
A Behavioral Approach to Robust

Machine Learning

Max Revay,
BE (Hons 1) & BSc

A thesis submitted in fulfillment
of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

September 2021

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of the University or other institute of higher
learning, except where due acknowledgement has been made in the text.

Max Revay

September 2021

Abstract
Machine learning is revolutionizing almost all fields of science and technology and
has been proposed as a pathway to solving many previously intractable problems
such as autonomous driving and other complex robotics tasks. While the field has
demonstrated impressive results on certain problems, many of these results have not
translated to applications in physical systems, partly due to the cost of system fail-
ure and partly due to the difficulty of ensuring reliable and robust model behavior.
Deep neural networks, for instance, have simultaneously demonstrated both incred-
ible performance in game playing and image processing, and remarkable fragility.
This combination of high average performance and a catastrophically bad worst case
performance presents a serious danger as deep neural networks are currently being
used in safety critical tasks such as assisted driving.

In this thesis, we propose a new approach to training models that have built in
robustness guarantees. Our approach to ensuring stability and robustness of the
models trained is distinct from prior methods; where prior methods learn a model
and then attempt to verify robustness/stability, we directly optimize over sets of
models where the necessary properties are known to hold.

Specifically, we apply methods from robust and nonlinear control to the analysis and
synthesis of recurrent neural networks, equilibrium neural networks, and recurrent
equilibrium neural networks. The techniques developed allow us to enforce properties
such as incremental stability, incremental passivity, and incremental ℓ2 gain bounds /
Lipschitz bounds. A central consideration in the development of our model sets is the
difficulty of fitting models. All models can be placed in the image of a convex set, or
even RN , allowing useful properties to be easily imposed during the training procedure
via simple interior point methods, penalty methods, or unconstrained optimization.

In the final chapter, we study the problem of learning networks of interacting models
with guarantees that the resulting networked system is stable and/or monotone, i.e.,
the order relations between states are preserved. While our approach to learning in
this chapter is similar to the previous chapters, the model set that we propose has
a separable structure that allows for the scalable and distributed identification of
large-scale systems via the alternating directions method of multipliers (ADMM).

Acknowledgements

Firstly, I would like to thank Ian for his guidance and support. My interest in
control, machine learning and mathematics is in no small part inspired by the insight
and creativity that he displays when tackling complex problems. The ideas developed
throughout this work would have remained in their infancy if not for Ian’s help.

Ray, you have been a tremendous help and it has been a pleasure working with you.
I hope that we can work together again in the future.

Mum, Dad, Alex, David, Murli, Penny, Aiden, Layla and Noodle. Thank you for
your endless support and patience as I have navigated the windy roads of a Ph.D.
Thankyou for feigning interest in my work. None of this would have been possible
without you.

To the Cult of the Green Dots and the extended ACFR family: Felix, Felix, Jasper,
Vera, Wei, James, Wilhelm, Jacob, Stu, Jackson, Tara, Jen, Johnny, Nic (and more...).
I was told that a Ph.D. is supposed to be hard and stressful. It turns out that with
the right people, it is also really fun.

Nic, Jack, Sam, Marcus, and Calv, thank you for the endless boardgames, flips and
wholesome hangs. Calvin, thanks for dinner; keep flipping, I hear its zero EV.

Ali and Marley, thank you for keeping me sane during timeless lockdowns and for
your patience as I finished my thesis and if Putin manages to steal all the algebra, so
be it.

Sometimes science is more art than science.
- Richard D. Sanchez III

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents v

Nomenclature x

1 Introduction 1

1.1 Learning Stable and Robust Models 1

1.2 Publications . 6

2 Background 8

2.1 Learning from Data . 9

2.2 Model Structures . 14

2.2.1 Static Models . 15

2.2.2 Dynamic Model Structures . 18

2.3 Behavioral Constraints . 20

2.3.1 Robustness . 20

2.3.2 Monotonicity . 23

2.3.3 Stability of Discrete Time Systems 24

2.4 Relaxations . 29

Contents vi

2.4.1 Convex Relaxations of Dissipation Inequalities 29

2.4.2 Integral Quadratic Constraints 30

2.4.3 Sum of Squares Programming 34

2.5 Numerical Methods . 36

2.5.1 Unconstrained Optimization Methods 37

2.5.2 Constrained Optimization . 39

2.5.3 Operator Splitting and ADMM 43

3 Robust Recurrent Neural Networks 48

3.1 Introduction . 49

3.2 Problem Formulation . 51

3.3 Robust RNNs . 52

3.3.1 Model Structure . 52

3.3.2 Description of by Incremental Quadratic Constraints 53

3.3.3 Convex Parametrization of Robust RNNs 54

3.3.4 Contracting Implicit Recurrent Neural Networks 55

3.3.5 Expressivity of the Robust RNN Model Set 57

3.4 Numerical Example . 59

3.4.1 Training Procedure and Model Evaluation 60

3.4.2 Results . 62

3.5 Proofs . 63

4 Lipschitz Bounded Equilibrium Networks 68

4.1 Introduction . 69

4.2 Related work . 70

4.3 Problem Formulation and Preliminaries 71

4.3.1 Problem statement . 71

4.3.2 Preliminaries . 72

4.4 Main Results . 74

Contents vii

4.4.1 Direct Parameterization for Unconstrained Optimization . . . 76

4.4.2 Monotone Operator Perspective 77

4.4.3 Contracting Neural ODEs . 78

4.4.4 Model Expressivity . 79

4.5 Experiments . 82

4.5.1 MNIST Experiments with Fully-Connected Networks 83

4.5.2 CIFAR-10 Experiments With Convolutional Networks 85

4.6 Experimental Results on MNIST & CIFAR Image Classification . . . 87

4.7 Proofs . 91

4.7.1 Proof of Proposition 4.3 . 95

4.8 Training Details . 99

4.8.1 MNIST Example . 99

4.8.2 CIFAR-10 Example . 100

5 Recurrent Equilibrium Networks 102

5.1 Introduction . 103

5.1.1 Learning and Identification of Stable Models 104

5.1.2 Robustness Certification of Neural Networks 105

5.1.3 Applications of Stable and Robust Models in Data-Driven Con-
trol and Estimation . 106

5.1.4 Convex and Direct Parameterizations 107

5.2 Learning Stable and Robust Models 108

5.3 Recurrent Equilibrium Networks . 110

5.3.1 Flexibility of Equilibrium Networks 112

5.3.2 Acyclic RENs and Well-Posedness 112

5.3.3 Computational Details of RENs 113

5.3.4 Contracting and Robust RENs 113

5.4 Convex Parameterizations of RENs 115

5.5 Direct Parameterizations of RENs . 118

Contents viii

5.5.1 Direct Parameterizations of Contracting RENs 118

5.5.2 Direct Parameterizations of Robust RENs 120

5.5.3 Random Sampling of Nonlinear Systems and Echo State Networks124

5.6 Expressivity of REN Model Class . 125

5.7 Use Case: Stable and Robust Nonlinear System Identification 127

5.7.1 Benchmark Datasets and Training Details 128

5.7.2 Results and Discussion . 129

5.8 Use Case: Learning Nonlinear Observers 134

5.8.1 Example: Reaction-Diffusion PDE 137

5.9 Use Case: Data-Driven Feedback Control Design 142

5.9.1 Echo State Network and Convex Optimization 143

5.9.2 Example . 145

5.10 Conclusions and Future Work . 147

5.11 Proofs . 149

6 Distributed Identification Of Monotone and/or Contracting Net-
works 153

6.1 Introduction . 154

6.1.1 Identification of Networked Systems 156

6.1.2 Identification of Stable and Contracting Models 157

6.1.3 Monotone and Positive Systems 158

6.1.4 Model Quality-of-Fit Criteria 159

6.2 Preliminaries and Problem Setup . 160

6.2.1 Behavioural Properties via Differential Dynamics 160

6.2.2 Network Structure . 162

6.2.3 Separable Optimization using ADMM 164

6.2.4 Problem Statement . 165

6.3 A Model Class with Convex Behavioural Constraints 165

6.3.1 Stability and Monotonicity Constraints 166

Contents ix

6.3.2 Specific Model Parametrizations 167

6.4 Distributed Identification . 168

6.4.1 Distributed Model . 168

6.4.2 Convex Bounds for Equation Error 169

6.4.3 Alternating Directions Method of Multipliers (ADMM) 171

6.5 Discussion . 172

6.5.1 Conservatism of the Separable Model Structure 172

6.5.2 Consistency . 175

6.5.3 Iteration Complexity of Distributed Algorithm 176

6.5.4 Other Quality of Fit Criteria 176

6.6 Numerical Experiments . 177

6.6.1 Identification of Linear Positive Systems 179

6.6.2 Identification of Nonlinear Models 181

6.6.3 Identification of Traffic Networks 184

6.7 Conclusion . 194

6.8 Proofs . 196

7 Conclusion 200

7.1 Future Research Directions . 201

List of References 205

Nomenclature

List of Common Sets

R The set of real numbers
Rn The set of real valued n-dimensional vectors
Rn×m The set of real valued n by m dimensional matrices
Sn The set of n by n, symmetric matrices
ℓn

2e The set of n-dimensional sequences
ℓn

2 The set of square summable n-dimensional sequences
D The set of diagonal matrices
D+ The set of diagonal, positive definite matrices

List of Symbols

A ≻ B A−B is positive definite
A ⪰ B A−B is positive semidefinite
A ≺ B A−B is negative definite
A ⪯ B A−B is negative semidefinite
A > B A−B is elementwise positive
A < B A−B is elementwise negative
|v|p the p-norm of v

|v|M shorthand for v⊤Mv

List of Acronyms

Nomenclature xi

ADMM Alternating Directions Methods of Multipliers
aREN Acyclic Recurrent Equilibrium Network
CCP Closed, Convex, Proper
ci-RNN Contracting Implicit Recurrent Neural Network
c-aREN Contracting Acyclic Recurrent Equilibrium Network
c-REN Contracting Recurrent Equilibrium Network
DNN Deep Neural Network
GAM Generalized Additive Model
IQC Integral Quadratic Constraint
iQC Incremental Quadratic Constraint
ISS Input to State Stability
LBEN Lipschitz Bounded Equilibrium Network
LMI Linear Matrix Inequality
LMT Lipschitz Margin Training [216]
LSTM Long Short Term Memory [94]
LTI Linear Time Invariant
MON Monotone Operator equilibrium Network [238]
NARX Nonlinear AutoReggressive model with eXogenous input
NEE Normalized Equation Error
NSE Normalized Simulation Error
NRMSE Normalized Root Mean Squared Error
ODE Ordinary Differential Equation
PDE Partial Differential Equation
ReLU Rectified Linear Unit
REN Recurrent Equilibrium Network
R-REN Robust Recurrent Equilibrium Network
RNN Recurrent Neural Network
SDP Semidefinite Program
SNR Signal to Noise Ratio

Chapter 1

Introduction

1.1 Learning Stable and Robust Models

Machine learning and related fields such as system identification and reduced order
modelling study the automated extraction of patterns from data. The goal is to con-
struct models that are able to explain the observed data and then make predictions
when exposed to new data. Recently, the increasing power of computational resources
and availability of data has revolutionized the field of machine learning, and in par-
ticular deep learning, and led to unexpected and astounding progress in areas such
as image classification [87], game playing [196], robotics [121] and it is expected to
impact many more fields of science and engineering.

The fundamental object of interest in deep learning is the deep neural network: a
model class whose apparent flexibility, accuracy, and scalability has led to renewed
interest in neural networks, and more generally learning and data-driven methods in
control, identification, and related areas [246, 121, 56].

On the other hand, it has been observed that neural networks can be very sensitive to
small input perturbations in, e.g., image classification [209], reinforcement learning
[180], language modelling [41], and many more. This type of extreme sensitivity
is not limited to contrived adversarially chosen examples; operations such as image

1.1 Learning Stable and Robust Models 2

compression, cropping, and resizing have been shown to destroy classifier performance
[255]. These issues present a significant risk when deploying models as components
in safety-critical systems such as autonomous driving [29], aircraft collision avoidance
[102] and surgical robotics [142]. As noted by a recent RAND Corporation report on
the state of AI [210]:

“The current state of AI verification, validation, test, and evaluation (VVT&E) is
nowhere close to ensuring the performance and safety of AI applications, particularly
where safety-critical systems are concerned.”

The apparent brittleness of neural networks has inspired a considerable amount of
research into neural network verification. This is the problem of finding formal guar-
antees that a bounded perturbation will not destroy a model’s performance. There
are many types of verification that have been developed for different problems. For
instance, [239, 59, 67] construct convex bounds on network outputs subject to con-
vex perturbation sets, [112, 148] verify the stability of recurrent models, [245] verify
the stability of neural network controllers and [66] certify bounds on the Lipschitz
constant of neural networks. See [240] for a thorough survey on the topic.

This brittleness of learned models is not a problem unique to deep learning. For
instance, the sensitivity and instability of model structures is a well-known problem
in the system identification community. Furthermore, the problem of training models
with stability or robustness guaranteed a priori is significantly harder than the ver-
ification problem, and many methods have been developed for training stable linear
[131, 117, 147] and nonlinear models [214, 219, 110].

