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Abstract

Temporal networks describe workflows of time-consuming tasks whose
processing order is constrained by precedence relations. In many cases,
the durations of the network tasks can be influenced by the assignment of
resources. This leads to the problem of selecting an ‘optimal’ resource al-
location, where optimality is measured by network characteristics such as
the makespan (i.e., the time required to complete all tasks). In this paper,
we study a robust resource allocation problem where the functional rela-
tionship between task durations and resource assignments is uncertain,
and the goal is to minimise the worst-case makespan. We show that this
problem is generically NP-hard. We then develop convergent bounds for
the optimal objective value, as well as feasible allocations whose objective
values are bracketed by these bounds. Numerical results provide empirical
support for the proposed method.

Keywords: Robust Optimisation · Temporal Networks · Resource Al-
location Problem

1 Introduction

Many problems in operations research are concerned with time-consuming tasks
whose processing order is constrained by precedence relations. We can describe
such situations by temporal networks: a temporal network is a directed, acyclic
graph G = (V, E) whose nodes V = {1, . . . , n} represent the tasks and whose
arcs E ⊂ V ×V denote the temporal precedences. To simplify the exposition, we
assume that 1 ∈ V denotes the unique source and n ∈ V the unique sink of G.
This can always be achieved by adding dummy tasks and/or precedences to the
graph. In resource allocation problems on temporal networks, the time required
to process task i ∈ V depends on the chosen resource allocation. The goal
is to determine an allocation which optimises a time-related objective, most
frequently the makespan of the network (i.e., the time required to complete
all tasks). To formalise this idea, we assign to every task i ∈ V a function
di : X $→ R+ that maps resource allocations x ∈ X to non-negative durations.
We assume that di is continuous and that X , the set of admissible allocations,
is a nonempty and compact subset of a finite-dimensional space. The resource
allocation problem on temporal networks can then be defined as

min
x∈X,

y∈Y (x)

{yn + dn(x)} , (1a)

where
Y (x) =

{
y ∈ R

n
+ : yj ≥ yi + di(x) ∀ (i, j) ∈ E

}
. (1b)
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For x ∈ X , Y (x) denotes the set of admissible start time vectors for the network
tasks, that is, the ith component of y ∈ Y (x) assigns a start time to task i ∈ V
such that all precedence constraints are satisfied. Since n is the unique sink of G,
yn + dn(x) represents the makespan of the network. Note that every admissible
start time schedule y ∈ Y (x) has to satisfy y1 ≥ 0 and

yj ≥ max
i∈V

{yi + di(x) : (i, j) ∈ E} for all j ∈ V \ {1} .

Since the makespan is a nondecreasing function of y, the early start schedule
y∗ : X $→ Rn

+ with y∗
1(x) = 0 and

y∗
j (x) = max

i∈V
{y∗

i (x) + di(x) : (i, j) ∈ E} for all j ∈ V \ {1}

is optimal for any fixed allocation x ∈ X . Note that the recursion is well-
defined because G is acyclic. The optimality of the early start schedule is
an important property that distinguishes model (1) from other optimisation
problems on temporal networks.

Resource allocation problems on temporal networks arise in various areas of
operations research, such as project management [6, 10], service-oriented com-
puting [26, 35], digital circuit sizing [5] and the scheduling of machines [31],
chemical processes [12] and multiprocessor applications [22]. Although there is
an abundance of contributions that address instances of the deterministic re-
source allocation problem, the literature on its counterpart under uncertainty
is surprisingly sparse. Broadly speaking, optimisation models can account for
uncertainty in two ways. If the uncertain parameters are modelled as random
variables with known distributions, solution approaches from stochastic pro-
gramming can be employed [28, 29]. If, on the other hand, merely the support
of the uncertain problem parameters is known, distribution-free risk measures
from decision making under strict uncertainty can be optimised. In recent years,
optimisation in view of the worst case (minimax criterion) has received consid-
erable attention and is commonly referred to as robust optimisation [1, 4, 14].
Most resource allocation problems under uncertainty assume known distribu-
tions [17, 24, 30], which can be explained by the novelty of efficient robust
optimisation techniques in operations research.

In this text we consider a robust resource allocation problem that employs
the minimax objective. Contrary to its counterpart under probabilistic uncer-
tainty, the complexity of this problem is unknown [16]. Instances of the consid-
ered problem have been employed in different application areas. The existing
contributions have in common that they determine suboptimal solutions and
do not provide bounds for the incurred optimality gap. In this paper, we show
that the robust resource allocation problem is NP-hard, which provides an ex-
planation for the lack of exact solution approaches in the literature. We then
develop families of optimisation problems that provide convergent lower and up-
per bounds for the optimal value of the problem. The upper bounds correspond
to feasible allocations whose objective values are bracketed by these bounds.
Hence, we obtain a series of feasible allocations that converge to the optimal
solution and whose optimality gaps can be quantified at any time. Although
we focus on the minimax objective, our method remains applicable when more
information about the probability distribution of the uncertain parameters is
available. In such cases, our approach can be used to optimise a conservative

2



approximation of the (conditional) value-at-risk. The details of this extension
follow the lines of [7] and are left out for brevity.

The remainder of this paper is organised as follows. In the next section, we
define the robust resource allocation problem. After a review of related litera-
ture, we show that the problem is generically NP-hard. In Section 3 we discuss
a path-wise formulation that provides the basis for our solution technique. In
Sections 4 and 5 we develop families of optimisation problems that provide con-
vergent lower and upper bounds, respectively. Section 6 presents the results of
a numerical evaluation, and we conclude in Section 7.

Notation Unless stated differently, lower case Latin and Greek letters
denote column vectors. We refer to the ith component of vector x by xi. ‖x‖p

denotes the p-norm of vector x. e represents the vector of all ones; its dimension
will be clear from the context. For set A ⊆ {1, . . . , n}, IA denotes the n-
dimensional vector with (IA)i = 1 if i ∈ A and (IA)i = 0 otherwise.

We say that a set has a tractable representation if set membership can be
described by finitely many convex constraints and, potentially, auxiliary vari-
ables. Similarly, a function has a tractable representation if its epigraph does.
An explicit optimisation problem has finitely many variables and constraints.

2 Robust Resource Allocations

We first introduce the robust counterpart of problem (1). We then provide a
survey of solution approaches proposed in the literature. In Section 2.3 we show
that the robust resource allocation problem is generically NP-hard.

2.1 The Robust Resource Allocation Problem

Throughout this paper, we assume that the structure of the temporal network
(i.e., V and E) is deterministic, whereas the task durations are uncertain.1 We
model the duration of task i ∈ V by a continuous function di : X×Ξ $→ R+ that
maps resource allocations and realisations of the uncertain parameters ξ ∈ Ξ
to non-negative durations. We assume that Ξ, the support of the uncertain
parameters, is a nonempty and compact subset of a finite-dimensional space.
Having in mind the application areas outlined in Section 1, we assume that ξ
cannot be observed directly, but that it can only be gradually inferred from the
durations of completed tasks. In strategic decision problems, Ξ is sometimes
specified as a discrete set of rival scenarios (e.g. different forecasts of market
developments). We will see that under rather general convexity assumptions,
robust allocation problems with finite discrete supports Ξ can be formulated
as explicit convex programs. Often, however, Ξ is better described by a set of
infinite cardinality, for example an ellipsoid around a nominal parameter vector.
In this paper, we focus on uncertainty sets that are of infinite cardinality but
specific structure.

We define the robust resource allocation problem on temporal networks as

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} , (RT N )

1Uncertain network structures are addressed in the literature on GERT networks [25].
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where
Y (x, ξ) =

{
y ∈ R

n
+ : yj ≥ yi + di(x; ξ) ∀ (i, j) ∈ E

}
. (2)

For x ∈ X and ξ ∈ Ξ, Y (x, ξ) denotes the set of admissible start time vectors
for the network tasks. RT N is a two-stage robust optimisation problem: the
uncertain parameters ξ ∈ Ξ are revealed after the allocation x has been cho-
sen, but before the task start times y have been decided upon. Hence, we are
interested in a static resource allocation which cannot be adapted once infor-
mation about ξ becomes available. Resource allocations are frequently required
to be static due to the inflexibility of resources and limitations of the manu-
facturing process (see Section 6), or to enhance the planning security and the
compatibility with concurrent operations outside the scope of the model. Even
in situations where recourse decisions are principally possible, static allocations
might be preferable to ensure computational tractability [15, 21]. In the appli-
cations described in Section 1, unlike the resource allocation x, the task start
times y may depend on the available knowledge about ξ. We justify this as-
sumption for circuit design problems in Section 6. Note that every component
of y is chosen after all uncertain parameters are revealed, which seems to vio-
late non-anticipativity [28, 29]: the uncertain parameters are revealed gradually
when tasks are completed, and yj, j ∈ V , must only depend on information
that is available at the time when task j is started. The early start schedule
y∗ : X × Ξ $→ Rn

+ with y∗
1(x, ξ) = 0 and

y∗
j (x, ξ) = max

i∈V
{y∗

i (x, ξ) + di(x; ξ) : (i, j) ∈ E} for all j ∈ V \ {1}

is non-anticipative, however, since the task start times only depend on the com-
pletion times of predecessor tasks. As in the deterministic case described in
Section 1, the early start schedule is also optimal. Hence, if a solution of RT N
employs an anticipative start time schedule y, we can replace it with the corre-
sponding (non-anticipative) early start schedule without sacrificing optimality.

RT N has relevance in all application areas outlined in the previous section.
The solution approach proposed in this paper is also suited for several variants
of RT N , such as multi-objective problems that contain the makespan as one of
several goals and problems with makespan restrictions as side constraints (see
Section 6). Alternative formulations, such as the minimisation of deviations
from a static baseline schedule ŷ (which itself becomes part of the first-stage
decision), are discussed in [17].

2.2 Literature Review

RT N constitutes a min-max-min problem with coupled constraints and is as
such not amenable to standard optimisation techniques. Most existing solution
approaches rely on the following observation.

