264 research outputs found

    Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed Stability and Robustness

    Full text link
    This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models for applications in machine learning, system identification and control. The new model class has ``built in'' guarantees of stability and robustness: all models in the class are contracting - a strong form of nonlinear stability - and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since generic methods for unconstrained optimization can be used. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.Comment: Journal submission, extended version of conference paper (v1 of this arxiv preprint

    Contracting Nonlinear Observers: Convex Optimization and Learning from Data

    Full text link
    A new approach to design of nonlinear observers (state estimators) is proposed. The main idea is to (i) construct a convex set of dynamical systems which are contracting observers for a particular system, and (ii) optimize over this set for one which minimizes a bound on state-estimation error on a simulated noisy data set. We construct convex sets of continuous-time and discrete-time observers, as well as contracting sampled-data observers for continuous-time systems. Convex bounds for learning are constructed using Lagrangian relaxation. The utility of the proposed methods are verified using numerical simulation.Comment: conference submissio

    Convex Identifcation of Stable Dynamical Systems

    Get PDF
    This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems

    A Behavioral Approach to Robust Machine Learning

    Get PDF
    Machine learning is revolutionizing almost all fields of science and technology and has been proposed as a pathway to solving many previously intractable problems such as autonomous driving and other complex robotics tasks. While the field has demonstrated impressive results on certain problems, many of these results have not translated to applications in physical systems, partly due to the cost of system fail- ure and partly due to the difficulty of ensuring reliable and robust model behavior. Deep neural networks, for instance, have simultaneously demonstrated both incredible performance in game playing and image processing, and remarkable fragility. This combination of high average performance and a catastrophically bad worst case performance presents a serious danger as deep neural networks are currently being used in safety critical tasks such as assisted driving. In this thesis, we propose a new approach to training models that have built in robustness guarantees. Our approach to ensuring stability and robustness of the models trained is distinct from prior methods; where prior methods learn a model and then attempt to verify robustness/stability, we directly optimize over sets of models where the necessary properties are known to hold. Specifically, we apply methods from robust and nonlinear control to the analysis and synthesis of recurrent neural networks, equilibrium neural networks, and recurrent equilibrium neural networks. The techniques developed allow us to enforce properties such as incremental stability, incremental passivity, and incremental l2 gain bounds / Lipschitz bounds. A central consideration in the development of our model sets is the difficulty of fitting models. All models can be placed in the image of a convex set, or even R^N , allowing useful properties to be easily imposed during the training procedure via simple interior point methods, penalty methods, or unconstrained optimization. In the final chapter, we study the problem of learning networks of interacting models with guarantees that the resulting networked system is stable and/or monotone, i.e., the order relations between states are preserved. While our approach to learning in this chapter is similar to the previous chapters, the model set that we propose has a separable structure that allows for the scalable and distributed identification of large-scale systems via the alternating directions method of multipliers (ADMM)

    Learning Stable Koopman Models for Identification and Control of Dynamical Systems

    Get PDF
    Learning models of dynamical systems from data is a widely-studied problem in control theory and machine learning. One recent approach for modelling nonlinear systems considers the class of Koopman models, which embeds the nonlinear dynamics in a higher-dimensional linear subspace. Learning a Koopman embedding would allow for the analysis and control of nonlinear systems using tools from linear systems theory. Many recent methods have been proposed for data-driven learning of such Koopman embeddings, but most of these methods do not consider the stability of the Koopman model. Stability is an important and desirable property for models of dynamical systems. Unstable models tend to be non-robust to input perturbations and can produce unbounded outputs, which are both undesirable when the model is used for prediction and control. In addition, recent work has shown that stability guarantees may act as a regularizer for model fitting. As such, a natural direction would be to construct Koopman models with inherent stability guarantees. Two new classes of Koopman models are proposed that bridge the gap between Koopman-based methods and learning stable nonlinear models. The first model class is guaranteed to be stable, while the second is guaranteed to be stabilizable with an explicit stabilizing controller that renders the model stable in closed-loop. Furthermore, these models are unconstrained in their parameter sets, thereby enabling efficient optimization via gradient-based methods. Theoretical connections between the stability of Koopman models and forms of nonlinear stability such as contraction are established. To demonstrate the effect of the stability guarantees, the stable Koopman model is applied to a system identification problem, while the stabilizable model is applied to an imitation learning problem. Experimental results show empirically that the proposed models achieve better performance over prior methods without stability guarantees

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Practical identifiability analysis of environmental models

    Get PDF
    Identifiability of a system model can be considered as the extent to which one can capture its parameter values from observational data and other prior knowledge of the system. Identifiability must be considered in context so that the objectives of the modelling must also be taken into account in its interpretation. A model may be identifiable for certain objective functions but not others; its identifiability may depend not just on the model structure but also on the level and type of noise, and may even not be identifiable when there is no noise on the observational data. Context also means that non-identifiability might not matter in some contexts, such as when representing pluralistic values among stakeholders, and may be very important in others, such as where it leads to intolerable uncertainties in model predictions. Uncertainty quantification of environmental systems is receiving increasing attention especially through the development of sophisticated methods, often statistically-based. This is partly driven by the desire of society and its decision makers to make more informed judgments as to how systems are better managed and associated resources efficiently allocated. Less attention seems to be given by modellers to understand the imperfections in their models and their implications. Practical methods of identifiability analysis can assist greatly here to assess if there is an identifiability problem so that one can proceed to decide if it matters, and if so how to go about modifying the model (transforming parameters, selecting specific data periods, changing model structure, using a more sophisticated objective function). A suite of relevant methods is available and the major useful ones are discussed here including sensitivity analysis, response surface methods, model emulation and the quantification of uncertainty. The paper also addresses various perspectives and concepts that warrant further development and use
    • …
    corecore