Current approaches to robust learning first train a model and then attempt to verify
certain properties of the learned model. Few researchers have considered the problem
of specifying these properties a-priori, and then training a model within the con-
straints of that specification. Ensuring such properties a-priori is useful for a number
of reasons:

1. Firstly, there is ample empirical evidence suggesting that joint learning of
models and their stability or robustness certificates can improve generalization

1.1 Learning Stable and Robust Models 3

[80, 176, 221, 180].

2. Secondly, there are many situations where it is essential that a learned model
satisfies some property, e.g., stability in learned observers, or monotonicity for
models that are to be used in conjunction with control strategies that rely on
monotonicity [173, 184]. One could learn a black-box model and then attempt
to verify this property, but if it does not satisfy the property then it is not clear
how to correct this. Learning models with the property guaranteed fixes this
issue.

3. Finally, in situations such as on-line adaptation or continual life-long learning,
it is necessary that a learned module will not destabilize a system with which
it is interacting. This can be achieved by learning models that are certified to
satisfy the conditions of the small gain or passivity theorems, or by ensuring
that the interconnected system has a stability certificate.

The main focus of this thesis is bridging the gap between certifying model robustness
and training models with robustness certified a priori. Our interest stems from control
applications; we aim to develop tools for training learning enabled components for
control systems that are gauranteed to maintain system robustness. Some essential
characteristics of such methods are:

1. Flexibility: Trained models should be as expressive as possible while still satis-
fying the specified robustness constraints.

2. Tractability: The problem of training a model with a robustness certificate
should not be significantly harder than training a model without a robustness
certficiate.

3. Compatability: The methods developed should be compatible with other tools
that are commonly used in control engineering.

Understanding properties such as stability and sensitivity of interconnections of (pos-
sibly nonlinear) systems has been a long-standing problem in control theory [252]

1.1 Learning Stable and Robust Models 4

and many methods have been developed including: passivity methods in robotics
[86], networked systems analysis via dissipation inequalities [10], µ analysis [256] a
number of other alternate methods for nonlinear control [225]. These approaches are
unified under the the theory of integral quadratic constraints (IQC) [145].

Recently, the IQC framework has been applied to the problem of certifying a neural
network’s Lipschitz constant to achieve state of the art results [66, 67], however, as
mentioned above, IQC theory has many further connections to methods used in robust
control. Consequently, we believe that there is significant utility in further extending
the IQC framework to both neural network analysis and synthesis.

Contributions

The work in this thesis can be roughly divided into two sections. In chapters 3 to
5, we study the problem of training neural networks with certain properties guaran-
teed a priori. The particular properties certified are closely related to those studied in
IQC theory and include: stability, incremental gain bounds (a.k.a. Lipschitz bounds),
and incremental passivity. Our approach achieves the same quality of bounds as [66]
(i.e. the current state of the art), however, it applies to a much larger class of neu-
ral networks including feedforward, recurrent and a recently proposed model class
known as equilibrium networks [14, 15, 238]. Additionally, our approach leads to sim-
pler constraints, allowing them to be easily imposed during training via constrained
optimization, or in some cases via unconstrained optimization schemes.

In Chapter 6, we study the problem of simultaneously learning multiple interacting
models and a stability and monotonicity certificates for those interacting models. The
method developed applies to a broad class of models that includes the neural networks
studied in the previous chapters.

A complete list of contributions for each chapter is as follows:

• In chapter 3, we propose a new convex parameterization of recurrent neural
networks satisfying stability and robustness conditions. The stability and ro-
bustness conditions are based on incremental quadratic constraints and are less

1.1 Learning Stable and Robust Models 5

conservative than prior methods. We then show that the proposed model is
more expressive than previous model sets and contains all previously published
sets of stable RNNs and all stable linear time-invariant (LTI) systems.

By using an implicit parameterization, we ensure that the parameterization is
jointly convex in the model parameters, stability certificate, and the multipliers
associated with the incremental quadratic constraint. This allows us to train
models using an interior point method. Numerical experiments suggest that
these constraints are beneficial for model robustness, generalizability, and lead
to tight bounds on the Lipschitz constant.

• In chapter 4, we study the problem of learning static neural network mappings
with guaranteed Lipschitz bounds. The results are developed in the context
of a new class of neural networks: equilibrium networks, however, it is easy to
show that this class contains many standard neural network structures. Con-
sequently, the results generalize the incremental quadratic constraint approach
of [66] to the analysis of a much larger class of neural networks. We show that
the proposed model class permits a so-called direct parameterization, I.e., the
model can be parameterized by a vector in Rn. This allows for the training
of Lipschitz bounded equilibrium networks via unconstrained gradient descent
with almost no extra computational cost required. In addition, we prove the
existence and uniqueness of solutions to the equilibrium network equation with
less restrictive conditions on the weight matrix and more natural assumptions
on the activation functions via novel connections to convex optimization and
contracting dynamical systems. Finally, we show via small-scale image classifi-
cation experiments that the proposed parameterizations can provide significant
improvement in robustness to adversarial attacks with little degradation in nom-
inal accuracy. Furthermore, we observe small gaps between certified Lipschitz
upper bounds and observed lower bounds computed via adversarial attack.

• In chapter 5, we introduce a new model class, the recurrent equilibrium network
(RENs). All RENs are contracting – a strong form of nonlinear stability – and
the models can satisfy prescribed incremental integral quadratic constraints

1.2 Publications 6

(IQC), including Lipschitz bounds and incremental passivity. We show that
the set of RENs contains all models developed in chapters 3 and 4 as special
cases. Additionally, unlike the sequence-to-sequence mappings from Chapter
3, the REN permits a direct parameterization, significantly simplifying model
training. The performance and robustness of the new model set is evaluated
on benchmark nonlinear system identification problems. We also present novel
applications of stable and robust model sets in data-driven nonlinear observer
design and control with stability guarantees.

• The approaches taken in chapters 3 to 5 have limited scalability due to the
requirement of centralized computation and a centralized model. In chapter 6,
we propose methods for learning large-scale networked models with guarantees
that their interconnection will be stable and/or monotone, i.e., the order rela-
tions between states are preserved. The main challenges that we address are:
simultaneously searching for model parameters and a certificate of stability,
and scalability to networks with hundreds or thousands of nodes. We propose
a model set that admits convex constraints for stability and monotonicity, and
has a separable structure that allows distributed identification via the alternat-
ing directions method of multipliers (ADMM). The performance and scalability
of the approach is illustrated on a variety of linear and nonlinear case studies,
including a nonlinear traffic network with a 200-dimensional state space.

1.2 Publications

The following is a list of publications whose content features in this thesis. Note that
publication 4 is still under review.

Max Revay and Ian R. Manchester. Contracting implicit recurrent neural networks:
Stable models with improved trainability. L4DC, 2020.

Max Revay, Ruigang Wang, and Ian R. Manchester. A convex parameterization of
robust recurrent neural networks. Control Systems Letters, 2021.

1.2 Publications 7

Max Revay, Ruigang Wang, and Ian R. Manchester. Distributed identification of
contracting and/or monotone network dynamics. Transactions on Automatic Con-
trol, 2021.

Max Revay, Ruigang Wang, and Ian R. Manchester. Recurrent equilibrium networks:
Flexible dynamic models with guaranteed stability and robustness. Transaction on
Automatic Control (Under Review), 2021.

Max Revay, Ruigang Wang, and Ian R. Manchester. Recurrent equilibrium net-
works: Unconstrained learning of stable and robust dynamical models. Conference
on Decision and Control, 2021.

The following content of the following publication also appears in this thesis, however,
it is currently hosted on arXiv with future plans for publication.

Max Revay, Ruigang Wang, and Ian R. Manchester. Lipschitz bounded equilibrium
networks. arXiv preprint arXiv:2104.05942, 2021.

I was the second author for the following publication. While the experience I gained
from working on this publication has helped shaped many of my ideas, no content
explicitly appears in this thesis.

Humberto Stein Shiromoto, Max Revay, and Ian R. Manchester. Distributed non-
linear control design using separable control contraction metrics. Transactions on
Control of Networked Systems, 2021.

Chapter 2

Background

In this chapter, we attempt to contextualize the contributions of this thesis. We
do not attempt a complete literature review as the ideas developed are influenced
by many areas and a complete review would be unwieldy. Instead, we provide an
overview of our motivations and the foundational ideas that form the basis for each
chapter.

This chapter is divided into five sections. Firstly, we provide a brief introduction
to statistical learning theory with a focus on the importance of robustness, gener-
alization, and regularization. We then introduce a taxonomy of model structures
that we will study in the later chapters. In section 2.3, we motivate the need for
incorporating known behavioral properties of a model into the training procedure.
This is motivated from a regularization point of view as a means of improving model
generalization and/or robustness. The properties discussed in Section 2.3 have a com-
mon structure, they can all be written as infinite dimensional inequality constraints
that are intractable for many model classes. In Section 2.4 we present a number
of techniques that can be used to convert the intractable inequality constraints into
constraints that may be tackled via numerical optimization. Finally, in Section 2.5,
we present a collection of numerical methods that can be used to fit models with the
desired constraints.

2.1 Learning from Data 9

2.1 Learning from Data

The term machine learning was first used in 1952 by Arthur Samuel, however, the
foundational ideas can be traced back to early methods in statistics, e.g., Bayes’
theorem and the least squares method in the early 19th century.

Today, the problem of learning models from data appears within many fields under
different names. For instance, areas such as statistical learning theory, frequentist and
Bayesian inference, deep learning, parameter estimation, system identification, and
model reduction differ philosophically and in aspects such as data type and source,
model structure, and objectives, however, all these methods amount to learning prob-
lems where a model is fit by optimizing a ‘loss’ function over a model set depending
on data.

In this section, we provide an introduction to some core concepts in statistical learning
theory.

Empirical Risk Minimization

Empirical risk minimization originates from statistical learning theory and provides
a well-reasoned approach to solving learning problems. We assume that we have
labeled data of the form (u1, y1), ..., (uN , yN) where ui ∈ U and yi ∈ Y are the ith
model input and output, respectively. This is a very general framework where the U
and Y could be signals, text, images, labels, or numerical values. In this work, we
are largely concerned with learning sequence-to-sequence mappings where U and Y
are sequences. In Chapter 4, however, we will also consider the problem of image
classification where U is the space of images and Y are class labels.

We assume that we have a loss function ℓ : Y ×Y 7→ R, that compares the predicted
and true outputs, and provides a score of how good that prediction was. In this
thesis, we use perhaps the two most common loss functions: mean squared error and
the cross entropy loss functions. The goal of supervised learning is to construct a
model ŷ = f(u) which produces accurate outputs when supplied with new data. We

2.1 Learning from Data 10

can write the supervised learning problem succinctly as:

f ∗ = arg min
f : U 7→Y

E p(u,y) [ℓ(f(u), y)] , (2.1)

where p(u, y) is a fixed joint probability distribution from which the training data
is sampled. In practice, (2.1) is intractable for two reasons: firstly, we do not know
the distribution p(u, y), and secondly, solving an optimization problem over the space
of functions f : U 7→ Y is intractable. We make two simplifications to arrive at a
tractable approximation of (2.1). Firstly, we approximate the expectation over p(u, y)
by sampling. Secondly, we select a parameterization f := fθ where θ ∈ Θ. This leads
to the following problem:

θ∗ = arg min
θ∈Θ

1
N

N∑
i=1

ℓ(fθ(ui), yi). (2.2)

Problem (2.2) is known as empirical risk minimization and is the basis of many
supervised learning algorithms. A considerable advantage of this framework is that it
allows for a principled approach to analyzing model generalization and convergence
of learning algorithms.

We will explore some of the key concepts in learning using the cartoon shown in Figure
2.1. Here, we have represented the joint probability distribution p(u, y) by the gray
area, and the black points represent training samples drawn from the distribution
p(u, y). Problem (2.2) searches for a function fθ that fits the training data (black
dots). The learning problem, however, is ill-posed; there are many possible functions
that could have generated the observed data, e.g., the red and blue lines. To overcome
ill-posedness of empirical risk minimization, we can add further conditions specifying
what makes a good model, e.g., we could specify that we want the smoothest model.
We then hope that this model will continue to produce accurate predictions when new
data is drawn from p(u, y). We will now make some of these concepts more precise.

2.1 Learning from Data 11

Figure 2.1 – Here, we show two possible solutions to the same learning problem.
The two solutions have the same loss however one is much simpler. In such cases
regularization is used to choose the simplest solution. In this case, the black line.

2.1 Learning from Data 12

Generalization:

As mentioned above, problem (2.1) is not tractable so instead we approximate it by
Problem (2.2). The difference in loss between these two problems is often referred to
as the generalization gap; ensuring that the generalization gap is small is a key prob-
lem in machine learning. Many approaches to analyzing generalization in statistical
learning theory attempt to construct a generalization bound, i.e., a bound on (2.1)
that depends on the solution to (2.2), the data and a measure of model complexity,
e.g., [18]. Such bounds then allow a practitioner to reason about how much data is
required to train effective models.