Observation 2.1 For the robust resource allocation problem RT N , we have

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = min
x∈X,

y∈Y(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)} , (3a)

where for x ∈ X,

Y(x) =
{
(y : Ξ $→ R

n
+) : y(ξ) ∈ Y (x, ξ) ∀ ξ ∈ Ξ

}
. (3b)
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For a resource allocation x ∈ X, Y(x) denotes the space of all functions over
Ξ that map parameter realisations to feasible start time vectors for the tasks.

We can thus reduce the min-max-min problem RT N to a min-max problem
at the cost of augmenting the set of first-stage decisions. A function y is called
a decision rule because it specifies the second-stage decision as a function of the
uncertain parameters. Note that the choice of an appropriate decision rule is
part of the first-stage decision. Since Y(x) constitutes a function space, further
assumptions are required to ensure solvability. For example, if Ξ contains finitely
many points, Ξ =

{
ξ1, . . . , ξL

}
, then Y(x) is isomorphic to a subset of RLn

+ and
we can reformulate RT N as

min
x∈X,

y∈R
Ln
+

{
max

l=1,...,L

{
yl

n + dn(x, ξl)
}

: yl
j ≥ yl

i+di(x; ξl) ∀ l = 1, . . . , L, (i, j) ∈ E
}
.

This problem is convex if X is convex and d is convex in its first component
for all ξl ∈ Ξ. Similar finite-dimensional problems arise when a semi-infinite
programming algorithm is used to solve RT N with an uncertainty set of infinite
cardinality [18]. This approach, however, would only provide lower bounds for
the optimal value of RT N , and it is not clear how to efficiently obtain upper
bounds.2 Furthermore, one would not be able to exploit structural properties
of Ξ and d beyond convexity. Finally, the number of constraints and variables
grows with L, which itself is likely to become large for tight approximations.

Due to the absence of standard optimisation techniques for the solution of
RT N when Ξ has infinite cardinality, one commonly settles for feasible but
suboptimal solutions. These are obtained from conservative approximations of
RT N that restrict the set of admissible second-stage decisions. It has been
suggested in [24] to restrict Y to constant decision rules, that is, to

Y0(x) = {y ∈ Y(x) : ∃ γ ∈ R
n . y(ξ) = γ ∀ ξ ∈ Ξ} for x ∈ X.

In this case, RT N is equivalent to

min
x∈X,

y∈Y0(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)}

= min
x∈X,
γ∈R

n
+

{
max
ξ∈Ξ

{γn + dn(x; ξ)} : γj ≥ γi + di(x; ξ) ∀ ξ ∈ Ξ, (i, j) ∈ E
}

= min
x∈X,
γ∈R

n
+

{
γn + max

ξ∈Ξ
{dn(x; ξ)} : γj − γi ≥ max

ξ∈Ξ
{di(x; ξ)} ∀ (i, j) ∈ E

}
.

The tractability of this problem is determined by the properties of X and the
functions maxξ∈Ξ {di(x; ξ)} for i ∈ V . For general Ξ and d the problem can be
formulated as a semi-infinite program [18]. For specific choices of Ξ and d, ro-
bust optimisation techniques can be used to obtain equivalent (or approximate)
explicit reformulations [1, 2, 3, 4]. Although they are computationally attrac-
tive, constant decision rules can result in poor approximations of the optimal
second-stage policies and – as a consequence – the optimal resource allocations.

2As we will see in Section 2.3, evaluating the worst-case makespan of the optimal second-
stage policy in RT N constitutes a difficult problem even for fixed x ∈ X.
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Figure 1: Example temporal network that illustrates the suboptimality of
affine decision rules. The graph visualises the network structure for k = 4.
The task durations (next to the nodes) are defined in the text.

Example 2.1 Consider the temporal network G = (V, E) with tasks V =
{1, . . . , n} and precedence relations E = {(i, i + 1) : 1 ≤ i < n}. Let Ξ ={
ξ ∈ Rn

+ : e#ξ ≤ 1
}

and the (decision-independent) task durations be defined
as di(x; ξ) = ξi for i ∈ V . The optimal second-stage policy incurs a worst-case
makespan of 1, whereas the restriction to constant decision rules results in a
worst-case makespan of n.

In order to improve on the approximation quality of constant decision rules,
it has been suggested in [8] to approximate Y(x) by a set of affine decision rules:
for x ∈ X and Ξ ⊆ Rk, we define

Y1(x) =
{
y ∈ Y(x) : ∃Γ ∈ R

n×k, γ ∈ R
n . y(ξ) = Γξ + γ ∀ ξ ∈ Ξ

}
.

Under this approximation, RT N reduces to

min
x∈X,

y∈Y1(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)}

= min
x∈X,

Γ∈R
n×k,

γ∈R
n

{
γn + max

ξ∈Ξ

{
Γ#

n ξ + dn(x; ξ)
}

: (Γ, γ) ∈ S+ ∩ SE(x)
}

with

S+ = {(Γ, γ) : Γξ + γ ≥ 0 ∀ ξ ∈ Ξ}

=
{
(Γ, γ) : γi ≥ max

ξ∈Ξ

{
−Γ#

i ξ
}
∀ i ∈ V

}

and SE(x) =
{
(Γ, γ) : Γ#

j ξ + γj ≥ Γ
#
i ξ + γi + di(x; ξ) ∀ ξ ∈ Ξ, (i, j) ∈ E

}

=
{
(Γ, γ) : γj − γi ≥ max

ξ∈Ξ

{
(Γi − Γj)

#ξ + di(x; ξ)
}
∀ (i, j) ∈ E

}
.

Here, Γ#
i denotes the ith row of matrix Γ. As in the case of constant decision

rules, this model can be solved via semi-infinite programming, and under cer-
tain conditions we can employ robust optimisation techniques to obtain explicit
reformulations. Much like constant decision rules, however, affine decision rules
can lead to poor approximations of RT N .

Example 2.2 Consider the class of temporal networks illustrated in Fig-
ure 1. For k ∈ N, the network structure is given by V = {1, . . . , 3k + 1} and
E = {(3l + 1, 3l + p), (3l + p, 3l + 4) : 0 ≤ l < k, p = 2, 3}. Let d3l+2 = ξl+1

and d3l+3 = 1 − ξl+1 for 0 ≤ l < k, while the remaining task durations are
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zero. For Ξ =
{
ξ ∈ Rk

+ : ‖ξ − 1/2e‖1 ≤ 1/2
}
, the optimal second-stage pol-

icy leads to a worst-case makespan of (k + 1)/2. For 0 ≤ l < k, we obtain
y3l+4(ξ) ≥ y3l+1(ξ) + max {ξl+1, 1− ξl+1} for all ξ ∈ Ξ. In particular, this
inequality holds for ξ ∈

{
1/2e± 1/2el+1

}
, where el+1 denotes the (l + 1)th vec-

tor of the standard basis in Rk. If we restrict y to be affine in ξ, the previous
observation implies that y3l+4(ξ) ≥ y3l+1(ξ) + 1 for ξ = 1/2e ∈ Ξ and

y3k+1(ξ) ≥ y3k−2(ξ) + 1 ≥ . . . ≥ y1(ξ) + k ≥ k for ξ = 1/2e.

Here, the last inequality holds by non-negativity of y. Thus, the restriction to
affine decision rules results in a worst-case makespan of at least k.

Recently, the use of piecewise affine decision rules has been advocated to
overcome some of the deficiencies of affine decision rules [9].

The Examples 2.1 and 2.2 show that the existing solution approaches for
RT N can lead to poor approximations of the optimal decisions. This is sup-
ported by our numerical results in Section 6. In the next section, we show that
RT N constitutes a difficult optimisation problem, which explains the lack of
exact solution procedures in the literature.

2.3 Complexity Analysis

It is clear that RT N is difficult to solve if we impose no further regularity condi-
tions beyond compactness of X and Ξ. In the following, we show that evaluating
the worst-case makespan of the optimal second-stage policy constitutes an NP-
complete problem even when the resource allocation x ∈ X is fixed, while Ξ
and d have ‘simple’ descriptions. This implies that RT N is NP-hard since we
can restrict X to a singleton and thus obtain a procedure that evaluates the
worst-case makespan of the optimal second-stage policy.

In view of the aforementioned objective, we define the worst-case makespan
of a temporal network (WCMTN) problem as follows.
Instance. A temporal network G = (V, E) with V = {1, . . . , n} and 1 and n as
unique source and sink, respectively. Vectors w, u ∈ Nn

0 and scalars W, U ∈ N0.
Question. Is there a ξ ∈ Ξ =

{
ξ ∈ Rn

+ : ξ ≤ e, w#ξ ≤W
}

such that

min
y∈Rn

+

{yn + unξn : yj ≥ yi + uiξi ∀ (i, j) ∈ E} ≥ U? (4)

WCMTN considers instances of RT N with fixed resource allocation x ∈ X ,
task durations that are linear in ξ and a support that results from intersecting
the unit hypercube with a halfspace [3]. WCMTN asks whether the worst-case
makespan exceeds U when an optimal start time schedule is implemented.

Theorem 2.1 WCMTN is NP-complete.

Proof We first show that WCMTN belongs to NP . Afterwards, we prove
NP-hardness of WCMTN by constructing a polynomial transformation of the
Continuous Multiple Choice Knapsack problem to WCMTN. In this proof, we
abbreviate ‘polynomial in the input length of WCMTN’ by ‘polynomial’.

In order to establish WCMTN’s membership to NP , we need to show that
we can guess a ξ, check whether ξ ∈ Ξ, construct an admissible y∗ that minimises
the left-hand side of (4) and verify whether y∗

n + unξn ≥ U in polynomial time.
Assume that we can restrict attention to values of ξ whose bit lengths are
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di(ξ) = buiξi

i
s t

B1 B2 BQ

Ξ =
˘
ξ ∈ R

m+2
+ : ξ ≤ e,

Pm
i=1

bwiξi ≤ cW
¯

Figure 2: WCMTN instance constructed from a CMCK instance.

polynomial. Then we can check in polynomial time whether ξ ∈ Ξ. Moreover,
optimality of the early start schedule (see Section 2.1) ensures that y∗ with
y∗
1 = 0 and y∗

j = maxi∈V {y∗
i + uiξi : (i, j) ∈ E} for j ∈ V \ {1} minimises the

left-hand side of (4). In particular, this y∗ also possesses a polynomial bit length
and can be determined in polynomial time. This implies that validity of (4) can
be verified in polynomial time, which in turn implies membership of WCMTN
to NP . It remains to be shown that we can indeed restrict attention to values
of ξ with polynomial bit lengths. (4) is satisfied for some ξ ∈ Ξ if and only if

max
ξ∈Ξ

min
y∈Rn

+

{yn + unξn : yj ≥ yi + uiξi ∀ (i, j) ∈ E} ≥ U.

