4,552 research outputs found

    Model-Independent Pricing of Asian Options via Optimal Martingale Transport

    Full text link
    In this article we discuss the problem of calculating optimal model-independent (robust) bounds for the price of Asian options with discrete and continuous averaging. We will give geometric characterisations of the maximising and the minimising pricing model for certain types of Asian options in discrete and continuous time. In discrete time the problem is reduced to finding the optimal martingale transport for the cost function x+y|x+y|. In the continuous time case we consider the cases with one and two given marginals. We describe the maximising models in both of these cases as well as the minimising model in the one-marginal case and relate the two-marginals case to the discrete time problem with two marginals

    Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up

    Full text link
    We analyse the learning performance of Distributed Gradient Descent in the context of multi-agent decentralised non-parametric regression with the square loss function when i.i.d. samples are assigned to agents. We show that if agents hold sufficiently many samples with respect to the network size, then Distributed Gradient Descent achieves optimal statistical rates with a number of iterations that scales, up to a threshold, with the inverse of the spectral gap of the gossip matrix divided by the number of samples owned by each agent raised to a problem-dependent power. The presence of the threshold comes from statistics. It encodes the existence of a "big data" regime where the number of required iterations does not depend on the network topology. In this regime, Distributed Gradient Descent achieves optimal statistical rates with the same order of iterations as gradient descent run with all the samples in the network. Provided the communication delay is sufficiently small, the distributed protocol yields a linear speed-up in runtime compared to the single-machine protocol. This is in contrast to decentralised optimisation algorithms that do not exploit statistics and only yield a linear speed-up in graphs where the spectral gap is bounded away from zero. Our results exploit the statistical concentration of quantities held by agents and shed new light on the interplay between statistics and communication in decentralised methods. Bounds are given in the standard non-parametric setting with source/capacity assumptions

    Robust Resource Allocations in Temporal Networks

    Get PDF
    Temporal networks describe workflows of time-consuming tasks whose processing order is constrained by precedence relations. In many cases, the durations of the network tasks can be influenced by the assignment of resources. This leads to the problem of selecting an ‘optimal’ resource allocation, where optimality is measured by network characteristics such as the makespan (i.e., the time required to complete all tasks). In this paper, we study a robust resource allocation problem where the functional relationship between task durations and resource assignments is uncertain, and the goal is to minimise the worst-case makespan. We show that this problem is generically NP-hard. We then develop convergent bounds for the optimal objective value, as well as feasible allocations whose objective values are bracketed by these bounds. Numerical results provide empirical support for the proposed method.Robust Optimisation, Temporal Networks, Resource Allocation Problem

    Functional Bandits

    Full text link
    We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Connections Between Mirror Descent, Thompson Sampling and the Information Ratio

    Get PDF
    The information-theoretic analysis by Russo and Van Roy (2014) in combination with minimax duality has proved a powerful tool for the analysis of online learning algorithms in full and partial information settings. In most applications there is a tantalising similarity to the classical analysis based on mirror descent. We make a formal connection, showing that the information-theoretic bounds in most applications can be derived from existing techniques for online convex optimisation. Besides this, for kk-armed adversarial bandits we provide an efficient algorithm with regret that matches the best information-theoretic upper bound and improve best known regret guarantees for online linear optimisation on p\ell_p-balls and bandits with graph feedback
    corecore