemälden, Veranstaltungen, Innen- oder Detailansichten. Für die erfolgreiche Anwendung von SfM im stadträumlichen Kontext interessiert jedoch v.a. die fotografische Außenansicht des Gebäudes. Während die Bilder für ein einzelnes Gebäude von Hand sortiert werden können, ist dieser Prozess für mehrere Gebäude zu zeitaufwendig. Daher wird in Zusammenarbeit mit dem Competence Center for Scalable Data Services and Solutions (ScaDS) ein Ansatz entwickelt, um historische Fotografien über Bildähnlichkeiten zu filtern. Dieser ermöglicht zuverlässig über die Auswahl eines oder mehrerer Suchbilder die Suche nach inhaltsähnlichen Ansichten. Durch die Verknüpfung der inhaltsbasierten Suche mit dem SfM Ansatz ist es möglich, automatisiert für eine große Anzahl historischer Fotografien die Kameraparameter zu bestimmen. Das entwickelte Verfahren stellt eine deutliche Verbesserung im Vergleich zu kommerziellen und open-source SfM Standardlösungen dar. Das Ergebnis dieser Arbeit ist ein kompletter Arbeitsablauf vom Archiv bis zur Applikation, der automatisch Bilder filtert und diese orientiert. Die zu erwartende Genauigkeit von wenigen Metern für die Kameraposition sind ausreichend für die dargestellten Anwendungen in dieser Arbeit, bieten aber weiteres Verbesserungspotential. Eine Anbindung an Archive, die über Schnittstellen automatisch Fotografien und Positionen austauschen soll, befindet sich bereits in der Entwicklung. Dadurch ist es möglich, innere und äußere Orientierungsparameter direkt von der historischen Fotografie als Metadaten abzurufen, was neue Forschungsfelder eröffnet.:1 Introduction 1 1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Historical image data and archives . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Structure-from-Motion for historical images . . . . . . . . . . . . . . . . . . . 4 1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Selection of images and preprocessing . . . . . . . . . . . . . . . . . . 5 1.3.3 Feature detection, feature description and feature matching . . . . . . 6 1.3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3.4 Geometric verification and robust estimators . . . . . . . . . 13 1.3.3.5 Joint methods . . . . . . . . . . . . . . . .

    La Détection des changements tridimensionnels à l'aide de nuages de points : Une revue

    Full text link
    peer reviewedChange detection is an important step for the characterization of object dynamics at the earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at different granularities in a scene subject to significant noise and occlusion. To better understand new research perspectives in this field, a deep review of recent advances in 3D change detection methods is needed. To this end, we present a comprehensive review of the state of the art of 3D change detection approaches, mainly those using 3D point clouds. We review standard methods and recent advances in the use of machine and deep learning for change detection. In addition, the paper presents a summary of 3D point cloud benchmark datasets from different sensors (aerial, mobile, and static), together with associated information. We also investigate representative evaluation metrics for this task. To finish, we present open questions and research perspectives. By reviewing the relevant papers in the field, we highlight the potential of bi- and multi-temporal point clouds for better monitoring analysis for various applications.11. Sustainable cities and communitie

    An uncertainty prediction approach for active learning - application to earth observation