Since the inner minimisation represents a convex function of ξ, its maximum over
Ξ is attained by at least one extreme point of Ξ [19]. Since Ξ is a polyhedron,
however, all of its extreme points possess polynomial bit lengths [23].

In order to prove NP-hardness of WCMTN, we consider the Continuous
Multiple Choice Knapsack (CMCK) problem:
Instance. A set B = {1, . . . , m}, together with weights ŵi ∈ N0 and utilities
ûi ∈ N0 for i ∈ B. A partition {Bq}

Q
q=1 of B, i.e.,

⋃
q Bq = B and Bq ∩Br = ∅

for q /= r. A maximum weight Ŵ ∈ N0 and a minimum utility Û ∈ N0.
Question. Is there a choice of bq ∈ Bq and ξ̂q ∈ [0, 1], q = 1, . . . , Q, such that
∑Q

q=1 ŵbq ξ̂q ≤ Ŵ and
∑Q

q=1 ûbq ξ̂q ≥ Û?
We construct a polynomial-time transformation that converts a CMCK in-

stance to a WCMTN instance such that the answer to the former problem is
affirmative if and only if the answer to the latter one is. Hence, the existence of
a polynomial-time solution procedure for WCMTN would imply the existence
of such a procedure for CMCK. Since CMCK is known to be NP-hard [13, 20],
this implies that WCMTN is NP-hard as well.

The desired WCMTN instance is defined by G = (V, E), V = {s, 1, . . . , m, t}
and E = EB ∪EG with EB = {(i, j) : (i, j) ∈ Bq ×Bq+1, q = 1, . . . , Q− 1} and
EG = {(s, i) : i ∈ B1} ∪ {(i, t) : i ∈ BQ}. s and t represent the unique source
and sink of G, respectively. We set wi = ŵi and ui = ûi for i = 1, . . . , m, while
wi = ui = 0 for i ∈ {s, t}. W and U are identified with Ŵ and Û of the CMCK
instance, respectively. The transformation is illustrated in Figure 2.

For the constructed WCMTN instance, assume that there is a ξ ∈ Ξ which
satisfies (4). Let y∗ be a minimiser for the left-hand side of (4). By construction
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of G and optimality of y∗, there is a critical path (s, b1, . . . , bQ, t) in G with
bq ∈ Bq for q = 1, . . . , Q, y∗

s = y∗
b1

= 0, y∗
bq+1

= y∗
bq

+ ubqξbq for q = 1, . . . , Q− 1

and y∗
t = y∗

bQ
+ ubQξbQ [10]. Since y∗

t ≥ U , we conclude that
∑Q

q=1 ubqξbq =
∑Q

q=1 ûbqξbq ≥ U = Û . Similarly, we have
∑Q

q=1 wbqξbq =
∑Q

q=1 ŵbqξbq ≤ W =

Ŵ because ξ ∈ Ξ. Thus, b and ξ̂ with ξ̂q = ξbq , q = 1, . . . , Q, certify that the
answer to the CMCK instance is affirmative as well. In the same way, one can
show that the absence of a ξ ∈ Ξ which satisfies (4) implies that the answer to
the CMCK instance is negative.

Theorem 2.1 immediately extends to problem instances whose uncertainty
sets are polyhedral [3] or that result from intersections of general ellipsoids as in
[1]. It also serves as an indicator that other uncertainty sets might result in dif-
ficult optimisation problems, too. Note, however, that WCMTN can be decided
in polynomial time for box uncertainty sets of the form Ξ =

{
ξ : ξ ≤ ξ ≤ ξ

}

with ξ, ξ ∈ Rk. The same holds true for the special case of WCMTN with
w = αe and u = βe for α,β ∈ N0.

3 Path-Wise Problem Formulation

In contrast to the techniques reviewed in Section 2.2, our solution approach
for RT N does not rely on approximating decision rules. Instead, we eliminate
the inner minimisation in RT N by enumerating the task paths of the network.
A solution scheme based on path enumeration has recently been proposed in
project scheduling under a probabilistic uncertainty model [34]. In this section,
we present a path-wise reformulation of RT N and argue that it is unsuited for
direct solution. In the next two sections, we will use this reformulation to derive
convergent bounds for the optimal value of RT N .

We recall that a path in a directed graph G = (V, E) constitutes a list of
nodes (i1, . . . , ip) such that (i1, i2), . . . , (ip−1, ip) ∈ E. Accordingly, we define a
task path P = {i1, . . . , ip} ⊆ V as a set of tasks whose nodes form a path in
the temporal network. We denote by P the set of all task paths. The following
observation re-iterates the well-known fact (see e.g. [10]) that for fixed x and
ξ, the minimal makespan of a temporal network equals the sum of all task
durations along any of its critical (i.e., most time-consuming) task paths.

Observation 3.1 For a temporal network G = (V, E) with fixed allocation x ∈
X and parameters ξ ∈ Ξ, the minimal makespan is given by

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = max
P∈P

{
I
#
P d(x; ξ)

}
, (5)

where d(x; ξ) = (d1(x; ξ), . . . , dn(x; ξ))# and Y (x, ξ) is defined in (2).

Note that the maximum on the right-hand side of (5) can be attained by
several task paths P ∈ P . Observation 3.1 allows us to replace the inner min-
imisation in RT N by the right-hand side of (5), and thus we find

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = min
x∈X

max
P∈P

max
ξ∈Ξ

{
I
#
P d(x; ξ)

}
.

9



In the following, we will employ robust optimisation techniques to replace the
maximisation over Ξ. We are thus concerned with the following approximate
robust resource allocation problem on temporal networks :

min
x∈X,
τ∈R+

max
P∈P

φ(x; P ), (ART N )

where φ(·; P ) represents a real-valued function on X . We call ART N a conser-
vative reformulation of RT N if

φ(x; P ) ≥ max
ξ∈Ξ

{
I
#
P d(x; ξ)

}
for x ∈ X, P ⊆ V. (6)

If (6) holds, optimal allocations for ART N constitute suboptimal but feasi-
ble allocations for RT N , and the optimal value of ART N overestimates the
worst-case makespan in RT N . If the inequality in (6) can be replaced by an
equality, we call ART N an exact reformulation of RT N . In this case, ART N
and RT N are equivalent. Our bounding approach is applicable for exact and
conservative reformulations of RT N alike. Note that we do not consider pro-
gressive reformulations where the inequality in (6) is inverted, because we seek
for resource allocations with guaranteed upper bounds for the makespan.

Apart from ART N being an exact or conservative reformulation of RT N ,
our bounding approach requires φ to satisfy the following two properties:

(A1) Monotonicity. If P ⊂ P ′ ⊆ V , then φ(x; P ) ≤ φ(x; P ′) for all x ∈ X .

(A2) Sub-Additivity. If P ⊂ P ′ ⊆ V , then φ(x; P ) + φ(x; P ′ \ P ) ≥ φ(x; P ′)
for all x ∈ X .

We call P ∈ P an inclusion-maximal path if there is no P ′ ∈ P , P ′ /= P , such
that IP ≤ IP ′ . We denote the set of inclusion-maximal paths by P ⊆ P . If (A1)
is satisfied, then the optimal allocations and the optimal value of ART N do not
change if we replace P by P . (A2) implies that φ(x; P ) is bounded from above
by
∑

r φ(x; Pr) for all x ∈ X if {Pr}r forms a partition of P . As we will see,
this bounding property facilitates the construction of lower and upper bounds
for the optimal value of ART N . The following proposition shows that exact
reformulations of RT N necessarily satisfy (A1) and (A2).

Proposition 3.1 If ART N is an exact reformulation of RT N , then (A1) and
(A2) are satisfied.

Proof For P ⊂ P ′ ⊆ V and x ∈ X , we obtain

φ(x; P ′) = max
ξ∈Ξ

{
I
#
P ′ d(x; ξ)

}
≥ max

ξ∈Ξ

{
I
#
P d(x; ξ)

}
= φ(x; P ),

where the inequality follows from IP ≤ IP ′ and non-negativity of d. Similarly,
for P ⊂ P ′ ⊆ V and x ∈ X , we obtain

φ(x; P ′) = max
ξ∈Ξ

{
I
#
P ′ d(x; ξ)

}

= max
ξ∈Ξ

{
I
#
P d(x; ξ) + I

#
[P ′\P ] d(x; ξ)

}

≤ max
ξ∈Ξ

{
I
#
P d(x; ξ)

}
+ max

ξ∈Ξ

{
I
#
[P ′\P ] d(x; ξ)

}

= φ(x; P ) + φ(x; P ′ \ P ).
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In the following, we focus on instances of ART N that can be reformulated
as explicit convex optimisation problems. More precisely, we assume that

(A3) Tractability. X and φ(·; P ), P ⊆ V , possess tractable representations.

Although our solution approach does not rely on (A3), the repeated solution of
lower and upper bound problems becomes computationally prohibitive if (A3)
fails to hold. In the following, we show that robust optimisation techniques
allow us to construct exact or conservative reformulations of RT N that satisfy
(A1)–(A3) for natural choices of X , Ξ and d.