Bias Variance Trade-off:

Learning is an inherently noisy process as models are estimated from randomly sam-
pled training data. When analyzing how a model generalizes, it is helpful to de-
compose the expected error into two components: the error resulting from the best
model in our model set and the error due to mis-estimation of that model due to the
random nature of the learning process. The tension between these two components
is mediated by the model complexity, leading to a trade-off commonly known as the
bias-variance trade-off.

Roughly speaking, when a model set is more expressive (complex), the best model
in our model set can capture the true system behavior and lead to a good solution
to (2.1). However, the solutions to (2.2) will have high variance and there will be a
large generalization gap. This is the error due to variance. When the model set is less
expressive, the results of Problem (2.2) will be closer to the best model in the model
class, however, the model may not be expressive enough to capture the true behavior
of the system, leading to a bias. When a model has too much error from bias, it has
been under-fit. When the error due to variance outweighs the error due to bias, the
model is said to have been over-fit. The need to balance these competing sources of
error has motivated methods for controlling model complexity in a process known as
regularization.

2.1 Learning from Data 13

Regularization:

Regularization refers to a collection of techniques that are used to constrain or reduce
model complexity as a means of balancing the bias-variance trade-off. Regularization
also plays a distinct role in choosing between models with equivalent training set
performance. Consequently, regularization techniques have a large effect on the gen-
eralization performance and the resulting model properties, often called an inductive
bias.

Regularization can be seen as introducing a secondary optimization objective; within
the set of models with small training error, find a simple model that will have a small
generalization gap.

Techniques such as dropout [205], weight decay [114], Tikhonov/Ridge regression [60,
Sec. 7], subset selection/regressor pruning in system identification [28, 200] and deep
learning [95], Lipschitz regularization [80] encourage model simplicity by reducing
model size or minimizing some measure that is closely related to model capacity
[18, 104, 150, 77, 122]. Regularization is being used to discard models with undesirable
properties, in this case, models that may have poor generalization performance.

While it is preferable to select models that have good generalization performance,
there are many ways of achieving this and there are other properties that it is also
useful or even necessary for a model to possess. For instance:

1. Robustness: Recent work has shown that deep learning models can be extremely
sensitive to input perturbations [79]. In such cases it may be necessary to
regularize the sensitivity of the neural network.

A less obvious type of robustness appears when studying models that are defined
by solutions to implicit equations or optimization problems which can have no,
one or many solutions. For such a model to be robust, there must be a unique
solution with a robust iterative method for finding solutions.

2. Stability: When learning dynamic models, it is not uncommon to encounter
unstable models, even if the underlying system is stable. Such models have

2.2 Model Structures 14

extremely poor predictive performance which necessitates the development of
specialized methods that guarantee the stability of the resulting model [220,
214, 148, 113]. Furthermore, many problems such as observer design and im-
itation learning require the learned model to be stable [110]. There is also a
large amount of empirical evidence from the system identification community
that stability constraints can drastically improve the generalization performance
[220, 218, 214].

3. Domain Knowledge: Many learning problems have known underlying properties
derived from theory or common sense. Incorporating known model properties
as constraints is sometimes referred to as side information [3] and can be an
extremely effective regularizer as it can reduce the estimator’s variance with a
minimal cost to the bias.

For instance, isotonic regression enforces a known ordering relationship between
the input and output variables; a property called monotonicity. This is useful
in certain machine learning applications for security or fairness reasons [125].
Monotonicity also has many other applications, e.g., ensuring well-posedness
[238, 214], guaranteeing convexity of an input-output mapping [35, 6, 235] or
invertibility [96].

The methods required to enforce these types of properties depend on the model class
being optimized over. In the next section, we will introduce some common model
classes for learning nonlinear mappings. In Section 2.3, we will then expand on
points 1-3 above and provide a survey of the current state of the art for verifying or
enforcing those properties for different model structures.

2.2 Model Structures

This section introduces different model parameterizations for learning nonlinear map-
pings. In particular, we introduce basis function expansions, neural networks, and

2.2 Model Structures 15

equilibrium networks. We then discuss methods for extending these models to learn-
ing dynamic models.

2.2.1 Static Models

Basis Function Expansions

Basis function expansions are constructed by taking linear combinations of particular
basis functions. Consider the problem of learning a function y = fθ(u) where in
u ∈ Rm and y ∈ Rp. Then, a basis function expansion can be written as

y = θΦ(u) (2.3)

where θ ∈ Rp×q is a set of parameters and Φ(u) : Rm 7→ Rq defines the basis. This in-
cludes linear models as well as polynomials which can be shown to be universal approx-
imators of continuous functions via the Stone-Weierstrass theorem. Non-parametric
models are widely used in statistical learning theory and construct Φ(u) from kernel
functions evaluated at the observed data and find universal approximation properties
via the representer theorem [23].

A considerable advantage of using basis function expansions is that model predictions
are linear functions of the parameters allowing models to be fit via least squares or
convex optimization. Additionally, for some basis function expansions, there exist
powerful tools for fitting models with additional constraints. See, for instance, sum-
of-squares programming discussed in Section 2.4.3.

Neural Networks

A model class that has recently gained a lot of popularity is the neural network.
The scalability and accuracy of neural networks on practical tasks such as image
classification has led to an enormous volume of research on different model structures
and their properties [118].

2.2 Model Structures 16

A single hidden layer neural network is a function of the form:

y = Woϕ(Wu + b), (2.4)

where u ∈ Rm, y ∈ Rp are the input and output, W ∈ Rq×m, b ∈ Rq and Wo ∈ Rp×q

are learnable parameters and ϕ(·) is an element-wise non-linearity called an activation
function. The term neurons is sometimes used to refer to the individual elements
of ϕ(·). Under mild assumptions, (2.4) is a universal function approximator over
bounded domains as q →∞ [165].

While single hidden layer networks can approximate any function with arbitrarily
high accuracy in theory, for problems such as image processing, it has been found
that using multiple sequentially stacked layers can lead to significant improvements
in model performance. The intuition is that using multiple sequential layers allows a
model to learn hierarchies of features [169, 247]. A multi-layer neural network can be
written as:

x0 = u (2.5)

xℓ+1 = ϕ(W ℓxℓ + bℓ), ℓ = 0, ..., L− 1 (2.6)

y = W LxL + bL. (2.7)

where the weights Wℓ and biases bℓ are the learned parameters. Many additional
architectures and mechanisms have been proposed, including the use of convolutional
weights to learn spatially invariant features [175], deep residual networks to allow
the learning of deeper networks [87] and normalization layers for preventing internal
covariate shift [100, 33]. All of these methods are variations of the network struc-
ture (2.5) - (2.7), however, notably for this thesis, they can still all be written as
compositions of simple element-wise nonlinearities and affine transforms.

2.2 Model Structures 17

Equilibrium Networks

A recently introduced generalization of the neural network is the equilibrium network
[14, 15, 238, 63]. This model structure is characterized by implicit equations that
contain neural networks. Consider the dynamical systems

zt+1 = ϕ(Wzt + Bu + b) (2.8)

and
ż = −z(t) + ϕ(Wz(t) + Bu + b). (2.9)

We can view (2.8) as either a discrete-time dynamical system or a weight-tied neural
network. The model structure (2.9) is a neural ordinary differential equation [39]; a
continuous time analogue of a neural network. Traditional deep learning approaches
evaluate the models (2.8) and (2.9) by simulating the relevant equation over some fixed
interval. Equilibrium networks instead consider the limiting behavior as t→∞, and
solves directly for z⋆ such that

z⋆ = ϕ(Wz⋆ + Bu + b). (2.10)

By enforcing particular structures on the parameters W and B, it is relatively easy to
show that the set of equilibrium networks contains many popular network structures
as a special case [62]. Consequently, (2.10) provides a good target for analysis as the
results then generalize to large classes of neural networks.

It is important to note, however, that equilibrium networks have a number of com-
plications including questions about the existence and uniqueness of solutions and
computational issues with evaluating solutions to (2.10) and computing their gradi-
ents. We further discuss some of these issues in Chapter 4.

2.2 Model Structures 18

2.2.2 Dynamic Model Structures

The previous section studied common model structures used for learning nonlinear
static mappings. In this section, we study how these ideas can be extended to learning
nonlinear dynamical mappings.

When learning dynamical systems or sequential models, the prediction of a model
depends not only on the current input but also the history of previous inputs and
possibly an initial state. The model structures presented in Section 2.2.1 can all be
extended to the dynamic case either by explicitly including a dependence on previous
inputs and outputs, or by incorporating an internal state in the model. The section
presents a rough outline of the different approaches to extending the models in Section
2.2.1 to learning dynamic models.

Finite Impulse Response Models

Nonlinear finite impulse response (FIR) models construct a prediction of the output
from a finite history of inputs:

yt = fθ(ut−τ :t), (2.11)

where τ is a parameter that controls the memory of the model. Here, we have
used the notation ut−τ :t to refer to the the signal u on the interval [t − τ : t] so
ut−τ :t = (ut−τ , ..., ut−1, ut).

In the case where fθ(ut−tτ :t) = ∑τ
k=0 αkut−k, this model structure recovers the Linear

Finite Impulse Model where α0, ..., ατ is the impulse response of a single input single
output system. When learning nonlinear mappings, common choices for fθ include
Wiener and Volterra series models, and neural networks and temporal convolutional
networks [13].

FIR models are fit via a simple regression problem which is convex in the case of a
linearly parameterized model and a convex quality of fit criterion. FIR models are
also inherently stable as they do not contain feedback. Unfortunately, these models

2.2 Model Structures 19

are inefficient representations when the system being modelled is highly resonant or
operating near the edge of stability. When learning the models of such systems, it
may be necessary to include feedback in the model to obtain a more parsimonious
representation.

Autoregressive Models

Perhaps the simplest feedback models are autoregressive models. These models con-
struct predictions from a truncated history of inputs and outputs:

yt = fθ(yt−1:t−τ , ut−τ :t). (2.12)

This model class includes autoregressive exogenous input (ARX), output error and
autoregressive moving average (ARMAX) models, where the main difference between
these models comes from an assumption about how noise enters the model.

The inclusion of feedback in these models introduces stability issues. In particular,
when simulating these models with new inputs but unknown output measurements,
it is common to feedback the predicted output value at the next time step. In this
case, it is quite common to observe unstable model models.

State Space Models

State space models introduce an internal state that captures the effects of previous
inputs. A deterministic state space model takes the form

xt+1 = fθ(xt, ut), (2.13)

yt = gθ(xt, ut). (2.14)

Here, fθ : Rn×Rm → Rn is known as the dynamics and gθ : Rn×Rm → Rp is known
as the output mapping. This model class is extremely general and can be shown to
contain LTI state space models when fθ and gθ are linear, recurrent neural networks
[64] when fθ is parameterized by a neural network (2.5) and the LSTM [94].

2.3 Behavioral Constraints 20

Figure 2.2 – Example of an adversarial attack taken from [79]. While the perturba-
tion is imperceptible to the human eye, the classifier changes its prediction to an
incorrect label with high certainty.

State space models are widely studied in dynamics and control and even defining and
checking the stability of the dynamics (2.13) can be very difficult. We will further
discuss this problem in Section 2.3.3.

2.3 Behavioral Constraints

This section expands on the properties discussed at the end of Section 2.1 and provides
an introduction to the current state of the art for enforcing those properties for
different model structures.

2.3.1 Robustness

Deep learning has trended towards using larger and more expressive models with
impressive results. While these models display a remarkable ability to generalize, it
is important to note that model expressiveness can come at the cost of robustness. In
particular, recent work has shown that imperceptible targeted adversarial attacks can
consistently fool networks that otherwise perform well. This is shown, for instance,
in Figure 2.2 where the learned classifier is extremely sensitive to an imperceptible
input perturbation.

The existence of these adversarial examples is not specific to the problem of image
classification. They have also been observed in reinforcement learning [181], language

2.3 Behavioral Constraints 21

modelling [41] and as we will see in chapter 5, system identification.

Neural Network Robustness Verification and Lipschitz Continuity

The susceptibility of neural networks to adversarial attacks has motivated a large
amount of research into network verification; methods for bounding a model’s perfor-
mance degradation when subjected to a bounded input perturbation.

Currently, adversarial training [79, 132] is the most effective way of improving network
robustness to adversarial attacks [133, 159]. This approach adds adversarial examples
to the training data set. While the method is simple and has proven empirically
effective, it provides no formal guarantees.

To obtain a formal guarantee that a model is robust to an adversarial attack, a
certification method must be used. Certification methods can be classed as either
exact or conservative. Exact methods are based on satisfiability modulo theory [38, 61]
or mixed integer linear programming [40, 211] and confirm whether or not there exists
a perturbation that can fool a classifier. Conservative methods, on the other hand,
only guarantee that a particular perturbation cannot fool a classifier and may fail
even if there does not exist such a perturbation.

While exact methods induce no conservatism, they are computationally demanding
and limited to relatively small-scale networks. For larger models, conservative meth-
ods must be used. These can be broadly grouped into local and global methods.