    Get PDF
    Mapping land cover and land usage dynamics are crucial in remote sensing since farmers are encouraged to either intensify or extend crop use due to the ongoing rise in the world’s population. A major issue in this area is interpreting and classifying a scene captured in high-resolution satellite imagery. Several methods have been put forth, including neural networks which generate data-dependent models (i.e. model is biased toward data) and static rule-based approaches with thresholds which are limited in terms of diversity(i.e. model lacks diversity in terms of rules). However, the problem of having a machine learning model that, given a large amount of training data, can classify multiple classes over different geographic Sentinel-2 imagery that out scales existing approaches remains open. On the other hand, supervised machine learning has evolved into an essential part of many areas due to the increasing number of labeled datasets. Examples include creating classifiers for applications that recognize images and voices, anticipate traffic, propose products, act as a virtual personal assistant and detect online fraud, among many more. Since these classifiers are highly dependent from the training datasets, without human interaction or accurate labels, the performance of these generated classifiers with unseen observations is uncertain. Thus, researchers attempted to evaluate a number of independent models using a statistical distance. However, the problem of, given a train-test split and classifiers modeled over the train set, identifying a prediction error using the relation between train and test sets remains open. Moreover, while some training data is essential for supervised machine learning, what happens if there is insufficient labeled data? After all, assigning labels to unlabeled datasets is a time-consuming process that may need significant expert human involvement. When there aren’t enough expert manual labels accessible for the vast amount of openly available data, active learning becomes crucial. However, given a large amount of training and unlabeled datasets, having an active learning model that can reduce the training cost of the classifier and at the same time assist in labeling new data points remains an open problem. From the experimental approaches and findings, the main research contributions, which concentrate on the issue of optical satellite image scene classification include: building labeled Sentinel-2 datasets with surface reflectance values; proposal of machine learning models for pixel-based image scene classification; proposal of a statistical distance based Evidence Function Model (EFM) to detect ML models misclassification; and proposal of a generalised sampling approach for active learning that, together with the EFM enables a way of determining the most informative examples. Firstly, using a manually annotated Sentinel-2 dataset, Machine Learning (ML) models for scene classification were developed and their performance was compared to Sen2Cor the reference package from the European Space Agency – a micro-F1 value of 84% was attained by the ML model, which is a significant improvement over the corresponding Sen2Cor performance of 59%. Secondly, to quantify the misclassification of the ML models, the Mahalanobis distance-based EFM was devised. This model achieved, for the labeled Sentinel-2 dataset, a micro-F1 of 67.89% for misclassification detection. Lastly, EFM was engineered as a sampling strategy for active learning leading to an approach that attains the same level of accuracy with only 0.02% of the total training samples when compared to a classifier trained with the full training set. With the help of the above-mentioned research contributions, we were able to provide an open-source Sentinel-2 image scene classification package which consists of ready-touse Python scripts and a ML model that classifies Sentinel-2 L1C images generating a 20m-resolution RGB image with the six studied classes (Cloud, Cirrus, Shadow, Snow, Water, and Other) giving academics a straightforward method for rapidly and effectively classifying Sentinel-2 scene images. Additionally, an active learning approach that uses, as sampling strategy, the observed prediction uncertainty given by EFM, will allow labeling only the most informative points to be used as input to build classifiers; Sumário: Uma Abordagem de Previsão de Incerteza para Aprendizagem Ativa – Aplicação à Observação da Terra O mapeamento da cobertura do solo e a dinâmica da utilização do solo são cruciais na deteção remota uma vez que os agricultores são incentivados a intensificar ou estender as culturas devido ao aumento contínuo da população mundial. Uma questão importante nesta área é interpretar e classificar cenas capturadas em imagens de satélite de alta resolução. Várias aproximações têm sido propostas incluindo a utilização de redes neuronais que produzem modelos dependentes dos dados (ou seja, o modelo é tendencioso em relação aos dados) e aproximações baseadas em regras que apresentam restrições de diversidade (ou seja, o modelo carece de diversidade em termos de regras). No entanto, a criação de um modelo de aprendizagem automática que, dada uma uma grande quantidade de dados de treino, é capaz de classificar, com desempenho superior, as imagens do Sentinel-2 em diferentes áreas geográficas permanece um problema em aberto. Por outro lado, têm sido utilizadas técnicas de aprendizagem supervisionada na resolução de problemas nas mais diversas áreas de devido à proliferação de conjuntos de dados etiquetados. Exemplos disto incluem classificadores para aplicações que reconhecem imagem e voz, antecipam tráfego, propõem produtos, atuam como assistentes pessoais virtuais e detetam fraudes online, entre muitos outros. Uma vez que estes classificadores são fortemente dependente do conjunto de dados de treino, sem interação humana ou etiquetas precisas, o seu desempenho sobre novos dados é incerta. Neste sentido existem propostas para avaliar modelos independentes usando uma distância estatística. No entanto, o problema de, dada uma divisão de treino-teste e um classificador, identificar o erro de previsão usando a relação entre aqueles conjuntos, permanece aberto. Mais ainda, embora alguns dados de treino sejam essenciais para a aprendizagem supervisionada, o que acontece quando a quantidade de dados etiquetados é insuficiente? Afinal, atribuir etiquetas é um processo demorado e que exige perícia, o que se traduz num envolvimento humano significativo. Quando a quantidade de dados etiquetados manualmente por peritos é insuficiente a aprendizagem ativa torna-se crucial. No entanto, dada uma grande quantidade dados de treino não etiquetados, ter um modelo de aprendizagem ativa que reduz o custo de treino do classificador e, ao mesmo tempo, auxilia a etiquetagem de novas observações permanece um problema em aberto. A partir das abordagens e estudos experimentais, as principais contribuições deste trabalho, que se concentra na classificação de cenas de imagens de satélite óptico incluem: criação de conjuntos de dados Sentinel-2 etiquetados, com valores de refletância de superfície; proposta de modelos de aprendizagem automática baseados em pixels para classificação de cenas de imagens de satétite; proposta de um Modelo de Função de Evidência (EFM) baseado numa distância estatística para detetar erros de classificação de modelos de aprendizagem; e proposta de uma abordagem de amostragem generalizada para aprendizagem ativa que, em conjunto com o EFM, possibilita uma forma de determinar os exemplos mais informativos. Em primeiro lugar, usando um conjunto de dados Sentinel-2 etiquetado manualmente, foram desenvolvidos modelos de Aprendizagem Automática (AA) para classificação de cenas e seu desempenho foi comparado com o do Sen2Cor – o produto de referência da Agência Espacial Europeia – tendo sido alcançado um valor de micro-F1 de 84% pelo classificador, o que representa uma melhoria significativa em relação ao desempenho Sen2Cor correspondente, de 59%. Em segundo lugar, para quantificar o erro de classificação dos modelos de AA, foi concebido o Modelo de Função de Evidência baseado na distância de Mahalanobis. Este modelo conseguiu, para o conjunto de dados etiquetado do Sentinel-2 um micro-F1 de 67,89% na deteção de classificação incorreta. Por fim, o EFM foi utilizado como uma estratégia de amostragem para a aprendizagem ativa, uma abordagem que permitiu atingir o mesmo nível de desempenho com apenas 0,02% do total de exemplos de treino quando comparado com um classificador treinado com o conjunto de treino completo. Com a ajuda das contribuições acima mencionadas, foi possível desenvolver um pacote de código aberto para classificação de cenas de imagens Sentinel-2 que, utilizando num conjunto de scripts Python, um modelo de classificação, e uma imagem Sentinel-2 L1C, gera a imagem RGB correspondente (com resolução de 20m) com as seis classes estudadas (Cloud, Cirrus, Shadow, Snow, Water e Other), disponibilizando à academia um método direto para a classificação de cenas de imagens do Sentinel-2 rápida e eficaz. Além disso, a abordagem de aprendizagem ativa que usa, como estratégia de amostragem, a deteção de classificacão incorreta dada pelo EFM, permite etiquetar apenas os pontos mais informativos a serem usados como entrada na construção de classificadores