Proposition 3.2 If X has a tractable representation, the following choices of
Ξ and d allow for exact reformulations of RT N that satisfy (A1)–(A3):

1. Affine Uncertainty. di(x; ξ) = δ0i (x) + ξ#
[
δ1i (x)
]

with δ0i : X $→ R

tractable, δ1i : X $→ Rk affine and ξ ∈ Ξ =
⋂L

l=1 Ξl ⊆ Rk with

Ξl =
{
ξ ∈ R

k : ∃u ∈ R
Jl . ξ = σl + Σlu,

∥∥Πlu
∥∥

2
≤ 1
}
,

where σl ∈ Rk, Σl ∈ Rk×Jl and Πl denotes a projection of RJl on a
subspace, l = 1, . . . , L. Ξ is required to be bounded and to have a nonempty
relative interior.

2. Quadratic Uncertainty. di(x; ξ) = δ0i (x) + ξ#
[
δ1i (x)
]

+
∥∥[∆2

i (x)
]
ξ
∥∥2

2

with δ0i : X $→ R tractable, δ1i : X $→ Rk and ∆2
i : X $→ Rl×k affine and

ξ ∈ Ξ ⊆ Rk with

Ξ =
{
ξ ∈ R

k : ∃u ∈ R
J . ξ = σ + Σu, ‖u‖2 ≤ 1

}
,

where σ ∈ Rk and Σ ∈ Rk×J .

Proof Let δ0(x) =
[
δ01(x), . . . , δ0n(x)

]#
. In the case of affine uncertainty, we

define φ through

φ(x; P ) = I
#
P

[
δ0(x)
]
+ max

ξ∈Ξ

{
ξ#
(∑

i∈P

[
δ1i (x)
])}

for x ∈ X, P ∈ P ,

and in the case of quadratic uncertainty, we define φ through

φ(x; P ) = I
#
P

[
δ0(x)
]
+ max

ξ∈Ξ

{
ξ#
(∑

i∈P

[
δ1i (x)
])

+

∥∥vec
(
[IP ]1
[
∆2

1(x)
]
ξ, . . . , [IP ]n

[
∆2

n(x)
]
ξ
)∥∥2

2

}
for x ∈ X, P ∈ P .

Here, the operator ‘vec’ returns the concatenation of its arguments as a column
vector. Note that we have [IP ]i = 1 if P contains task i and [IP ]i = 0 otherwise.
For both definitions of φ, the epigraph of φ can be described by a semi-infinite
constraint which has to hold for all ξ ∈ Ξ. Robust optimisation techniques
[1] enable us to reformulate these semi-infinite constraints such that (A3) is
satisfied. Due to Proposition 3.1, (A1) and (A2) are satisfied as well.
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The uncertainty sets considered in Proposition 3.2 cover all bounded poly-
hedra as special cases. It is desirable to extend the results of Proposition 3.2
also to problems with conic-quadratic uncertainty.

Proposition 3.3 (Conic-Quadratic Uncertainty) Let di(x; ξ) = δ0i (x) +
ξ#
[
δ1i (x)
]

+
∥∥[∆2

i (x)
]
ξ
∥∥

2
with δ0i : X $→ R tractable, δ1i : X $→ Rk and

∆2
i : X $→ Rl×k affine and ξ ∈ Ξ ⊆ Rk with

Ξ =
{
ξ ∈ R

k : ∃u ∈ R
J . ξ = σ + Σu, ‖u‖2 ≤ 1

}
,

where σ ∈ Rk, Σ ∈ Rk×J . If X has a tractable representation, this choice of Ξ
and d allows for a conservative reformulation of RT N that satisfies (A1)–(A3).

Remark. In contrast to the case of quadratic uncertainty, the last term of
the task duration is not squared under conic-quadratic uncertainty.

Proof of Proposition 3.3 We construct an upper bound for

max
ξ∈Ξ

{∑

i∈P

(
δ0i (x) + ξ#

[
δ1i (x)
]
+
∥∥[∆2

i (x)
]
ξ
∥∥

2

)}
for x ∈ X, P ∈ P . (7)

The terms in the objective of this problem either do not depend on ξ, or they
are convex and linear homogeneous in ξ. Thus, we can apply the results from
[4] and bound (7) from above by

φ(x; P ) = max
bu∈bU

{
I
#
P

[
d̂(x; û)
]}

, (8)

where û = (û+, û−), and Û is defined through

Û =
{
û = (û+, û−) ∈ R

J
+ × R

J
+ :
∥∥û+ + û−

∥∥
2
≤ 1
}

.

Moreover, d̂ : X×R2J
+ $→ Rn has components d̂(x; û) =

[
d̂1(x; û), . . . , d̂n(x; û)

]#

that are defined through

d̂i(x; û) = δ0i (x) +
[
σ + Σ(û+ − û−)

]#[
δ1i (x)
]
+

∥∥[∆2
i (x)
]
σ
∥∥

2
+

J∑

j=1

∥∥[∆2
i (x)
]
Σj

∥∥
2
(û+

j + û−
j )

︸ ︷︷ ︸
αi(x;bu)

,

where Σj denotes the jth column of Σ. The epigraph of φ(x; P ) can be described

by a semi-infinite constraint that has to hold for all û ∈ Û . Due to the specific
shape of Û and the fact that d̂ is affine in û, robust optimisation techniques
can be employed to reformulate this semi-infinite constraint such that (A3) is
satisfied. It remains to be shown that φ satisfies (A1) and (A2).

As for (A1), we show that d̂i(x; û), i ∈ V , is non-negative for all x ∈ X and
û ∈ Û . To this end, we fix some û = (û+, û−) ∈ Û and set u = û+ − û−. Then
ξ = σ + Σu is contained in Ξ since ‖u‖2 ≤ 1. Hence, for x ∈ X ,

di(x; ξ) = δ0i (x) +
[
σ + Σu

]#[
δ1i (x)
]
+
∥∥[∆2

i (x)
][
σ + Σu

]∥∥
2︸ ︷︷ ︸

βi(x;u)

≥ 0

12



by non-negativity of d. Note that d̂i(x; û) − di(x; ξ) = αi(x; û) − βi(x; u) for

this choice of ξ. Since di(x; ξ) ≥ 0, non-negativity of d̂i(x; û) is ensured if
αi(x; û) ≥ βi(x; u). The latter inequality follows the triangle inequality, the
positive homogeneity of norms and the fact that |uj| ≤ û+

j + û−
j .

As for (A2), we need to show that φ(x; P )+φ(x; P ′ \P ) ≥ φ(x; P ′) for x ∈ X
and P ⊂ P ′ ⊆ V . This is the case since

max
bu∈bU

{
I
#
P

[
d̂(x; û)
]}

+ max
bu∈bU

{
I
#
[P ′\P ]

[
d̂(x; û)

]}
≥ max

bu∈bU

{
I
#
P ′

[
d̂(x; û)

]}
.

Proposition 3.3 provides a conservative reformulation of RT N . Exact re-
formulations of robust optimisation problems subject to conic-quadratic uncer-
tainty are discussed in [1]. However, the path durations φ(x; P ) resulting from
conic-quadratic uncertainty are not of the form required in [1], and the corre-
sponding reformulation is not applicable in our context.

ART N may appear to be efficiently solvable whenever (A3) holds. Note,
however, that the size of ART N depends on the cardinality of P , which in turn
can be exponential in the size of G. As an illustration, consider the temporal
network of Figure 1: it has |V | = 3k + 1 nodes and |E| = 4k arcs, k ∈ N, but
contains

∣∣P
∣∣ = 2k inclusion-maximal paths. It can further be shown that the

expected number of paths in a uniformly sampled random temporal network is
exponential. We defer the proof of this statement to the appendix. Hence, even
though ART N can be expressed as an explicit convex optimisation problem, it
remains difficult to solve.

4 Lower Bounds

We determine convergent lower bounds for ART N by solving relaxations that
omit some of the paths in ART N :

Algorithm 4.1 Convergent lower bounds for ART N .

1. Initialisation. Choose a subset P1 ⊆ P, for example P1 = ∅. Set t = 1.

2. Master Problem. Solve ART N , restricted to the paths in Pt:

min
x∈X,
τ∈R+

{
τ : τ ≥ φ(x; P ) ∀P ∈ Pt

}
. (LART N t)

Let xt denote an optimal solution of LART N t and τ t its objective value.

3. Subproblem. Determine a path P ∈ P \ Pt with φ(xt; P ) > τ t.

(a) If no such path exists, stop: x∗ = xt constitutes an optimal solution
of ART N and τ∗ = τ t its objective value.

(b) Otherwise, set Pt+1 = Pt ∪ {P}, t→ t + 1 and go to Step 2.

The following proposition is an immediate consequence of the algorithm outline.

Proposition 4.1 Algorithm 4.1 terminates with an optimal allocation x∗ for
ART N , together with its worst-case makespan τ∗. Furthermore, {τ t}t repre-
sents a monotonically nondecreasing sequence of lower bounds for τ∗.
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Proof Since t ≤ t′ implies that Pt ⊆ Pt′ , LART N t constitutes a relaxation
of LART N t′ . Hence, τ t ≤ τ t′ , that is, {τ t}t is monotonically nondecreasing.
Similarly, every τ t constitutes a lower bound for the optimal value of ART N ,
because the latter problem considers all paths in P and Pt ⊆ P for all t.

In iteration t, Step 3 either terminates or adds a path P ∈ P \ Pt to Pt.
Hence, the algorithm terminates after T ≤

∣∣P \ P1

∣∣ + 1 iterations. It is clear

that x∗ is optimal if PT = P in the last iteration. Otherwise, φ(x∗; P ) ≤ τ∗ for
all P ∈ P \ PT . Thus, (x∗, τ∗) minimises the relaxation LART N T and x∗ is
feasible for ART N . Since x∗ attains the same objective value τ∗ in ART N ,
x∗ is an optimal allocation and τ∗ the optimal value of ART N .

The size of LART N t, t ≥ 1, grows with the cardinality of Pt. Hence,
Algorithm 4.1 allows us to determine coarse initial lower bounds with little
effort, whereas tighter lower bounds become increasingly difficult to obtain.