Local methods certify that a network is robust in a region centered on a specific
input, usually the training data. A number of approaches have been proposed for
local certification based on convex outer bounds [67], convex outer polytopes [239],
tracking an outer reachable set that a perturbation can reach by stepping through
network layers [149, 199, 236], or by calculating a local Lipschitz constant [88].

Global methods, on the other hand, certify adversarial robustness for all possible
inputs by calculating the global Lipschitz constant. For a model y = f(u), the global

2.3 Behavioral Constraints 22

Lipschitz constant is defined as the smallest constant L such that

|f(u1)− f(u2)| ≤ L|u1 − u2| ∀u1, u2 ∈ U . (2.15)

Note that (2.15) is equivalent to the following quadratic inequality:

L2|u1 − u2|2 − |f(u1)− f(u2)|2 ≥ 0 ∀u1, u2 ∈ U . (2.16)

Therefore, global Lipschitz constant certification is equivalent to checking the quadratic
inequality (2.16) for all possible inputs. The Lipschitz constant of a function measures
the worst-case sensitivity of the function, i.e., the maximum “amplification” of the
difference in inputs to differences in the outputs. A Lipschitz bound can therefore be
used to limit the maximum possible effect of an input perturbation.

While it has been argued that local methods are required to improve network expres-
sivity [242, 98], recent work has shown that any locally Lipschitz bounded classifier
admits an equivalent globally Lipschitz bounded network [120]. Furthermore, global
Lipschitz bounds provide many further useful properties beyond adversarial robust-
ness, e.g., robustness to distribution shift [50].

The key features of a good Lipschitz bounded learning approach include a tight esti-
mation for Lipschitz constant and a computationally tractable training method with
bounds enforced. For deep networks, [216] and [80] propose computationally efficient
but conservative methods since their Lipschitz constant estimates are based on the
composition of estimates for different layers, [8] proposed a combination of a novel
activation function and weight constraints. For equilibrium networks, [62] proposed
an estimation of Lipschitz bounds via input-to-state (ISS) stability analysis and [158]
propose conditions based on monotone operator theory.

The fundamental problem in most Lipschitz bounded training approaches is that the
calculation of the Lipschitz constant of a neural network is NP-hard [230]. The diffi-
culty in estimating the Lipschitz constant means that most approaches resort to using
highly conservative Lipschitz bounds. The tightest bounds known to date are given
by [66] which estimates the Lipschitz constant for deep networks based on incremental

2.3 Behavioral Constraints 23

quadratic constraints and semidefinite programming (SDP). This was, however, lim-
ited to the analysis of previously trained networks. The SDP test was incorporated
into training via the alternating direction method of multipliers (ADMM) in [164],
however due to the complexity of the SDP, the training times recorded were almost
50 times longer than for unconstrained networks.

2.3.2 Monotonicity

Incorporating monotonicity into the learning process has a long history in the statis-
tics community under the name of isotonic regression [155, 27]. A model y = f(u) is
termed monotone if

(f(u1)− f(u1))⊤ (u1 − u2) ≥ m|u1 − u2|2 ∀u1, u2 ∈ U , (2.17)

for some constant m ≥ 0. Note that much like the Lipschitz condition (2.15), we can
write (2.17) as a quadratic inequality constraint:

(f(u1)− f(u2))⊤(u1 − u2)−m|u1 − u2|2 ≥ 0 ∀u1, u2 ∈ U . (2.18)

Incorporating monotonicity into a learning procedure has a number of benefits:

1. In many applications monotonicity can be used to encode domain knowledge.
For instance, in pharmacology, it is known that toxicity increases monotonically
with dosage [206]. Incorporating such constraints can improve model general-
ization and ensure that a model continues to produce realistic predictions when
deployed.

2. Ensuring monotonicity can play a key role in developing secure, explainable
[154] or fair models [44].

3. Monotonicity models can be used to construct invertible transformations, see for
instance [214, Theorem 1]. This property has been used for instance to construct

2.3 Behavioral Constraints 24

autoregressive flows for modelling continuous probability distributions, e.g., [96,
54].

Despite the many uses for monotonicity in machine learning, training and verifying the
monotonicity of deep neural networks remains challenging. The current approaches
can be placed into two categories. Heuristic methods encourage monotonicity via
penalization and scale, however, they provide no formal guarantee that the resulting
model is monotone [82]. Other methods build monotonicity constraints into the
network structure [52, 125, 235]. The second class of methods, however, can suffer
from conservatism and scalability issues.

2.3.3 Stability of Discrete Time Systems

In this section, we present some definitions and results from the theory of discrete-
time dynamical systems that are used throughout this thesis. Our main motivation
is to characterize the stability of the discrete-time state space models (2.13), (2.14).
Consider a discrete-time dynamical system

xt+1 = f(xt, ut), (2.19)

yt = g(xt, ut), (2.20)

where xt ∈ Rn is the model state, ut ∈ Rm is a known input and yt ∈ Rp is the
output. Given the initial condition x0 = a, the dynamical system (2.19), (2.20)
defines a sequence-to-sequence mapping Ra : ℓm

2e 7→ ℓp
2e.

When the functions f and g in (2.19), (2.20) are linear, stability is a well-understood
concept and most definitions that one might reasonably construct lead to equivalent
conditions. For nonlinear systems, the situation is more complex and there exist many
definitions of stability describing the different behaviors that a nonlinear system might
exhibit. In this section, we will introduce the main types of stability used throughout
this thesis.

2.3 Behavioral Constraints 25

Types of Stability for Nonlinear systems

There are many definitions of stability for nonlinear systems including asymptotic,
exponential, and Lyapunov stability [201], input-output stability, [252, 253, 57], input-
to-state stability [204], incremental stability, contraction analysis and convergent dy-
namics [215, 129].

In this thesis, we use the following definition for the internal stability of the model
dynamics:

Definition 2.1 (Contraction). The system (2.19) is termed contracting with rate α,
where 0 < α < 1, if for any two initial conditions xa

0, xb
0, given the same input

sequence ut, and some p ∈ [1,∞], there exists a continuous function bp(xa
0, xb

0) > 0
such that the corresponding trajectories xa

t , xb
t satisfy |xa

t − xb
t |p < αtbp(xa

0, xb
0).

This definition implies that the dynamics (2.19) have an exponentially fading memory
with rate α. For input-output systems, we characterize the stability as follows:

Definition 2.2 (Incremental ℓ2 stability). The system (2.19), (2.20) is termed in-
crementally ℓ2 stable if for any two initial conditions a and b, given the same input
sequence u, the corresponding output trajectories ya = Ra(u) and yb = Rb(u) satisfy
ya − yb ∈ ℓp

2.

This definition implies that the initial conditions of the sequence-to-sequence map
Ra(·) are forgotten regardless of the input signal, however, the outputs can still be
sensitive to small changes in the input. In such cases, it is natural to measure the
system’s robustness in terms of the incremental ℓ2-gain.

Definition 2.3 (Incremental ℓ2 gain). The system (2.19), (2.20) is said to have an
incremental ℓ2-gain bound of γ if for all pairs of solutions with initial conditions
a, b ∈ Rn and input sequences ua, ub ∈ ℓm

2e, the output sequences ya = Ra(ua) and
yb = Rb(ub) satisfy

∥∥∥ya − yb
∥∥∥2

T
≤ γ2

∥∥∥ua − ub
∥∥∥2

T
+ d(a, b), ∀T ∈ N, (2.21)

2.3 Behavioral Constraints 26

for some function d : Rn × Rn → R+ with d(a, a) = 0.

Condition (2.21) implies incremental ℓ2 stability, since if ua = ub then ∥ya − yb∥2
T ≤

d(a, b) for all T ∈ N. It also implies that with fixed initial conditions, the input-
output operator defined by (2.19) and (2.20) is Lipschitz continuous with Lipschitz
constant γ, i.e. for any a ∈ Rn and all T ∈ N

∥Ra(u)−Ra(v)∥T ≤ γ∥u− v∥T , ∀u, v ∈ ℓm
2e. (2.22)

This suggests further benefits in regulating the incremental ℓ2 constant as per the
arguments in Section 2.3.1.

Incremental Storage Functions

A common framework can be used to prove properties such as those in definitions
2.1, 2.2 and 2.3. Suppose we have two solutions to the system (2.19),(2.20) denoted
ua ∈ ℓm

2 , xa ∈ ℓn
2 , ya ∈ ℓp

2 and ub ∈ ℓm
2 , xb ∈ ℓn

2 , yb ∈ ℓp
2. Then certain properties of

the system are proved by selecting a supply rate σ(·) and showing that there exists a
storage function V (xa

t , xb
t) > 0 with V (x, x) = 0, such that the following incremental

dissipation inequality holds:

V (xa
t+1, xb

t+1)− V (xa
t , xb

t) ≤ σ(·) (2.23)

Summing (2.23) over a time interval t = 0, ..., T − 1 gives:

V (xa
T , xb

T)− V (xa
0, xb

0) ≤
T −1∑
t=0

σ(·), (2.24)

=⇒ −V (xa
0, xb

0) ≤
T −1∑
t=0

σ(·). (2.25)

So the term ∑T −1
t=0 σ(·) is lower bounded by a constant that depends only on the initial

condition. If xa
0 = xb

0, then ∑T −1
t=0 σ(·) ≥ 0.

2.3 Behavioral Constraints 27

Choosing different functions σ(·) allows different properties of the system (2.19),
(2.20) to be proved. For example:

1. If σ(·) = −ϵ|xa
t − xb

t |2, the dissipation inequality (2.23) implies that ∑T −1
t=0 |xa

t −
xb

t |2 < 1
ϵ
V (xa

0, xb
0). Taking the limit as T → ∞, gives ∑∞

t=0 |xa
t − xb

t |2 <

1
ϵ
V (xa

0, xb
0) which implies that the system is asymptotically incrementally stable.

2. If σ(·) = γ2|ua
t − ub

t |2 − |ya
t − yb

t |2, the dissipation inequality (2.23) implies that
||ya − yb||2T −1 < γ2||ua − ub||2T −1 + V (xa

0, xb
0) which implies that the system has

an incremental ℓ2 gain of γ (see Definition 2.3).

Other properties such as incremental passivity and exponential incremental stability
can be proved using the same approach. To make this concrete, consider the following
example:

Example 2.1 — Stability of LTI systems

An LTI system takes the form:

xt+1 = Axt. (2.26)

The incremental dynamics are ∆xt+1 = A∆xt. For LTI systems, a neces-
sary and sufficient condition for exponential stability with rate λ ∈ (0, 1)
is the existence of a storage function V = x⊤Px such that the dissipation
inequality (2.23) holds with supply rate σ(xt) = −λx⊤

t Pxt. The resulting
dissipation inequality is equivalent to the linear matrix inequality:

A⊤PA− (1 + λ)P ⪯ 0. (2.27)

The linear matrix inequality (2.27) can be easily verified by solving a convex
feasibility problem.

Example 2.1 highlights an essential point; the LMI (2.27) is convex in P for a
given A and convex in A for a given P . However, it is not convex in both A

and P , complicating the problem of simultaneously learning both the dynamics and
stability certificate. The problem stems from the nonconvex function composition

2.3 Behavioral Constraints 28

V (xa
t+1, xb

t+1)− V (xa
t , xb

t) = V (f(xa
t , ua

t), f(xb
t , ub

t)) in the dissipation inequality (2.23)
and arises for most dynamic systems and choices of storage function.

Differential Storage Functions

Another framework that can be used to prove stability properties such as those in
definitions 2.1, 2.2 and 2.3 originates from contraction analysis [129]. Contraction
analysis studies the differential dynamics of the system described by (2.19) and (2.20)
given by

δxt+1 = F (xt, ut)δxt + B(xt, ut)δut, (2.28)

δyt = C(xt, ut)δxt + D(xt, ut)δut, (2.29)

where F (xt, ut) = ∂f
∂x

, B(xt, ut) = ∂f
∂u

, C(xt, ut) = ∂g
∂x

and D(xt, ut) = ∂g
∂u

. The stability
properties of the differential dynamics, (2.28), (2.29), can be studied by searching for
a differential storage function V (xt, δxt) > 0 and V (xt, 0) = 0, and a differential
supply rate σ(·) such that

V (xt+1, δxt+1)− V (xt, δxt) ≤ σ(·). (2.30)

The vector δx describes the relative dynamics between two neighboring trajectories
and can be viewed as a differential analogue of the dissipation inequality (2.23). An
incremental storage function can be constructed from a differential storage function
by integrating along particular paths, allowing for global system properties to be
analyzed.

The main benefit of the differential framework is that for certain types of storage
functions, the inequality (2.30) is convex whereas (2.23) might not be. In this thesis,
we use a differential approach in Chapter 6.

2.4 Relaxations 29

2.4 Relaxations

In Section 2.3, we saw that many useful properties can be encoded via inequality
constraints. For instance, a Lipschitz bound holds if (2.15) holds, monotonicity is
implied by the inequality (2.18), and various forms of stability hold if either of the
inequalities (2.23) or inequalities (2.30) hold.