    Drought forecasts using satellite data based on deep learning over East Asia

    Get PDF
    Department of Urban and Environmental Engineering (Environmental Science and Engineering)This thesis/dissertation seeks to 1) forecast drought conditions effectively considering temporal patterns of drought indices and upcoming weather conditions through the deep learning approach, and 2) forecast drought by identifying the teleconnection effect based on the sea surface temperature through the deep learning approach. In this thesis/dissertation, there are four chapters. Chapter 1 summarizes the background of the research and overviews of the thesis research. In Chapter 2, drought-forecasting models on a short-term scale (8 days) were developed considering the temporal patterns of satellite-based drought indices and numerical model outputs through the synergistic use of convolutional long short term memory (ConvLSTM) and random forest (RF) approaches over a part of East Asia. Through the combination of temporal patterns and the upcoming weather conditions (numerical model outputs), the overall performances of drought-forecasting models (ConvLSTM and RF combined) produced competitive results. Furthermore, our short-term drought-forecasting model can be effective regardless of drought intensification or alleviation. The proposed drought-forecasting model can be operationally used, providing useful information on upcoming drought conditions with high resolution (0.05??). In Chapter 3, the Drought forecasting model on a mid-and long-term scale (one-three lead time) over East Asia was developed using temporal patterns of drought indices and teleconnection phenomena of SST through the CNN. Reanalysis based drought index, SPI, were selected with a mid- and long-timescale (one to three months), and satellite-based variable, precipitation and SST across the Pacific Ocean. As the lead time increased, the accuracy tended to fall, but it showed good results compared to CFS. When compared to a drought case, the SST of 8 months ago influenced on the results. Chapter 4 provides a brief summary of these studiesclos
    corecore