The quality of the lower bounds determined by Algorithm 4.1 crucially de-
pends on the path selection in Step 3. In iteration t it seems natural to select
a path P that maximises φ(xt; P ) over P \ Pt. Theorem 2.1 implies that this
choice may require the solution of an NP-hard optimisation problem. A naive
alternative is to enumerate all paths in P \ Pt and stop once a path P is found
that satisfies φ(xt; P ) > τ t. This ‘first fit’ method, however, suffers from two
limitations. On one hand, this approach is likely to require many iterations since
there is no prioritisation among the paths P that satisfy φ(xt; P ) > τ t. On the
other hand, in the last (T th) iteration of Algorithm 4.1 all paths in P \ PT are
investigated before the procedure can terminate. This implies that the algo-
rithm needs to inspect all elements of P at least once. In view of the cardinality
of P (see Section 2.3), this is computationally prohibitive. To alleviate both
problems, we replace Step 3 of Algorithm 4.1 by the following procedure.

Algorithm 4.2 Determine P ∈ P \ Pt with φ(xt; P ) > τ t.

3(a) Initialisation. Construct the temporal network G = (V, E) with deter-
ministic task durations δ = (δ1, . . . , δn)#, where δi = max

{
φ(xt; {i}), ε

}
.

Here, {i} represents a degenerate path that contains a single task i ∈ V ,
while ε denotes a small positive constant. Set s = 1.

3(b) Path Selection. Let Ps be the sth longest path in G, where the length
of a path P ∈ P is defined as I#P δ.

(i) If I#Ps
δ ≤ τ t or G contains less than s paths, stop: x∗ = xt is an op-

timal allocation for ART N and τ∗ = τ t its worst-case makespan.

(ii) If φ(xt; Ps) > τ t, set Pt+1 = Pt ∪ {Ps}, t→ t + 1 and go to Step 2 of
Algorithm 4.1.

(iii) Otherwise, set s→ s + 1 and repeat Step 3(b).

The algorithm uses I#P δ as an overestimator for φ(xt; P ). Indeed, we have
I#P δ ≥
∑

i∈P φ(x
t; {i}) by definition of δ, while

∑
i∈P φ(x

t; {i}) exceeds φ(xt; P )
due to (A2). φ(xt; {i}) represents the worst-case duration of task i over Ξ.

Depending on the problem instance, Algorithm 4.2 may certify the opti-
mality of allocation xt without inspecting all paths in P . Furthermore, if ε is
chosen to be smaller than mini∈V

{
φ(xt; {i}) : φ(xt; {i}) > 0

}
/n, the paths
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P ∈ P are inspected in the order of decreasing task-wise worst-case durations∑
i∈P φ(x

t; {i}). Thus, as long as these quantities approximate φ(xt; P ), P ∈ P ,
reasonably well, one can expect Algorithm 4.1 to outperform the ‘first fit’ ap-
proach outlined above. Note that the s longest paths in a directed, acyclic
graph G = (V, E) can be enumerated in time O(|E|+ s |V |) [11]. The following
proposition establishes the correctness of Algorithm 4.2.

Proposition 4.2 Algorithm 4.2 terminates and either correctly concludes that
xt is an optimal allocation for ART N or it determines a path P ∈ P \ Pt with
φ(xt; P ) > τ t.

Proof G contains a finite number of paths, and hence the algorithm terminates.
In the following, we denote by Ps the sth longest path in G according to the
metric defined in Step 3(b) of the algorithm. Furthermore, we assume that the
algorithm terminates in iteration S.

Assume that the algorithm terminates in case (i) of Step 3(b) because G
contains less than S paths. In this case, all paths P ∈ P satisfy τ t ≥ φ(xt; P )
since otherwise the algorithm would have terminated in case (ii) of Step 3(b) of
an earlier iteration. From Proposition 4.1 we conclude that xt constitutes an
optimal allocation for ART N .

If the algorithm terminates in case (i) of Step 3(b) because I#PS
δ ≤ τ t, we

know that τ t ≥ φ(xt; Ps) for all s < S. Also, τ t ≥ I#Ps
δ for s ∈ {S + 1, . . . , |P|}

since these paths are not longer than PS . This, however, implies that for P ∈{
PS , . . . , P|P|

}
,

τ t ≥ I
#
P δ ≥

∑

i∈P

φ(xt; {i}) ≥ φ(xt; P ),

where δ is defined in Step 3(a) of Algorithm 4.2. The second inequality follows
from the definition of δ, while the third one is due to (A2). We conclude that
τ t ≥ φ(xt; P ) for all P ∈ P , and hence Proposition 4.1 ensures that xt is an
optimal allocation for ART N .

If the algorithm terminates in case (ii) of Step 3(b), it has determined a
task path PS ∈ P with φ(xt; PS) > τ t. We need to show that PS is inclusion-
maximal, that is, PS ∈ P . Assume to the contrary that PS ∈ P \ P. Then
there is a task path P ∈ P with P /= PS and IP ≥ IPS . Since δ > 0 component-

wise, I#P δ =
(
IPS + I[P\PS ]

)#
δ > I#PS

δ. Hence, P must have been considered
in some iteration s < S. Due to (A1), however, φ(xt; P ) ≥ φ(xt; PS), and the
algorithm must have terminated in case (ii) of Step 3(b) of that iteration because
φ(xt; P ) ≥ φ(xt; PS) > τ t. Since this yields a contradiction, we conclude that
PS is indeed inclusion-maximal.

Note that prior to its termination, Algorithm 4.1 only provides monotonically
increasing lower bounds for the optimal value of ART N . Since the intermediate
allocations xt are feasible, their worst-case makespans in ART N also constitute
upper bounds for the optimal value of ART N . From Theorem 2.1, however,
we know that evaluating the worst-case makespan of xt in ART N may require
the solution of an NP-hard optimisation problem. Hence, we need to pursue a
different approach to generate upper bounds efficiently.
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5 Upper Bounds

By construction, the objective value of ART N exceeds φ(x; P ) for all P ∈ P .
Due to (A1) and (A2), an approximate problem provides an upper bound on
ART N if its objective value exceeds

∑
r φ(x; Pr) for partitions {Pr}r of all

P ∈ P . The granularity of these partitions trades off the quality of the upper
bound with the size of the approximate problem. We start with partitions
{{i}}i∈P of singleton blocks for P ∈ P , which imply that the worst parameter
values ξ ∈ Ξ are chosen for all network tasks individually. By coarsening the
partitions, we reduce this over-pessimism and enforce the same parameter values
ξ to be chosen for sets of several tasks. However, coarser partitions also increase
the size of the upper bound problem since we can exploit fewer similarities
between blocks from different partitions. We iteratively coarsen the partitions
until each of them degenerates to a single block that corresponds to one path
in P, in which case the approximate problem coincides with ART N .

We employ auxiliary graphs to represent the partitions of the task paths.
For a temporal network G = (V, E), these auxiliary graphs constitute directed
acyclic graphs Gt = (V , Et), t ∈ N, with nodes V = V ∪ {n + 1} and labelled
arcs Et ⊆ V × V × P . (i, j, P ) ∈ Et represents an arc from i to j with label P .
We allow for multiple arcs between i and j if they have different labels.

We associate with Gt the optimisation problem

min
x∈X,

y∈R
n+1
+

{
yn+1 : yj − yi ≥ φ(x; P ) ∀ (i, j, P ) ∈ Et

}
. (UART N t)

The problem assigns a variable yi to every node i ∈ V . The constraints ensure
that yj exceeds yi by at least φ(x; P ) time units if (i, j, P ) ∈ Et. For Gt =
(V , Et) with Et =

{
(1, n + 1, P ) : P ∈ P

}
, UART N t is equivalent to ART N .

We define the set of induced task paths P(Gt) as

P(Gt) =
{
P ∈ P : ∃ (i1, i2, P1), . . . , (iR, iR+1 = n + 1, PR) ∈ Et . P ⊆

R⋃

r=1

Pr

}
.

Hence, P ∈ P(Gt) if P is contained in the union of arc labels on a path in Gt

that ends at node n + 1. Let (x, y) denote a feasible solution of UART N t and
f = yn+1 its objective value. If P ∈ P(Gt), then f ≥ φ(x; P ) because there is
{(ir, ir+1, Pr)}

R
r=1 ⊆ Et with iR+1 = n + 1, P ⊆

⋃R
r=1 Pr and

f = yn+1

(a)
≥ yn+1 − yi1 =

R∑

r=1

(yir+1
− yir )

(b)
≥

R∑

r=1

φ(x; Pr)
(c)
≥ φ(x; P ).

Here, (a) follows from non-negativity of y, (b) from the definition of UART N t

and (c) from (A1) and (A2). Hence, the objective value of any feasible solution
(x, y) for UART N t provides an upper bound for the worst-case makespan of al-
location x with respect to the task paths in P(Gt). We conclude that UART N t

provides an upper bound for ART N if P ⊆ P(Gt).
An initial upper bound for ART N is obtained from UART N 1 where

G1 = (V , E1) with E1 = {(i, j, {i}) : (i, j) ∈ E} ∪ {(n, n + 1, {n})} . (9)
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G1 is illustrated in Figure 3. As required, G1 constitutes an acyclic graph whose
arc labels are subsets of P . UART N 1 comprises one constraint for every arc
(i, j, P ) ∈ E1. Since E1 contains |E|+1 arcs, UART N 1 constitutes a tractable
optimisation problem. The following lemma establishes that the optimal value
of UART N 1 provides an upper bound for the optimal value of ART N .

1 1

2 23 3

4 45 5

6 6 7

{1}
{2}

{3}

{1}

{2}

{4}
{5}

{6}

Figure 3: For the temporal network on the left, the graph on the right
illustrates G1 as defined in (9).

Lemma 5.1 P ⊆ P(G1) for G1 defined in (9).

Proof Consider P = {i1 = 1, i2, . . . , iR = n} ∈ P with (ir, ir+1) ∈ E for r =
1, . . . , R − 1. We set iR+1 = n + 1 and Pr = {ir} for r = 1, . . . , R. By
construction, {(ir, ir+1, Pr)}

R
r=1 ⊆ E1 and P =

⋃R
r=1 Pr, so that P ∈ P(G1).

Since P was chosen arbitrarily, the claim follows.