The ability to check such inequalities, of course, depends a great deal on the spe-
cific model class under consideration, however, for all but the simplest of the model
classes, the corresponding inequalities are intractable. The primary difficulty with
certifying properties such as (2.15), (2.23) or (2.30) is non-convexity of the relevant
inequalities in the signals, which prevents any conclusions from being drawn about
global inequality satisfaction from local properties. A common approach in such sit-
uations is to construct a convex relaxation of the inequality or the model. We will
demonstrate a number of such relaxations in this section.

2.4.1 Convex Relaxations of Dissipation Inequalities

As we saw in the example at the end of Section 2.3.3, optimization over the set of
stable models is complicated by the nonconvexity of the dissipation inequality (2.23)
in the model parameters and the certificate of stability. The approach developed
through the work: [144, 214, 212, 219, 218, 220] is to construct a convex relaxation
of (2.23).

The main idea is that while the dissipation inequality is nonconvex due to the function
composition of V and f , the following inequality is convex for fixed multipliers λ:

V (xa
t+1, xb

t+1)− V (xa
t , xb

t) + λa(·)⊤(xa
t+1 − f(xa

t , ua
t)) + λb(·)⊤(xb

t+1 − f(xb
t , ub

t)) ≤ σ(·).
(2.31)

Whenever xt+1 = f(xt, ut), we recover (2.23) and the model must therefore be stable.
This approach is known as the S-Procedure and has a long history in control [166].
While (2.31) provides a convex, sufficient condition for stability for fixed multipliers λ,

2.4 Relaxations 30

fixing the multipliers causes the condition to be quite conservative. A key development
in [214, 212] was to employ an implicit, redundant model structure that reduces the
impact of fixing the multipliers. We will further explore this approach in Example
2.2.

Example 2.2 — Convex Parameterizations of Stable LTI models

The problem of learning LTI models has received a great deal of attention
with methods proposed based on constrained optimization and regulariza-
tion [131, 226, 117, 147, 134]. Following the approach in Section 2.4.1, we
construct a redundant implicit parameterization of LTI systems

E∆xt+1 = F∆xt, (2.32)

where E is invertible. Choosing V (xa
t , xb

t) = ∆x⊤
t P∆xt with supply rate

σ(·) = −ϵ|∆xt|2 and fixing the multipliers λ = −∆xt, condition (2.31) can
be written as

∆x⊤
t+1P∆xt+1 −∆x⊤

t P∆xt − 2∆x⊤
t (E∆xt+1 − F∆xt) < −ϵ|∆xt|2

⇐⇒

E + E⊤ − P − ϵI F ⊤

F P

 ⪰ 0. (2.33)

The model set (2.32), (2.33) is a convex parameterization of all stable LTI
systems [138].

Note that in example 2.2, an implicit parameterization is required to ensure that that
parameterization contains all LTI systems. Roughly speaking, the implicit parame-
terization reduces the conservatism by allowing for optimization over E in place of
λ.

2.4.2 Integral Quadratic Constraints

The theory of Integral Quadratic Constraints (IQC) was developed in [145], how-
ever, the foundational ideas have a long history in systems analysis and control
[167, 241, 252, 237, 57]. IQC theory studies the stability properties of a system

2.4 Relaxations 31

G

Φ

uy

wv

Figure 2.3 – Lur’e Feedback Interconnection

2.4 Relaxations 32

interconnection called the Lur’e system, depicted in Figure 2.3. Here, we assume
that we have a known, stable, nominal system G, in feedback with a nonlinear or
uncertain component Φ.

The principle difficulty behind analyzing the stability of the feedback interconnection
depicted in Figure 2.3 is the nonlinearity/uncertainty Φ. IQC theory replaces the
mapping w = Φ(v) with a quadratic description of the signals that it could produce,
and then guarantees the stability of the interconnection for that set of signals via
the S-procedure [166]. Various classical theorems can be derived depending on the
conditions placed on Φ, e.g., the small gain theorem [108] when Φ has bounded gain,
the circle criterion [253] when Φ is static and sector bounded and the passivity theorem
[86] when Φ is passive.

Recent work has shown that IQCs have great potential for the analysis of neural
networks. The main idea is to capture the behavior of the neural network’s activation
function in Φ and the neural network weights in G. For instance, using this approach,
[66] has developed the tightest known bound on the Lipschitz constant for deep neural
networks, [65] provides a method for bounding the effects of adversarial perturbations,
and [246, 245, 163] provide methods for analyzing the stability of systems with neural
network controllers.

In full generality, IQC theory permits a wide variety of different IQC descriptions
including sector bounded, slope restricted, Popov, pure integrator, and Zames-Falb
IQCs [145] and methods that obtain tighter descriptions by exploiting repeated non-
linearities [51]. In [115], however, it was shown that many traditional IQCs do not
extend to the study of incremental stability as the positivity of an IQC does not imply
its incremental positivity. To our knowledge, it remains to be seen if there exist any
IQCs besides the slope restricted IQC that can be applied to incremental analysis. As
the properties that we are interested in enforcing are all incremental properties, we
restrict our discussion in this section to incremental Quadratic Constraints (iQCs).

Definition 2.4 (incremental Quadratic Constraint [1]). A function ϕ : Rn 7→ Rn said

2.4 Relaxations 33

to satisfy the iQC defined by Π ∈ S2n if

 va
t − vb

t

wa
t − wb

t

⊤

Π

 va
t − vb

t

wa
t − wb

t

 ≥ 0, (2.34)

for all wa
t = ϕ(va

t) and wb
t = ϕ(vb

t).

We can think of the iQC (2.34) as providing a rough description of the possible
behaviors of the nonlinearity ϕ. We will demonstrate how such a description is useful
by way of example.

Example 2.3 — iQC for LTI system

Consider a dynamical system of the form

xt+1 = Axt + BΦ(Cxt) (2.35)

where A, B and C are matrices of appropriate size and Φ is a nonlinearity
satisfying the incremental quadratic constraint

 va
t − vb

t

wa
t − wb

t

⊤

Π
 va

t − vb
t

wa
t − wb

t

 > 0 (2.36)

for all va
t , vb

t ∈ Rq, wa
t = Φ(va

t), wb
t = Φ(vb

t). Recall that we can prove in-
cremental stability by establishing the existence of an incremental storage
function V (xa

t , xb
t) > 0, where V (x, x) = 0 that satisfies the incremental dis-

sipation inequality (2.23) with σ(·) = −ϵ|xa
t −xb

t |2. Verifying this inequality,
however, is complicated by the dependence of xt+1 on the uncertain compo-
nent Φ.

The approach taken in IQC analysis is to treat (2.35) as a feedback inter-
connection between the linear system

G :

xt+1 = Axt + Bwt

vt = Cxt

(2.37)

and the uncertain component w = Φ(x). If we consider the extended space
of signals (x, w), then we can show that the dissipation inequality holds for

2.4 Relaxations 34

all signals satisfying w = Φ(v) by using the fact that the iQC holds for all
such signals.

To make this concrete, take ∆x = xa
t −xb

t , ∆wt = wa
t −wb

t and ∆vt = va
t −vb

t

and take V (xa
t , xb

t) = ∆xt
⊤P∆xt. Suppose that the following inequality

holds:

V (xa
t+1, xb

t+1)−V (xa
t , xb

t)+ϵ|∆xt|2 ≤ −

∆vt

∆wt

⊤ Π11 Π12

Π⊤
12 Π22

 ∆vt

∆wt

 . (2.38)

The left hand side is the dissipation inequality; if it is less than zero, then the
system is stable. The right hand side is the iQC (2.36) which holds whenever
wt = Φ(vt). As all terms are quadratic, they can be easily combined to give
∆xt

∆wt

⊤ P − A⊤PA− ϵI − C⊤ΠC PB − CΠ12

B⊤P − Π⊤
12C

⊤ B⊤PB − Π22

 ∆xt

∆wt

 ≥ 0. (2.39)

For fixed matrices A, B and C, this is a convex constraint in P and the
IQC multipliers that can be solved by using semidefinite programming tech-
niques.

2.4.3 Sum of Squares Programming

Sum-of-squares programming is a general approach for proving the global non-negativity
of a multivariate polynomial first proposed in [194]. When a model is parameterized
via polynomials, sum-of-squares programming provides an attractive relaxation for
checking the behavioral properties discussed in Section 2.3. For example, for polyno-
mial state space models and polynomial storage functions, sum-of-squares program-
ming provides a convex relaxation of the dissipation inequality (2.23).

In the context of this thesis, we use sum-of-squares programming in Chapter 6 for
the distributed learning of stable systems.

Definition 2.5 (Monomial). A monomial in x ∈ Rn is a product

md(x) = xd1
1 · xd2

2 · ... · xdn
n

2.4 Relaxations 35

where di are nonnegative integers. The degree of the monomial is D = d1+d2+...+dn.

The set of monomials with degree less than or equal to D form of basis for degree D

polynomials.

Definition 2.6. Let m(x) be the vector of monomials with degree less than or equal
to D. Then, a polynomial p : Rn 7→ R can be constructed by

p(x) = α⊤m(x) (2.40)

where α is a vector of coefficients.

While proving the global non-negativity of a polynomial of degree four or higher is
NP-hard [4], a simple sufficient condition is given by the existence of a sum-of-squares
decomposition. That is, a polynomial p(x) : Rn 7→ R of degree 2D is nonnegative if
it can be written as

p(x) =
∑

i

pi(x)2. (2.41)

Sum-of-squares programming provides a convenient and efficient method for searching
for such a decomposition by formulating the search as a convex semidefinite program.
A necessary and sufficient condition for a polynomial to have a SOS decomposition
is that it can be written as

p(x) = m(x)⊤Qm(x) (2.42)

where Q is a positive definite matrix called the Gram matrix. The link between
the Gram matrix and a SOS decomposition can be established via the Cholesky
decomposition Q = L⊤L

p(x) = m(x)⊤Qm(x) (2.43)

= (Lm(x))⊤(Lm(x)) (2.44)

2.5 Numerical Methods 36

=

p1(x)
p2(x)

...

⊤

p1(x)
p2(x)

...

 (2.45)

=
∑

i

pi(x)2 (2.46)

where pi(x) = ∑
j Lijmj(x).

The link between the existence of sum-of-squares decomposition and a convex semidef-
inite program was made in [161, 162] and lead to widespread uptake in the control
community [12, 136, 213]. There now exist a number of high-quality toolboxes for
formulating and solving sum-of-squares programming problems [128, 119, 160]

Finally, we note that while the existence of a sum-of-squares decomposition is gener-
ally just a sufficient condition for positivity, there are a number of situations where
it is both necessary and sufficient. These are when p(x) is: uni-variate, quadratic or
a quartic polynomial in two variables.

2.5 Numerical Methods

We saw in section 2.1 that model training can be formulated as an optimization prob-
lem. Once such an optimization problem has been formulated, it is usually necessary
to employ a numerical method to iteratively search for a solution. The difficulty of
this search, however, depends on the structure of the formulated optimization prob-
lem. A central theme of this thesis is the construction of model classes that have
certain properties that simplify the optimization procedure.

In this section, we will provide an introduction to the necessary background infor-
mation on numerical optimization, however we refer to [156] and [26] for a thorough
treatment.

Suppose that we have a smooth function J : RN 7→ R, and a set of allowable parameter

2.5 Numerical Methods 37

values Θ ⊆ RN . An optimization problem can then be formulated as

min
θ∈Θ

J(θ). (2.47)

The function J(θ) is called the objective function and Θ is called the feasible set. It
is also common to write an optimization problem with a set of constraints, e.g.,

min
θ

J(θ), (2.48a)

subject to g(θ) ≥ 0. (2.48b)

Note however that (2.48a), (2.48b) can always be written as (2.47) by choosing Θ =
{θ ⊂ RN : g(θ) ≥ 0}.

In the context of machine learning, the objective function J usually contains a com-
bination of model performance measures such as the loss function, regularizers, and
possibly some penalty terms that encourage ‘good’ behavior. The constraint θ ∈ Θ,
on the other hand, usually contains hard requirements for a model; these must be
satisfied for the model to be useful. For example, this might include the requirement
that the model is stable or well-posed.

In this section, we will first consider methods for unconstrained optimization. Meth-
ods for unconstrained optimization are usually simpler as there are no ‘hard’ model
requirements that must be satisfied. We will then introduce some methods for con-
strained optimization.

2.5.1 Unconstrained Optimization Methods

We first consider the problem of unconstrained optimization. An unconstrained opti-
mization problem is a problem of the form (2.47) where Θ = RN , i.e.,

min
θ∈RN

J(θ). (2.49)

2.5 Numerical Methods 38

As the objective functions in this work are nonconvex, we will only search for a local
solution to (2.49), that is a point θ∗ that locally minimizes J . We can solve (2.49) via
an iterative algorithm, i.e., given a solution estimate θ(k) at iteration k, the iterative
algorithm updates our estimates according to an update rule

θ(k+1) = θ(k) + α(k)d(k), (2.50)

where α(k) ∈ R is called the step size and d(k) ∈ RN is called the search direction.
A good choice for θ(k+1) is one that ensures that J(θ(k+1)) < J(θ(k)), however, this
leaves considerable flexibility in how to choose α(k) and d(k) and many methods have
been proposed. Broadly speaking, there are two classes of methods for choosing α(k)

and d(k):

1. First order methods choose an update by approximating the objective function
by a first order Taylor series

J(θ) ≈ J(θ(k)) + ∂J(θ(k))
∂θ

(θ − θ(k))

The most common first order method is gradient descent or where θ(k+1) =
θ(k) − α∂J(θ(k))

∂θ
where α is chosen sufficiently small to ensure that the Taylor

expansion is accurate. Many variants of gradient descent have been proposed
to speed up the convergence and reduce sensitivity to hyper-parameter choice
and scaling [111, 124].

2. Second order methods choose an update by approximating the objective function
with a second order Taylor series

J(θ) ≈ J(θ(k)) + ∂J(θ(k))
∂θ

(θ − θ(k)) + (θ − θ(k))⊤ ∂2J(θ(k))
∂θ2 (θ − θ(k)).

Newtons method solves for the value of θ that optimizes the above quadratic ap-
proximation resulting in an iterative method θ(k+1) = θ(k)−

[
∂2J(θ(k))

∂θ2

]−1
∂J(θ(k))

∂θ
.

Second order methods have much better local convergence properties than first-order

2.5 Numerical Methods 39

methods. For smooth objective functions, the neighborhood of a local optima is well
approximated by a quadratic, allowing second-order methods to refine the solution
to extremely high accuracy in a few steps. Despite its superior convergence proper-
ties, Newton’s method is often avoided for two reasons: Firstly, it requires a good
initial guess of θ(0) to make use of its superior convergence. In the absence of good
initialization, the Levenberg Marquadt algorithm [151] or line search methods [156,
Chapter 3] are required to ensure robust convergence. Secondly, the algorithm scales
poorly with the number of parameters. In particular, storing the Hessian requires
and O[N2] memory and calculating

[
∂J(θk)

∂θ2

]−1
requires O[N3] operations.

First order methods, on the other hand, have relatively slow convergence rates, but
the individual steps are very cheap. These methods have become extremely popular
in the machine learning community where there has been a trend towards training
giant models on large amounts of data. In these situations, second-order methods are
unable to sufficiently scale. Furthermore, the use of redundant, overparameterized
models used in modern deep learning seems to significantly simplify training, and
it has been observed that stochastic gradient descent is able to achieve near zero
training error [254], in a reasonable number of iterations.

We frequently use a first-order method, known as Adaptive Momentum Estimation
(Adam). The algorithm is shown in Algorithm 2.1. All operations are elementwise,
e.g.

√
v̂ is the elementwise square root of v̂. The operations βk

1 and βk
2 refer to the

kth power of β1 and β2, respectively. Common hyper-parameter choices are β1 = 0.9,
β2 = 0.999, ϵ = 10−8 and α = 1E − 3.

2.5.2 Constrained Optimization

In this section, we introduce some methods for constrained optimization. In general,
a constrained optimization problem can be written as follows

min
θ∈Θ

J(θ). (2.51)

2.5 Numerical Methods 40

Algorithm 2.1: Adaptive Momentum Estimation [111]
Initialize step size α ∈ R+
Initialize hyperparameters β1, β2 ∈ [0, 1)
Initialize initial guess θ(1) ∈ Θ;
m(1) ← 0
v(1) ← 0
for k = 1, 2, ... do

g(k) ← ∇J(θ(k))
m(k+1) ← β1m

(k) + (1− β1)g(k)

v(k+1) ← β2v
(k) + (1− β2)g(k)2

m̂← m(k+1) / (1− βk
1)

v̂ ← v(k+1) / (1− βk
2)

θ(k+1) = θ(k) − α · m̂ / (
√

v̂ + ϵ)
if Converged then

Return result θ(k+1);

2.5 Numerical Methods 41

where the constraints are specified by a set of permitted parameter values Θ. Typ-
ically, Θ will be described by the union of a finite set of equality and/or inequality
constraints, e.g., Θ =

{
θ ∈ RN ; gi(θ) ≥ 0, i = 1, ..., nineq, hi(θ) = 0, i = 1, ..., neq

}
.

A constrained optimization problem can always be converted to an unconstrained
optimization problem by introducing an indicator function

IΘ(θ) =

0, θ ∈ θ,

∞, θ /∈ Θ.

The constrained optimization problem (2.51) is equivalent to the following uncon-
strained problem:

min
θ∈RN

Ĵ(θ), Ĵ(θ) := J(θ) + IΘ(θ) (2.52)

Note, however, that the indicator function is not smooth or differentiable, so gradient
descent or Newton’s method cannot be applied to solve the optimization problem.
Methods such as interior point methods or penalty methods solve (2.51) by construct-
ing a series of unconstrained problems min

θ∈RN
Ĵk(θ) where lim

k→∞
Ĵk(θ) = Ĵ(θ).

Interior Point Methods

Interior point methods are a general purpose approach to solving nonlinear optimiza-
tion problems and form the basis for a number of high-quality, widely used solvers,
e.g. IPOPT [231] and Mosek [9].

An interior point method constructs a smooth approximation of (2.52) by introducing
a barrier function ϕ : RN 7→ R that: is smooth, finite on the interior of Θ, tends
towards infinity as the θ approaches the boundary of the feasible set and infinite
when θ /∈ Θ. We now define an approximation of (2.52) as

Jµ(θ) = J(θ) + µϕ(θ). (2.53)

Here, µ is a barrier parameter which controls the tradeoff between the accuracy of

2.5 Numerical Methods 42

the approximation and smoothness. I.e., when µ is small, ϕ(θ) only has an effect near
the edge of Θ, however, Jµ(·) will have very high curvature which may slow down the
convergence of Newton’s method or gradient descent. Conversely, when µ is large,
the barrier function will push the minimizer of Jµ away from the edge of Θ, however,
the Jµ will also have better conditioning. To obtain both high accuracy and good
conditioning, an interior point method solves a sequence of optimization problems
with decreasing µ.

Algorithm 2.2: Path Following Interior Point Method
Initialize µ1 > 0, θ1 ∈ Θ;
for k = 1, 2, ... do

Solve θ(k+1) = arg min
θ

Jµ(θ) using a local search method initialized at θ(k);

if Converged then
Return result θ(k+1);

else
Reduce barrier parameter µ(k+1) < µ(k)

A path following interior point method effectively warm starts the local search method
at each iteration with the solution from the previous iteration, and in doing so ensures
rapid convergence of the local search method. The sequence of solutions θ(1), θ(2), ...

is called the central path and converges to the true minimizer of (2.51) as µ→ 0.

To write an effective interior point method, it is of course necessary to choose a
suitable barrier function. This task is made somewhat simpler when Θ is convex.
For convex constraints, [153, Section 2.5] shows that there always exists a barrier
function with a suitable smoothness property called self concordance. While there
are no guarantees that a barrier function or its derivative will be easy to evaluate,
the model sets constructed in this thesis all have tractable barrier functions. We will
discuss some examples in the following sections.

2.5 Numerical Methods 43

Linear Constraints

A linear constraint on θ is described by {θ | a⊤
i θ ≤ bi} where ai ∈ RN and bi ∈ R.

The barrier function for a single linear constraint is then given by

ϕ(θ) =

− log(bi − a⊤

i θ), bi − a⊤
i θ > 0,

∞, bi − a⊤
i θ ≤ 0.

Semidefinite Programming

A semidefinite constraint requires that a certain matrix is positive semidefinite. These
are extremely common when studying the stability of linear dynamical systems and
we have already seen a number of these in previous sections, e.g., equations (2.27),
(2.33) and (2.39). A simple barrier function for imposing the semidefinite constraint
P ≻ 0 is the log det barrier function:

ϕ(P) =

− log det(P), P ≻ 0,

∞, P ⪯ 0.
(2.54)

The gradient of the log det barrier function is given by

∂ϕ(P)
∂P

= − 1
det P

∂ det P

∂P
= −P −⊤. (2.55)

2.5.3 Operator Splitting and ADMM

When solving extremely large optimization problems, it is necessary to exploit some
structure in the problem. A particular family of methods that has recently received a
lot of attention are operator splitting methods, which search for a zero in the sum of
multiple operators. The term splitting is derived from the fact that operator splitting
methods ‘split’ a problem into a collection of more easily solved subproblems. Such
methods find application in convex optimization as finding the optima of a convex

2.5 Numerical Methods 44

objective function is equivalent to finding a zero in the monotone subdifferential of
that objective function.

A significant benefit of the operator splitting approach is the well-developed theory
that it builds on, known as monotone operator theory. Monotone operator theory
allows for the derivation of many common algorithms used for large-scale optimization
and provides a rigorous analysis of the convergence properties of those algorithms.

The relevance of operator splitting methods to this thesis are two-fold: Firstly, the
models developed in Chapters 4 and 5 are described by fixed point equations that
can be related to operator splitting methods on non-Euclidean spaces. Secondly, in
Section 6, we apply a splitting method called the Alternating Directions Method of
Multipliers (ADMM) to scalably fit large models.

The structure of this section is as follows: Firstly, we provide a quick introduction
to monotone operator theory. For further details, we recommend [183]. We then
introduce a number of splitting methods that can be used to solve monotone operator
inclusion problems. Finally, we introduce ADMM as a specific case of an operator
splitting method applied to convex optimization.

Monotone Operator Theory

An operator A has a Lipschitz bound of L if for any (x, u), (y, v) ∈ A

∥u− v∥Q ≤ L∥x− y∥Q. (2.56)

An operator A is non-expansive if L = 1 and contractive if L < 1. An operator A is
monotone if

⟨u− v, x− y⟩Q ≥ 0, ∀(x, u), (y, v) ∈ A. (2.57)

It is strongly monotone with parameter m if

⟨u− v, x− y⟩Q ≥ m∥x− y∥2
Q, ∀(x, u), (y, v) ∈ A. (2.58)

2.5 Numerical Methods 45

A monotone operator A is maximal monotone if no other monotone operator strictly
contains it, which is a property required for the convergence of most fixed point
iterations. Specifically, an affine operator A(x) = Wx + b is (maximal) monotone
if and only if QW + W ⊤Q ⪰ 0 and strongly monotone if QW + W ⊤Q ⪰ mI. A
subdifferential ∂f is maximal monotone if and only if f is a convex closed proper
function.

The resolvent and Cayley operators for an operator A are denoted RA and CA re-
spectively, defined as

RA = (I + αA)−1, CA = 2RA − I (2.59)

for any α > 0. The resolvent and Cayley operators are nonexpansive for any max-
imal monotone A, and are contractive for strongly monotone A. Operator splitting
methods consider finding a zero in a sum of operators (assumed here to be maximal
monotone), i.e., find z such that 0 ∈ (A + B)(z). An important property of the
resolvent and Cayley operators is that 0 ∈ A(x) ⇐⇒ x = RA(x) = CA(x).

Operator Splitting Algorithms

Here we give some popular operator splitting methods for this problem as follows.

• Forward-backward splitting: zk+1 = RB(zk − αA(zk)), i.e.,

zk+1/2 = RB(zk − αAzk)

zk+1 = zk+1/2 − α(Azk+1/2 − Azk)
(2.60)

• Peaceman-Rachford splitting: zk+1 = CACB(zk), xk = RB(zk), i.e.,

xk+1/2 = RB(zk),

zk+1/2 = 2xk+1/2 − zk,

xk+1 = RA(zk+1/2),

zk+1 = 2xk+1 − zk+1/2.

(2.61)

2.5 Numerical Methods 46

• Douglas-Rachford splitting: zk+1 = 1/2(I + CACB)(uz), xk = RB(zk), i.e.,

xk+1/2 = RB(zk),

zk+1/2 = 2xk+1/2 − zk,

xk+1 = RA(zk+1/2),

zk+1 = zk + xk+1 − xk+1/2.

(2.62)

A sufficient condition for forward-backward splitting to converge is α < 2m/L2. The
Peaceman-Rachford and Douglas-Rachford methods converge for any α > 0, although
the convergence speed will often vary substantially based upon α.

ADMM

Monotone operator splitting methods are closely related to convex optimization as
the problem of minimizing a convex function is equivalent to finding a zero in its
subgradient, which is monotone.

Consider the following optimization problem:

min
x,y

f(x) + g(y) (2.63)

s.t. Ax + By = c (2.64)

Applying the Douglas Rachford splitting (2.62) to the problem of finding a zero in the
subdifferential of the dual problem to (2.63),(2.64) leads to the following algorithm
[183]:

x(k + 1) = arg min
x

f(x) + ρ

2 ||x− y(k) + v(k)||2, (2.65)

y(k + 1) = arg min
y

g(y) + ρ

2 ||x(k + 1)− y − v(k)||2, (2.66)

v(k + 1) = v(k)− x(k + 1) + y(k + 1). (2.67)

This is an extremely well-known algorithm called the Alternating Directions Method

2.5 Numerical Methods 47

of Multipliers (ADMM). See [31] for a detailed review of its variations and applica-
tions. Note that the update steps steps in (2.65) and (2.66) decouple the optimization
of the two variables x and y.