Intuitively, UART N 1 represents a conservative approximation of ART N
since it allows different parameter values ξ for different arcs in G1. ART N , on
the other hand, requires the same parameter values ξ to be chosen within every
path P ∈ P . Note that UART N 1 and ART N are equivalent if φ(x; P ) =∑

i∈P φ(x; {i}) for all x ∈ X and P ∈ P . This is the case, for example, if the
task durations depend on disjoint parts of ξ that are mutually independent. In
general, however, φ(x; P ) <

∑
i∈P φ(x; {i}), and the optimal value of UART N 1

constitutes a strict upper bound for the optimal value of ART N .
By suitably transforming the graph G1, we can tighten the initial upper

bound provided by UART N 1.

Definition 5.1 (Replacements) For Gt = (V , Et), t ∈ N, we construct Gt+1 =
(V , Et+1) via the following two types of replacements.

1. Predecessor Replacement. Gt+1 results from a predecessor replace-
ment of (j, l, P ) ∈ Et if j /= 1 and

Et+1 = Et \ {(j, l, P )} ∪
⋃

i∈V ,P ′∈P:
(i,j,P ′)∈Et

{(i, l, P ∪ P ′)} .

2. Successor Replacement. Gt+1 results from a successor replacement of
(j, l, P ) ∈ Et if l /= n + 1 and

Et+1 = Et \ {(j, l, P )} ∪
⋃

m∈V ,P ′∈P:
(l,m,P ′)∈Et

{(j, m, P ∪ P ′)} .
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We call (j, l, P ) ∈ Et replaceable if it qualifies for either of the two replace-
ments. The replacements are illustrated in Figures 4 and 5. Loosely speaking,
the application of a predecessor replacement in Figure 4 reduces the pessimism
in the associated upper bound problem by enforcing the same value of ξ to be
chosen for the tasks in P and P1 (and, similarly, for those in P and P2). At
the same time, however, the number of arcs in the resulting auxiliary graph
(and hence the size of the associated upper bound problem) increases. In the
following, we assume that

{
Gt

}
t

with Gt = (V , Et) constitutes a sequence of

auxiliary graphs where G1 is defined in (9) and G2, G3, . . . result from an iter-
ated application of Definition 5.1. One can show by induction that every Gt is
acyclic and only contains arc labels that are elements of P .

i1

i2

j l

P1

P2

P

i1

i2

j l

P1

P2

P ∪ P1

P ∪ P2

Figure 4: Predecessor replacement of (j, l, P ) with two predecessor nodes.

m1

m2

j l

P1

P2

P

m1

m2

j l

P1

P2

P ∪ P1

P ∪ P2

Figure 5: Successor replacement of (j, l, P ) with two successor nodes.

We now show that the upper bound property of UART N 1 is preserved in
UART N t. The proof requires the following technical result.

Lemma 5.2 If {(ir, ir+1, Pr)}
R
r=1 ⊆ Et satisfies 1 ∈

⋃
r Pr, then i1 = 1.

Proof First we show that node 1 is a source in Gt. Then we prove that if
(j, l, Pjl) ∈ Et satisfies 1 ∈ Pjl, then j = 1. The assertion then follows.

By construction, node 1 is a source in G1. Definition 5.1 implies that node 1
remains a source under replacements of arcs (j, l, Pjl) with j /= 1, as well as suc-
cessor replacements of arcs (1, l, P1l). Since Definition 5.1 precludes predecessor
replacements of arcs (1, l, P1l), node 1 is a source in any Gt.

We now show by induction on t that if (j, l, Pjl) ∈ Et satisfies 1 ∈ Pjl, then
j = 1. By construction, this property holds for t = 1. Assume now that the
property holds for Gt and that Gt+1 results from a predecessor replacement
of (j, l, Pjl) ∈ Et (an analogous argument can be constructed for successor
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replacements). From Definition 5.1 we know that j /= 1, and the induction
hypothesis implies that 1 /∈ Pjl. Hence, if an arc (i, l, Pil) ∈ Et+1 \ Et satisfies
1 ∈ Pil, it must result from an arc (i, j, Pij) ∈ Et with 1 ∈ Pij . In this case, the
induction hypothesis implies that i = 1, thus proving the claim.

The next lemma shows that replacements preserve the upper bound property.

Lemma 5.3 If P ⊆ P(Gt), then P ⊆ P(Gt+1).

Proof Choose an arbitrary P ∈ P . By assumption, P ∈ P(Gt), that is, there

exists {(ir, ir+1, Pr)}
R
r=1 ⊆ Et with iR+1 = n + 1 and P ⊆

⋃
r Pr. We show

that P ∈ P(Gt+1). Assume that Gt+1 results from a predecessor replacement
of (j, l, Pjl) ∈ Et; the proof is widely parallel for successor replacements.

If (j, l) /= (ir, ir+1) for all r ∈ {1, . . . , R}, then P ∈ P(Gt+1) is vacuously
satisfied. Hence, assume that (j, l) = (is, is+1) for some s ∈ {1, . . . , R}. Since 1
is the unique source of G (see Section 1) and P ∈ P , we have 1 ∈ P . Lemma 5.2
then implies that i1 = 1. Hence, s /= 1 since (i1, i2, P1) does not qualify for a
predecessor replacement. Let i′r = ir for r = 1, . . . , s− 1 and i′r = ir+1 for r =
s, . . . , R. Similarly, let P ′

r = Pr for r = 1, . . . , s− 2 (if s > 2), P ′
s−1 = Ps−1 ∪Ps

and P ′
r = Pr+1 for r = s, . . . , R − 1. We have that

{
(i′r, i

′
r+1, P

′
r)
}R−1

r=1
⊆ Et+1,

i′R = n + 1 and P ⊆
⋃

r P ′
r , which ensures that P ∈ P(Gt+1). Since P was

chosen arbitrarily, the assertion follows.

We can now prove that the proposed replacements result in a monotonically
nonincreasing, convergent sequence of upper bounds for ART N .

Proposition 5.1 Let (xt, yt) denote an optimal solution of UART N t and f t =
yt

n+1 its objective value. Then:

(a) For every t, xt is a feasible allocation for ART N and f t is an upper bound
for the worst-case makespan of xt in ART N .

(b) There is T ∈ N such that there are no replaceable arcs in GT . For this T ,
xT is an optimal allocation for ART N and fT is the worst-case makespan
of xT in ART N .

(c) The sequence {f t}
T
t=1 is monotonically nonincreasing.

Proof By construction, xt constitutes a feasible allocation for every t. Hence,
assertion (a) is satisfied if P ⊆ P(Gt) for every t. Employing Lemmas 5.1 and
5.3, this follows by induction on t.

As for (b), we recall that G1 is acyclic. Hence, we can relabel the nodes of
G1 such that all (j, l, P ) ∈ E1 satisfy j < l. Every replacement removes one arc
(j, l, P ) ∈ Et, t = 1, 2, . . ., and adds less than

∣∣Et

∣∣ arcs (i, m, P ′) with i ≤ j and

m ≥ l, where one of these inequalities is strict. Since all (j, l, P ) ∈ Et satisfy
1 ≤ j, l ≤ n + 1, there is T ∈ N such that there are no replaceable arcs in GT .

All arcs (j, l, P ) ∈ ET satisfy j = 1 and l = n + 1 since otherwise, further
replacements would be possible. Hence, UART N T is equivalent to

min
x∈X

max
P∈P:

(j,l,P )∈ET

φ(x; P ).
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Since P ⊆ P(GT ), we have that P ⊆
{
P ∈ P : (j, l, P ) ∈ ET

}
⊆ P , and there-

fore UART N T is equivalent to ART N . This proves assertion (b).
To prove (c), we first show that if (x, y) is feasible for UART N t, t ∈

{1, . . . , T − 1}, then it is also feasible for UART N t+1. Assume that Gt+1 is
obtained from a predecessor replacement of (j, l, P ) ∈ Et. The argument is
widely parallel for successor replacements. UART N t+1 results from UART N t

by replacing the constraint yl − yj ≥ φ(x; P ) with new constraints of the form
yl − yi ≥ φ(x; P ∪ P ′) for i ∈ V and P ′ ∈ P with (i, j, P ′) ∈ Et. These new
constraints are less restrictive, however, because

yl − yi = (yl − yj) + (yj − yi)
(i)
≥ φ(x; P ) + φ(x; P ′)

(ii)
≥ φ(x; P ∪ P ′).

Here, (i) follows from the definition of UART N t, while (ii) is due to (A2).
Hence, (x, y) is feasible for UART N t+1, too. Since UART N t and UART N t+1

share the same objective function, assertion (c) follows.

Proposition 5.1 provides the justification for the following procedure.

Algorithm 5.1 Convergent upper bounds for ART N .

1. Initialisation. Construct G1 as defined in (9). Set t = 1.

2. Upper Bound Problem. Determine an optimal solution (xt, yt) for
UART N t and let f t = yt

n+1 denote its objective value.

3. Replacement. Choose a replaceable arc (j, l, P ) ∈ Et.

(a) If there is no such arc, terminate: x∗ = xt is an optimal allocation
for ART N and f∗ = f t is the worst-case makespan of x∗ in ART N .

(b) Otherwise, construct Gt+1 by applying a replacement to arc (j, l, P ),
set t→ t + 1 and go to Step 2.

The following algorithm properties are a direct consequence of Proposition 5.1.

Corollary 5.1 Algorithm 5.1 terminates with an optimal allocation x∗ for ART N
and the worst-case makespan f∗ of x∗ in ART N . Moreover, {xt}t represents
a sequence of feasible allocations for ART N and {f t}t a monotonically nonin-
creasing sequence of upper bounds for their objective values in ART N .

By combining Algorithms 4.1 and 5.1, we obtain monotonically convergent
lower and upper bounds for the optimal value of ART N , together with feasible
allocations xt ∈ X whose worst-case makespans are bracketed by these bounds.
This provides us with feasible allocations that converge to the optimal allocation
and whose suboptimality can be quantified at any iteration.

The tractability assumption (A3) allows us to reduce the set of meaningful
replacement candidates in Step 3 of Algorithm 5.1 as follows.