Chapter 3

Robust Recurrent Neural

Networks

In this chapter, we propose a new convex parameterization of RNNs satisfying sta-
bility and robustness conditions. The approach taken is to treat an RNN as a linear
system in feedback with monotone, slope-restricted nonlinearities, and to apply meth-
ods from robust control to develop stability conditions that are less conservative than
prior methods.

The specific method that we employ is to describe the nonlinearities by incremental
quadratic constraints. This approach was similarly used in [66] for the analysis of
Lipschitz constants of feedforward neural networks. In this chapter, we apply it to the
problem of training RNNs. To this end, we present two main developments: Firstly,
the extension to sequence-to-sequence maps requires the introduction of a suitable
storage function. Secondly, the use of an implicit model allows for a parameterization
that is jointly convex in the model parameters, stability certificate, and the multipliers
associated with incremental quadratic constraints. This technique of combining an
implicit model structure with a quadratic description of the nonlinearity is also used
in chapters 4 and 5.

The proposed model set contains all previously published sets of stable RNNs and
all stable linear time-invariant (LTI) systems. In our construction, there is a certain

3.1 Introduction 49

term that is set to zero to avoid an algebraic feedback loop. It turns out that this
term significantly improves the expressibility of the model class, however, the details
of this term are left until Chapter 4.

In this chapter, we also present a simplified version of the Robust RNN called the
Contracting Implicit RNN (ci-RNN) that we first presented in [176]. This can be
viewed as a special case of the Robust RNN that occurs when you restrict certain
parameters.

Publications

Some of the content of this chapter has previously appeared in the following publica-
tions:

Max Revay and Ian R. Manchester. Contracting implicit recurrent neural networks:
Stable models with improved trainability. L4DC, 2020.

Max Revay, Ruigang Wang, and Ian R. Manchester. A convex parameterization of
robust recurrent neural networks. Control Systems Letters, 2021.

3.1 Introduction

Recurrent neural networks (RNNs) are nonlinear state-space models incorporating
neural networks, and are widely used to model dynamical systems and sequence-to-
sequence mappings in system identification and machine learning. It has long been
observed that RNNs can be difficult to train in part due to model instability, referred
to as the exploding gradients problem [20], and recent work shows that RNNs can
be highly sensitive to input perturbations [41], posing challenges for reliable learning
from data. Both stability and sensitivity of nonlinear dynamical systems are long-
standing concerns in control theory, see e.g. [252] and many others.

3.1 Introduction 50

For nonlinear dynamical systems, there are many distinct notions of stability appro-
priate for different purposes.

The most common notion is the stability of a particular solution, e.g., an equilibrium
at the origin, and this can be verified by finding a Lyapunov function. However,
this notion is not suitable when learning dynamical systems with inputs, since the
stability can be input-dependent and the purpose of the model is to predict outputs
with previously unseen inputs. In contrast, incremental stability [57] and contraction
[129] are more appropriate since they imply the stability of solutions for all possible
inputs.

Even if a model is stable, it is usually problematic if its output is very sensitive
to small changes in the input. This sensitivity can be quantified by the model’s
incremental ℓ2 gain. Finite incremental ℓ2 gain implies both boundedness and con-
tinuity of the input-output map [57], and also bounds the Lipschitz constant of the
sequence-to-sequence mapping. In machine learning, the Lipschitz constant is used in
proofs of generalization bounds [18], analysis of expressiveness [257] and guarantees
of robustness to adversarial attacks [97, 168].

The problems of training models with stability or robustness guarantees have seen
significant attention for both linear [117, 147, 220] and nonlinear [214, 222, 112]
models. For analysis of RNN models, several convex stability conditions have been
given in terms of linear matrix inequalities (LMIs), e.g. [103, 17, 42], while incremental
quadratic constraints [252] have been applied to (non-recurrent) neural networks to
develop the tightest bounds on the Lipschitz constant known to date [66]. However,
these tests are convex for a fixed model and are not jointly convex in the model
parameters and stability certificates [220], making it difficult to apply them during
training.

A simple but conservative approach is to fix the stability certificate and only search
for the model parameters [148]. However, it has recently been shown that implicit
parameterizations allow for joint convexity of the model and a stability certificate for
linear [220], polynomial [214] and RNN [176] models. It has also been observed that

3.2 Problem Formulation 51

stability constraints serve as an effective regularizer and can improve generalization
performance [219, 176].

It should be noted that when learning neural network models, the cost function being
minimized is generally a nonconvex function of parameters. Nevertheless, a tractable
convex representation of stable models is still useful since stability is often a “hard”
constraint that must be satisfied by any trained model. With a convex model set, this
can be added to standard training procedures via projection or barrier terms, without
adding the significant extra challenge of finding a feasible solution to the nonconvex
constraints.

3.2 Problem Formulation

The main goal of this chapter is to construct a rich parameterization of the state
space models:

xt+1 = fθ(xt, ut), (3.1)

yt = gθ(xt, ut), (3.2)

where the dynamical system defined by (3.1) and (3.2) have robustness guarantees.
We use the following terminology:

1. A model is called robust if the system (3.1), (3.2) has finite incremental ℓ2 gain
(see definition 2.2).

2. A model is called γ-robust if the system (3.1), (3.2) has an incremental ℓ2 gain
bound of γ (see definition 2.3).

We also refer to the model sets Θ∗ and Θγ as robust and γ-robust if they contain only
robust and γ-robust models.

3.3 Robust RNNs 52

G

Φ

uy

wv

Figure 3.1 – Feedback interconnection for RNNs.

3.3 Robust RNNs

3.3.1 Model Structure

We parameterize (3.1) and (3.2) as a feedback interconnection between a linear system
G and a static, memoryless nonlinearity Φ:

G

xt+1 = F̄ xt + B̄1wt + B̄2ut + b̄x

yt = C1xt + D11wt + D12ut + b̄y

vt = C̄2xt + D̄22ut + b̄v

, (3.3)

w = Φ(v), (3.4)

where Φ(v) = [ϕ(v1) · · · ϕ(vq)]⊤ with vi as the ith component of the v ∈ ℓq
2e. This

feedback interconnection is shown in Fig. 3.1. We assume that the slope of ϕ is
restricted to the interval [0, β], with β known and fixed:

0 ≤ ϕ(y)− ϕ(x)
y − x

≤ β, ∀x, y ∈ R, x ̸= y. (3.5)

In the neural network literature, such functions are referred to as “activation func-
tions”, and common choices (e.g. tanh, ReLU, sigmoid) are slope restricted [78].

Remark 3.1. Note that we have excluded the term D̃21 from (3.3) due to the well-
posedness issues implied by the algebraic feedback loop v = D̃21ϕ(v). This issue will
be addressed in subsequent chapters.

3.3 Robust RNNs 53

The proposed model structure is highly expressive and contains many commonly used
model structures. For instance, LTI systems are obtained when B̄1 = 0 and D11 = 0,
whereas RNNs of the form [64]:

xt+1 = B1Φ(Axt + But + b), (3.6)

yt = Cxt +Dut, (3.7)

are obtained with the choice F̄ = D11 = B̄2 = 0, B̄1 = B1, C1 = C, D12 = D,
C̄2 = A, D̄22 = B and b̄ = b. This implies (3.3), (3.4) is a universal approximator for
dynamical systems over bounded domains as q →∞ [165].

Even for linear systems, the set of robust or γ-robust models is non-convex [220].
Constructing a set of parameters for which (3.3), (3.4) is robust or γ-robust is further
complicated by the presence of the nonlinear activation function in Φ. We will simplify
the analysis by replacing Φ with incremental quadratic constraints.

3.3.2 Description of by Incremental Quadratic Constraints

Multiplying (3.5) through by (y − x)2, and combining the two inequalities, we get:

 y − x

ϕ(y)− ϕ(x)

⊤ 0 β

β −2

 y − x

ϕ(y)− ϕ(x)

 ≥ 0. (3.8)

For va, vb ∈ Rq and wa = Φ(va), wb = Φ(vb), (3.8) holds for each element with y = va
i

and x = vb
i . Sector conditions for multiple activation functions can be combined via

the “S-Procedure”, i.e. introducing multipliers λi > 0, we have:

 va
t − vb

t

wa
t − wb

t

⊤ 0 βΛ

βΛ −2Λ

︸ ︷︷ ︸

M(Λ)

 va
t − vb

t

wa
t − wb

t

 ≥ 0, (3.9)

where Λ = diag(λ1, ..., λq).

3.3 Robust RNNs 54

3.3.3 Convex Parametrization of Robust RNNs

Corresponding to the linear system (3.3), we introduce the following implicit, redun-
dant parameterization:

G

Ext+1 = Fxt + B1wt + B2ut + bx

yt = C1xt + D11wt + D12ut + by

Λvt = C2xt + D22ut + bv

(3.10)

where θ = (E, F, B1, B2, C1, D11, D12, Λ, C2, bx, by, bv, D22) are the model parameters
with E invertible and Λ ∈ D+ is the multiplier from (3.9). The explicit system (3.3)
can be easily constructed from (3.10) by inverting E and Λ.

For the robust model set we introduce the following constraint, which is jointly convex
in E, F, C2, B1, P, Λ:

E + E⊤ − P −βC⊤
2

−βC2 2Λ

−
F ⊤

B⊤
1

P −1

F ⊤

B⊤
1

⊤

≻ 0. (3.11)

The robust model set, we propose is given by equations (3.10), (3.4) parameterized
by:

Θ∗ := {θ : ∃P ≻ 0, Λ ∈ D+ s.t. (3.11)}.

For the γ-robust model set, we introduce the following constraint, which is jointly
convex in the model parameters E, F, C1, C2, B1, B2, D11, D12 the stability certificate
P , multipliers Λ and gain bound γ:

E + E⊤ − P −βC⊤

2 0
−βC2 2Λ −βD⊤

22

0 −βD22 γI

−

F ⊤

B⊤
1

B⊤
2

P −1

F ⊤

B⊤
1

B⊤
2

⊤

− 1
γ

C⊤

1

D⊤
11

D⊤
12

C⊤
1

D⊤
11

D⊤
12

⊤

≻ 0.

(3.12)

3.3 Robust RNNs 55

The γ-robust model set is then parameterized by:

Θγ := {θ : ∃P ≻ 0, Λ ∈ D+ s.t. (3.12)}.

Note that (3.11) and (3.12) can be written as LMIs via Schur complement, and are
jointly convex in the model parameters, stability certificate, multipliers Λ, and the
incremental ℓ2 gain bound γ. Note also that since P ≻ 0, the upper-left block of each
implies that E + E⊤ ≻ 0, hence E is invertible.

The following three theorems establish all models in these sets are in fact robust and
γ-robust as claimed, and furthermore that they are contracting [129].

Theorem 3.1. Suppose that θ ∈ Θγ, then the Robust RNN (3.10), (3.4) has a incre-
mental ℓ2-gain bound of γ.

Proof. See Section 3.5.

Theorem 3.2. Suppose that θ ∈ Θ∗, then the Robust RNN (3.10), (3.4) has a finite
incremental ℓ2-gain.

Proof. See Section 3.5.

Theorem 3.3. All models in θ ∈ Θ∗ and θ ∈ Θγ are contracting, i.e. for any input
signal, initial conditions are forgotten exponentially.

Proof. See Section 3.5.

3.3.4 Contracting Implicit Recurrent Neural Networks

This section introduces a simplified version of the Robust RNN known as the con-
tracting implicit RNN (ci-RNN), first presented in [176]. Consider the state space
model (3.1), (3.2) with the dynamics parameterized as an L layer neural network:

z0 = xt zℓ+1 = Φ(Aℓz
ℓ + Bℓ + bℓ) fθ(xt, ut) = zL (3.13)

3.3 Robust RNNs 56

for ℓ = 1, ..., L and a linear output layer. The dynamics in (3.13) can also be param-
eterized using the following implicit, redundant parameterization:

E0h
0 = x, Eℓ+1h

ℓ+1 = ϕ(Fℓh
ℓ + Bℓu + bℓ) fθ(x, u) = ELhL, (3.14)

for ℓ = 1, ..., L where Wℓ and Eℓ are learnable weight matrices and Eℓ are invertible.
Note that the implicit and explicit models are input/output equivalent under the
coordinate transformation zℓ = Eℓhℓ and Aℓ = FℓE

−1
ℓ−1.

We can treat multi-layer networks as a time-varying, periodic, non-linear system by
dividing up each k step into L sub-steps so that

hℓ+1
k = f ℓ(hℓ

k, uk), ℓ = 0, ..., L− 1 (3.15)

where f ℓ refers to the step at one layer in (3.13) and h0
k+1 = hL

k .