Proposition 5.2 Let (x∗, y∗) denote any optimal solution of UART N t and
f∗ = y∗

n+1 its objective value. If (A3) holds, we have:

(a) If y∗
l −y∗

j > φ(x∗; P ) for a replaceable arc (j, l, P ) ∈ Et, then UART N t+1

with Gt+1 obtained from Gt by replacing (j, l, P ) has an optimal value of
f∗, too.
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(b) If y∗
l −y∗

j > φ(x∗; P ) for all replaceable arcs (j, l, P ) ∈ Et, then UART N s

with s > t and Gs obtained from Gt by any sequence of replacements has
an optimal value of f∗, too.

Remark. According to assertion (a), replacing any arc (j, l, P ) ∈ Et that
satisfies the described condition leads to the same upper bound as UART N t.
Since we intend to reduce this bound, we may disregard all such replacement
candidates in Step 3 of Algorithm 5.1. Part (b) describes a condition under
which x∗ is the optimal allocation and f∗ the optimal value of ART N .

Proof of Proposition 5.2 Assume that (a) is false, that is, y∗
l −y∗

j > φ(x∗; P ),
but there is a feasible solution (x′, y′) for UART N t+1 that has an objective
value smaller than f∗. From the argumentation in the proof of Proposition 5.1
(c) we know that (x∗, y∗) is feasible for UART N t+1. Due to (A3),

(xλ, yλ) = λ(x′, y′) + (1− λ)(x∗, y∗) for λ ∈ (0, 1]

is also feasible for UART N t+1 and has an objective value smaller than f∗. We
show that for small λ, (xλ, yλ) is feasible for UART N t, too. Since Et \Et+1 =
{(j, l, P )}, we only need to show that yλ

l − yλ
j ≥ φ(x; P ). For sufficiently small

λ, this follows from continuity of φ(·; P ) in its first component, which is a
consequence of (A3), and the fact that y∗

l −y∗
j > φ(x∗; P ). Since UART N t and

UART N t+1 share the same objective function, this implies that (x∗, y∗) is not
optimal for UART N t. Thus, our assumption is false, that is, (a) must be true.

As for (b), let us now assume that y∗
l − y∗

j > φ(x∗; P ) for all replaceable

arcs (j, l, P ) ∈ Et. In this case, assertion (a) guarantees that (x∗, y∗) remains
optimal for Gt+1 if Gt+1 results from applying one replacement to Gt. Assume
that Gt+1 results from a predecessor replacement of (j, l, P ) ∈ Et (the proof for
successor replacements is analogous). We then have

(y∗
l − y∗

i ) = (y∗
l − y∗

j ) + (y∗
j − y∗

i )
(i)
> φ(x∗; P ) + φ(x∗; P ′)

(ii)
≥ φ(x∗; P ∪ P ′) ∀ (i, j, P ′) ∈ Et,

where (i) follows from the assumption and (ii) is due to (A2). Hence, the
condition described in assertion (b) is satisfied for all new arcs (i, l, P ∪ P ′) ∈
Et+1 as well. An iterated application of this argument shows that assertion (b)
remains valid for UART N s with Gs obtained from applying any sequence of
predecessor and/or successor replacements to Gt. This implies that UART N s

has an optimal value of f∗, and thus the claim follows.

UART N t may have several optimal solutions, and the conditions in Propo-
sition 5.2 may be satisfied for some but not all of them. If an optimal solution
(x∗, y∗) of UART N t does not satisfy the condition in Proposition 5.2 (a) for
(j, l, P ) ∈ Et, we can use its objective value f∗ = y∗

n+1 to determine whether
other optimal solutions (x′, y′) satisfy the condition. Indeed, this is the case if

max
x∈X,

y∈R
n+1
+

{
(yl − yj)− φ(x; P ) : yn+1 = f∗, yq − yp ≥ φ(x; P ′) ∀ (p, q, P ′) ∈ Et

}
> 0.

(10)
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Similarly, Proposition 5.2 (b) implies that x∗ is an optimal allocation for ART N
if all replacement candidates (j, l, P ) ∈ Et satisfy (10). Unfortunately, evalu-
ating the left-hand side of (10) is as difficult as solving UART N t, and it is
prohibitive to compute it for all (j, l, P ) ∈ Et. If we fix x to x∗ and optimise
(10) only over y, however, the maximisation can be computed in time O(

∣∣Et

∣∣)
by a combined forward and backward calculation [10]. In this case we might not
identify all replacement candidates that satisfy the conditions of Proposition 5.2.

Although Proposition 5.2 reduces the set of potential replacement candi-
dates, it provides no criterion for selecting specific arcs to be replaced. Ideally,
one would choose a replacement that leads to the largest reduction of the upper
bound. This approach is computationally prohibitive, however, since it requires
the solution of upper bound problems for all replacement candidates. Likewise,
‘first fit’ approaches are unsuited due to similar reasons as in Section 4. We
propose to choose a replacement for Gt that leads to the largest reduction of
the upper bound when x is fixed to the optimal allocation of UART N t. Like
the optimisation of (10) for fixed x, this evaluation requires time O(

∣∣Et

∣∣) and
can hence be implemented efficiently. At the same time, however, this selection
scheme is likely to lead to better results than naive ‘first fit’ approaches.

6 Numerical Results

We now apply our bounding technique to a circuit sizing problem with process
variations. For a survey of optimisation problems in circuit design, see [5].

An important problem in circuit design is to select the gate sizes in a circuit
with the goal to optimally balance three conflicting objectives: operating speed,
circuit size and power consumption. Loosely speaking, larger gate sizes increase
the circuit size and power consumption, but they reduce the gate delays. We can
model a circuit as a temporal network with gates as tasks and interconnections
between gates as precedences. The duration of task i ∈ V refers to the delay
of gate i. The makespan of the network corresponds to the delay of the overall
circuit, which in turn is inversely proportional to the circuit’s operating speed.
A resource allocation assigns sizes to all gates in the circuit.

The maximisation of circuit speed, subject to constraints on power consump-
tion and circuit size, constitutes an instance of model (1). In practice, however,
a circuit represents only one component of a larger system, and its eventual op-
erating speed depends on adjacent circuits (that are outside the model). Hence,
one commonly imposes a lower bound on the circuit speed and minimises the
circuit size instead. For the sake of simplicity, we ignore power consumption
here. The deterministic problem can then be cast as a variant of model (1):

inf
x∈[x,x],
y∈Y (x)

{∑

i∈V

Aixi : yn + dn(x) ≤ T
}

with Y (x) defined in (1b). (11)

Here, xi represents the size of gate i (with positive lower and upper bounds
xi and xi, respectively) and Aixi the area occupied by gate i. Assuming that
the circuit has a unique sink n (see Section 1), yn + dn(x) denotes the delay of
the overall circuit. We require that this quantity must not exceed some target
value T . Note that for some values of T , the problem may be infeasible, which
necessitates the use of the infimum operator instead of a minimum.
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In the following, we employ a resistor-capacitor model for the gate delays:

di(x) = 0.69
Ri

xi

(
C int

i xi +
∑

j:(i,j)∈E

C in
j xj

)
for i ∈ V, x ∈ X, (12)

where Ri, C int
i and C in

i denote the driving resistance, intrinsic capacitance and
input capacitance of gate i, respectively [5].

Variations in the manufacturing process entail that the factual gate sizes
deviate from the selected target sizes x by some random, zero-mean noise ξ ∈ Rn.
If this noise is small compared to x, we can express the resulting gate delays
di(x + ξ), i ∈ V , by a first-order Taylor approximation:

di(x; ξ) = di(x) +
[
∇di(x)

]#
ξ for i ∈ V.

Process variations exhibit non-negative correlations [32]. We can account for
such correlations by using an ellipsoidal uncertainty set:

Ξ =
{
ξ ∈ R

n : ∃u ∈ R
l . ξ = Σu, ‖u‖2 ≤ 1

}
with Σ ∈ R

n×l
+ . (13)

We thus seek to optimise the following variant of RT N :

inf
x∈[x,x]

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

{∑

i∈V

Aixi : yn + dn(x; ξ) ≤ T
}

(14)

For a suitable φ (see Section 3), this results in the following variant of ART N :

inf
x∈[x,x]

{∑

i∈V

Aixi : φ(x; P ) ≤ T ∀P ∈ P
}
. (15)

Again, problem (15) may be infeasible if T is chosen too small. An inspection of
Sections 4 and 5 reveals that we can apply our bounding approach to problem
(15) if we allow the bounds to attain values on the extended real line R ∪ {∞}.
A lower bound of ∞ signalises that problem (15) is infeasible, while an upper
bound of ∞ indicates that the determined gate sizes x may violate the target
value T for the overall circuit delay. The following result provides us with a
conservative reformulation of (14):

Proposition 6.1 For d and Ξ defined in (12)–(13), let

φ(x; P ) = I
#
P d(x) +

∥∥∥Σ#
(∑

i∈P

[
∇di(x)

]+)∥∥∥
2
+
∥∥∥Σ#
(∑

i∈P

[
∇di(x)

]−)∥∥∥
2
, (16)

where

[
f(x)
]+

=
∑

i:αi>0

αi

∏

j

(xj)
βij for f(x) =

∑

i

αi

∏

j

(xj)
βij

and
[
f(x)
]−

defined analogously for i with αi < 0. If X has a tractable represen-
tation, (15)–(16) constitutes a conservative reformulation of (14) that satisfies
(A1)–(A3).
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Proof It follows from [32] that φ as defined in (16) satisfies conditions (6) and
(A3). It remains to be shown that φ satisfies (A1) and (A2). For x ∈ X and
P ⊆ V , we introduce the following notation:

ϕ+(x, P ) =
∥∥∥Σ#
(∑

i∈P

[
∇di(x)

]+)∥∥∥
2

and ϕ−(x, P ) =
∥∥∥Σ#
(∑

i∈P

[
∇di(x)

]−)∥∥∥
2
.

As for (A1), we need to show that

φ(x; P ′) = I
#
P ′ d(x) + ϕ+(x, P ′) + ϕ−(x; P ′)

≥ I
#
P d(x) + ϕ+(x; P ) + ϕ−(x; P ) = φ(x; P )

for all x ∈ X and P ⊂ P ′ ⊆ V . Note that I#P ′ d(x) ≥ I#P d(x) since IP ′ ≥ IP and
d(x) ≥ 0 for all x ∈ X . We show that ϕ+(x; P ′) ≥ ϕ+(x; P ) and ϕ−(x; P ′) ≥
ϕ−(x; P ). The first inequality follows from the fact that Σ is element-wise non-

negative and
[
∇di(x)

]+
≥ 0 for all i ∈ V . The second inequality follows from

the positive homogeneity of norms and the fact that
[
∇di(x)

]−
≤ 0 for all i ∈ V .

(A2) is satisfied if

φ(x; P ) + φ(x; P ′ \ P ) = I
#
P d(x) + ϕ+(x; P ) + ϕ−(x; P )+

I
#
[P ′\P ] d(x) + ϕ+(x; P ′ \ P ) + ϕ−(x; P ′ \ P )

≥ I
#
P ′ d(x) + ϕ+(x, P ′) + ϕ−(x; P ′) = φ(x; P ′)

for all x ∈ X and P ⊂ P ′ ⊆ V . Note that I#P d(x) + I#[P ′\P ] d(x) = I#P ′ d(x).
Furthermore, we have

ϕ+(x; P ) + ϕ−(x; P ) + ϕ+(x; P ′ \ P ) + ϕ−(x; P ′ \ P ) ≥ ϕ+(x, P ′) + ϕ−(x; P ′)

by the triangle inequality.

We use Proposition 6.1 to determine robust gate sizes for the ISCAS 85
benchmark circuits.3 To this end, we set (xi, xi) = (1, 16) and select the circuit
parameters Ai, Ri, C int

i and C in
i according to the Logical Effort model [5, 33].

We set the target delay T to 130% of the minimal circuit delay in absence
of process variations. For ease of exposition, we assume independent process
variations, that is, Σ is a diagonal matrix. We set the diagonal elements of Σ
to 25% of the gate sizes determined by the deterministic model (11).

The data in Table 1 specifies the temporal networks corresponding to the
ISCAS 85 benchmark circuits. For a circuit with |V | tasks and |P| task paths,
the path-wise model (15) can be reformulated as a geometric program with
1+ |V |+2 |P| variables and 3 |P| constraints, see [5, 32]. Due to the choice of φ
in (16), the Jacobian of the constraints is dense. In view of the cardinality of P
in the benchmark circuits (see Table 1), a direct solution of (15) is prohibitive.

We now use our bounding approach to solve problem (15) for the benchmark
circuits. We terminate our algorithm after 50 iterations of the lower and upper
bound procedures. Since the lower bound requires the investigation of a po-
tentially large number of task paths (see Step 3(b) of Algorithm 4.2), we limit
its computation time per iteration to the time required by the upper bound.

3ISCAS 85 benchmark circuits: http://www.cbl.ncsu.edu/benchmarks.
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circuit # tasks # precedences # task paths
C432 196 336 83,926
C499 243 408 9,440
C880 443 729 8,642

C1355 587 1,064 4,173,216
C1908 913 1,498 729,056
C2670 1,426 2,076 679,954
C3540 1,719 2,939 28,265,874
C5315 2,485 4,386 1,341,305
C6288 2,448 4,800 1,101,055,638
C7552 3,719 6,144 726,494

Table 1: ISCAS 85 benchmark circuits.

All results are generated with CONOPT 3 on an Intel Xeon architecture with
2.83GHz.4 We employ warm starts for the calculation of both lower and upper
bounds, which significantly reduces the computational effort.

Table 2 presents the optimality gaps after 1, 25 and 50 iterations. It also
documents the reduction in overall circuit size when we use our bounding ap-
proach (for 50 iterations) instead of a model with constant decision rules (see
Section 2.2). We remark that the choice of Ξ and φ in (13) and (16) implies
that constant and affine decision rules result in the same solutions. Although
the initial optimality gaps can be large, our bounding approach reduces them
to reasonable values after a few iterations. Moreover, the computational effort
remains modest for all considered problem instances. Finally, we see that our
bounding approach can lead to drastic reductions in overall circuit size.

7 Conclusion

We studied a resource allocation problem on temporal networks. Our formu-
lation assumes that the functional relation between resource assignments and
task durations is uncertain and that resource allocations are evaluated in view of
their worst-case makespan. We showed that the resulting optimisation problem
is NP-hard. We developed convergent bounds for its optimal objective value, as
well as feasible resource allocations whose objective values are bracketed by these
bounds. We evaluated our approach on benchmark problems in circuit design.

We identify two promising avenues for future research. Firstly, some appli-
cation domains (e.g., scheduling problems) impose additional restrictions on the
consumption rate of resources. Such constraints result in non-convex problems
that render our bounding approach computationally prohibitive. Instead, one
could design a branch-and-bound algorithm that branches upon violations of
the additional constraints. For every node in the resulting branch-and-bound
tree, the incurred worst-case makespan can be bounded with our method.

Secondly, some application areas allow for adaptive resource allocations. Al-
though the resulting models can be solved as multi-stage robust optimisation
problems with decision-dependent structure, the available solution techniques
are unlikely to scale to large problems [15]. Recent developments in the area of
approximate dynamic programming [27] could constitute viable alternatives.

4CONOPT homepage: http://www.conopt.com.
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circuit first it. after 25 its. after 50 its. reduction
C432 34.13% solved after 11 its. 24.48%

0:03 1:03

C499 148.82% 12.31% 8.96% 42.89%
0:12 27:35 128:30

C880 16.78% 2.31% 0.70% 11.16%
0:11 2:44 8:39

C1355 113.16% solved after 24 its. 52.95%
0:17 17:31

C1908 37.05% 11.37% 6.90% 18.13%
1:17 6:58 21:06

C2670 14.62% 1.61% 1.02% 11.09%
0:51 24:03 99:35

C3540 37.66% 9.19% 7.40% 20.50%
4:22 16:31 56:06

C5315 15.23% 4.30% 2.29% 10.33%
6:56 30:39 52:37

C6288 68.24% 3.40% 2.52% 39.07%
6:33 45:09 69:08

C7552 11.03% solved after 12 its. 5.01%
5:54 15:08

Table 2: Results for the circuits from Table 1. Columns 2, 3 and 4 present
the optimality gaps and computation times (mins:secs) after 1, 25 and 50
iterations of our bounding approach, respectively. The last column quanti-
fies the reduction in overall circuit size if we employ our bounding approach
instead of a model with constant decision rules (see Section 2.2).
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Appendix: Expected Cardinality of P

For a fixed connectivity ρ ∈ (0, 1] and network size n ∈ N, we construct a random
temporal network G = (V, E) with V = {1, . . . , n} as follows. For each node
i ∈ V \ {n}, we choose the number of immediate successors {1, . . . , 3ρ(n− i)4}
uniformly at random. Afterwards, we choose the indices of the successor nodes
from {i + 1, . . . , n}, again uniformly at random. The resulting network is acyclic
and has the unique sink n. We show that the expected number of paths in this
network is exponential in n.

The probability that j is a successor of i, i < j, is

1

3ρ(n− i)4

'ρ(n−i)(∑

j=1

j

n− i
=
3ρ(n− i)4 (3ρ(n− i)4+ 1)

23ρ(n− i)4(n− i)
=
3ρ(n− i)4+ 1

2(n− i)
.

Let Xi be the random variable that describes the number of paths from node i
to node n. We have E(Xn) = 1 and obtain

E(Xi) =
3ρ(n− i)4+ 1

2(n− i)

n∑

j=i+1

E(Xj) for i < n.

In particular, E(Xn−1) = 1. For i < n, we can express E(Xi) as follows.

E(Xi) =
3ρ(n− i)4+ 1

2(n− i)

(
1 +

2(n− i− 1)

3ρ(n− i− 1)4+ 1

)
E(Xi+1)

=
3ρ(n− i)4+ 1

2(n− i)

3ρ(n− i− 1)4+ 1 + 2(n− i− 1)

3ρ(n− i− 1)4+ 1
E(Xi+1).

Partially unrolling the recursion, we obtain for E(X1) and m ∈ {2, . . . , n}:

E(X1) =

(
m−1∏

i=1

3ρ(n− i)4+ 1

2(n− i)

3ρ(n− i− 1)4+ 1 + 2(n− i− 1)

3ρ(n− i− 1)4+ 1

)

E(Xm)

=
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

(
m−1∏

i=1

3ρ(n− i− 1)4+ 1 + 2(n− i− 1)

2(n− i)

)

E(Xm)

=
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

(
m−1∏

i=1

[
1 +

3ρ(n− i− 1)4 − 1

2(n− i)

])

E(Xm).
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Let us investigate the term (3ρ(n − i− 1)4 − 1)/(2[n− i]). We show that for a
specific choice of m, this term is greater than or equal to some δ > 0. Note that

3ρ(n− i− 1)4 − 1

2(n− i)
≥
ρ(n− i− 1)− 1

2(n− i)
=
ρ(n− i)− ρ− 1

2(n− i)
=
ρ

2
−
ρ+ 1

2(n− i)
.

Assume that n ≥ 2/ρ+ 4. Then the last expression is greater than or equal to
ρ/4, a strictly positive number, for all i ≤ m := n− 3(2ρ+ 2)/ρ4. We obtain:

E(X1) =
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

(
m−1∏

i=1

(
1 +

3ρ(n− i− 1)4 − 1

2(n− i)

))

E(Xm)

≥
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

m−1∏

i=1

(
1 +

3ρ(n− i− 1)4 − 1

2(n− i)

)

≥
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

m−1∏

i=1

(
1 +

ρ

4

)

=
3ρ(n− 1)4+ 1

3ρ(n−m)4+ 1

(
1 +

ρ

4

)m−1
∈ Ω (n(1 + ρ/4)n) ,

where Ω(·) denotes the asymptotic lower bound in Bachmann-Landau notation.
Since the expected number of paths from node 1 to node n is already exponential,
the expected number of all paths in network G is exponential, too.
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