We now define the set of contracting implicit RNNs (ci-RNNs): A ci-RNN is a pa-
rameterized state space model (3.1), (3.2) with fθ(x, u) defined in (3.14) with an
additional contraction constraint. We propose to use the following constraints to
ensure model stability:

Eℓ + E⊤
ℓ − Pℓ F⊤

ℓ

Fℓ Pℓ+1

 ⪰ 0, ℓ = 0, ..., L− 1 (3.16)

with P0 = λPL. The set of ci-RNNs, denoted Θci is defined as:

Θci :=
{
θ : ∃P0, ..., PL ∈ D+ s.t. P0 = λPL, E + E⊤ ≻ 0, (3.16)

}

Note that Θci is convex as it is the intersection a number of semi-definite cones and
a linear equality constraint, and for all θ ∈ Θci, there exists a corresponding explicit
RNN (3.13). Fixing Eℓ = I and Pℓ = I recovers the model set used by [148].

Theorem 3.4. Suppose that θ ∈ Θci, then the dynamics (3.13) are contracting with
rate λ in the metric V = ∆⊤

x E⊤
0 P −1

0 E0∆x.

3.3 Robust RNNs 57

Proof. See Section 3.5

Unlike the robust RNN, the ci-RNN does not rely on quadratic constraints. Instead,
the main idea is to exploit the fact that the elementwise, slope-restricted activation
functions are contracting in any diagonal metric. This fact implies that if Aℓ in
(3.13) is contracting in a diagonal metric, then the composition of Aℓ and ϕ will also
be contracting in that metric.

Note that we have presented the model set for the ci-RNN in the multi-layer setting
and the model set for Robust-RNN in the single layer setting. This was done to match
our approach in [176]. While in principle, it is easy to extend the ideas used in the
Robust RNN to multilayer networks, a more effective method to improving the model
class expressivity can be achieved via the term D̃21 that is missing from (5.19). This
will be further explored in chapters 4 and 5.

3.3.5 Expressivity of the Robust RNN Model Set

To be able to learn models for a wide class of systems, the flexibility or expressivity of
a model set is important. Our stability and robustness conditions are only sufficient
conditions, and could be quite conservative since the only information they use about
the activation functions is the slope restriction. Nevertheless, we will see in the
empirical results in Section 3.4 that they can give remarkably tight bounds on the
incremental ℓ2-gain, and in this section we show that our model set contains several
previously proposed sets as special cases. First, we show that our parameterization
is not restrictive for the case of linear systems.

Theorem 3.5. The Robust RNN set Θ∗ contains all stable LTI models of the form

xt+1 = Axt + But, yt = Cxt +Dut. (3.17)

Proof. A necessary and sufficient condition for stability of (3.17) is the existence of
some P ≻ 0 such that:

P −A⊤PA ≻ 0. (3.18)

3.3 Robust RNNs 58

For any stable LTI system, the implicit RNN with θ such that E = P = P , F = PA,
B1 = 0, B2 = PB, C = C and D = D, C2 = 0 and D22 = 0 has the same dynamics
and output. To see that that θ ∈ Θ∗,

(3.18)⇒E + E⊤ − P − F ⊤P −1PP −1F ≻ 0

⇒

E + E⊤ − P − F ⊤P −1F 0
0 2Λ

 ⪰ 0⇒ (3.11)

for any Λ ≻ 0.

Remark 3.2. Essentially the same proof technique but with the strict Bounded Real
Lemma can be used to show that Θγ contains all LTI models with an H∞ norm bound
of γ.

Next, we show that our model set includes previously proposed sets of stable RNNs.
The equations for a single layer ci-RNN are given by:

Ezt+1 = Φ(Fzt + But + b), yt = Czt +Dut (3.19)

such that the following contraction condition holds
E + ET − P FT

F P

 ≻ 0 (3.20)

where P ∈ D+. The stable RNN (s-RNN), proposed in [148] is a special case of the
ci-RNNs with E = P = I.

Theorem 3.6. The Robust RNN set Θ∗ contains all ci-RNNs, and hence also all
s-RNNs.

Proof. See Section 3.5

3.4 Numerical Example 59

3.4 Numerical Example

We will compare the proposed Robust RNN with the (Elman) RNN [64] described
by (3.6), (3.7) with B1 = I and Long Short Term Memory (LSTM) [93], which is
a widely used model class that was originally proposed to resolve issues related to
stability. In addition, we compare with two previously published stable model sets,
the contracting implicit RNN (ci-RNN) [176] and stable RNN (sRNN) [148]. The
LSTM used a tanh activation function and all other models used a ReLU activation
function. All outputs are linear functions of the state.

The LSTM is described by the following equations:

LSTM

it+1 = σ(Wxixt + Wiiut+1 + bi),

ft+1 = σ(Wxfxt + Wifut+1 + bf),

gt+1 = σ(Wxgxt + Wigut+1 + bg),

ot+1 = σ(Wxoxt + Wiout+1 + bo),

ct+1 = ft+1 ⊙ ct + it+1 ⊙ gt+1,

xt+1 = ot+1 ⊙ tanh(ct+1),

(3.21)

where ct, xt ∈ Rn, are the cell state and hidden state, ut ∈ Rm is the input and ⊙ is
the Hadamard product and σ is the sigmoid function.

To generate data, we use a simulation of four coupled mass spring dampers. The goal
is to identify a mapping from the force on the initial mass to the position of the final
mass. Nonlinearity is introduced through the springs’ piecewise linear force profile

Fi(d) = kiΓ(d), Γ(d) =

d + 0.75, −d ≤ −1,

0.25d, −1 < d < 1,

d− 0.75, d ≥ 1,

(3.22)

where ki is the spring constant for the ith spring and d is the displacement be-
tween the carts. A schematic is shown in Fig. 3.2. The masses are [m1, ..., m4] =

3.4 Numerical Example 60

Figure 3.2 – Nonlinear mass spring damper schematic.

[1/4, 1/3, 5/12, 1/2], the linear damping coefficients used are [c1, ..., c4] = [1/4, 1/3, 5/12, 1/2]
and spring constants used in (3.22) are [k1, ..., k4] = [1, 5/6, 2/3, 1/2].

Note that the dynamics of this system are representable in the proposed model set.
Although the true state dimension is 8, a state dimension of 10 was used for each
model as this substantially improved the fit over all model classes. Excessive model
dimension is commonly observed to improve the trainability of neural networks [71].

We excite the system with a piecewise constant input signal that changes value af-
ter an interval distributed uniformly in [0, τ] and takes values that are normally
distributed with standard deviation σu. Measurements have Gaussian noise of ap-
proximately 30dB added. To generate data, we simulate the system for T/5 seconds
and sample the system at 5Hz to generate T data points with an input signal charac-
terized by τ = 20s and σu = 3N . The training data consists of 100 batches of length
1000. We also generate a validation set with τ = 20s, σu = 3N and length 5000 that
is used for early stopping. To test the model performance, we generate test sets of
length 1000 with τ = 20s and varying σu.

3.4.1 Training Procedure and Model Evaluation

We fit Robust RNNs to the data by minimizing the simulation error in ℓ2 norm:

min
θ∈Θ,ak∈Rn

Jse = ||ỹk − Sak(ũk)||2.

3.4 Numerical Example 61

Here, ũk and ỹk are the input and output data for the kth batch, Θ refers to one
of the model sets Θγ or Θ∗ characterized by (3.11) or (3.12). We treat the initial
condition ak for batch k as a parameter to be trained during optimization.

The constraint θ ∈ Θ is enforced using logarithmic barrier functions, i.e., we minimize
the following objective function:

J = ||ỹk − Sak(ũk)||2 − α log det(M − ϵI), (3.23)

for some small ϵ > 0, where M is the Schur complement of (3.11) or (3.12) and
α is the barrier parameter. The matrix M has dimension 2n + q or 2n + q + p,
and computing the gradient of the logarithmic barrier term requires M−1. This
can be calculated efficiently for moderately sized models. For large problems, the
Burer-Monteiro method [36] provides a computationally simpler, albeit nonconvex
alternative.

The objective (3.23) is minimized using stochastic gradient descent and the ADAM
optimizer [111] The term epoch refers to one complete pass through the training
data. A backtracking line search ensures strict feasibility throughout optimization.
After 10 epochs without an improvement in validation performance, we decrease the
learning rate by a factor of 0.25 and decrease α by a factor of 10. When α reaches
a final value of 1 × 10−7, we finish training. All code is written using Pytorch 1.60
and run on a standard desktop CPU. The code is available at the following link:
https://github.com/imanchester/RobustRNN/.

Quality of fit is measured by normalized simulation error:

NSE = ||ỹ − y||
||ỹ||

where y, ỹ ∈ ℓp
2 are the simulated and measured outputs, respectively. Since we are

learning input-output dynamics, during testing the first 200 samples are ignored to

https://github.com/imanchester/RobustRNN/

3.4 Numerical Example 62

let initial condition transients fade. Robustness is assessed by solving:

γ̂ = max
u,v,a

||Sa(u)− Sa(v)||
||u− v||

, u ̸= v.

using gradient ascent. The value of γ̂ is the “worst-case observed sensitivity” and is
a lower bound on the true Lipschitz constant of the model.

3.4.2 Results

The validation performance versus the number of epochs is shown in Fig. 3.3. Each
epoch training the Robust RNN takes twice as long as the LSTM due to the evalu-
ation of the logarithmic barrier functions and the backtracking line search, however,
we will see that the model offers both stability/robustness guarantees and superior
generalizability.

Figure 3.4 presents the boxplots of NSE and a comparison of the medians on test sets
with input signals with varying σu. In each plot, there is a trough around σu = 3
corresponding to the training data distribution. For the LSTM and RNN, the model
performance quickly degrades with varying σu, whereas all the stable models exhibit
a more gradual decline in performance. This supports the claim that model stability
constraints can improve model generalization. The Robust RNN set Θ∗ uniformly
outperforms all other models.

Figure 3.5 plots the worst-case observed sensitivity versus median nominal test per-
formance (σu = 3). The Robust RNNs show the best trade-off between nominal
performance and robustness, i.e., closest to the lower-left corner. For instance, if we
compare the LSTM with the Robust RNN (Θ∗), we observe that the Robust RNN
has a slightly lower NSE but a Lipschitz constant almost fifteen times smaller. We
also observe that the guaranteed upper bounds are quite tight to the observed lower
bounds on the Lipschitz constant, especially for the set Θ3.

Fig. 3.6 shows model predictions for the RNN, LSTM and Robust RNN for an input
with σu = 10. We can see that even with an input much larger than the training

3.5 Proofs 63

Figure 3.3 – Validation performance versus epochs. The RNN, LSTM and Robust
RNN take an average of 10.1, 18.7 and 37.6 seconds per epoch, respectively.

data, the Robust RNN predicts the measured data fairly well while LSTM and RNN
deviate significantly from the measured data.

3.5 Proofs

Proof of Theorem 3.1

Proof. Consider two solutions xa, xb ∈ ℓn
2e and outputs ya, yb ∈ ℓp

2e to the system (3.1),
(3.2) with initial conditions a, b ∈ Rn and inputs ua, ub ∈ ℓm

2e. Let ∆u = ua − ub,
∆x = xa − xb, ∆v = va − vb, ∆w = wa − wb and ∆y = ya − yb.

To establish the incremental ℓ2-gain bound, we first left and right multiply (3.12)

by the vectors
[
∆x⊤

t , ∆w⊤
t , ∆u⊤

t

]
and

[
∆xt

⊤, ∆wt
⊤, ∆ut

⊤
]⊤

. Applying the bound
−E⊤P −1E ⪯ P−E−E⊤ [214] and introducing the storage function Vt = ∆x⊤

t E⊤P −1E∆xt

3.5 Proofs 64

(a) RNN (b) LSTM (c) s-RNN

(d) ci-RNN (e) Robust RNN (Θ∗) (f) Comparison of median
model performance.

Figure 3.4 – Boxplots showing model NSE performance for 300 input realizations for
varying σu.

Figure 3.5 – Test performance with (σu = 3) versus observed worst case sensitivity.
The vertical lines are the upper bound on the Lipschitz constant.

3.5 Proofs 65

Figure 3.6 – Example simulation of models with σu = 10, the robust RNN significantly
outperforms the other models.

3.5 Proofs 66

gives

Vt+1 − Vt < γ|∆ut|2 −
1
γ
|∆yt|2 −

∆vt

∆wt

⊤

M(Λ)

∆vt

∆wt

for ∆xt ̸= 0. Using (3.9) and summing over [0, T] gives

VT − V0 < γ∥∆u∥2
T −

1
γ
∥∆y∥2

T ,

for ∆x ̸= 0, so the incremental ℓ2-gain condition (2.21) follows with d(a, b) = γV0.

Proof of Theorem 3.2

Proof. Note that if the LMI condition (3.11) is satisfied, there exists a sufficiently
large γ such that (3.12) holds for any choice of B2, C1, D11, D12 and D22. Since
(3.11) implies (3.12) for some sufficiently large γ, from Theorem 3.1 the Robust RNN
(3.10), (3.4) has a finite incremental ℓ2-gain bound γ.

Proof of Theorem 3.3

Proof. From the proof of Theorem 3.1, if ∆u = 0 then Vt+1 < Vt when ∆xt ̸= 0.
Since both Vt and Vt+1 can be expressed as quadratic forms in ∆xt, it follows that
Vt+1 ≤ αVt for some α ∈ [0, 1) and Vt ≤ αtV0. Since P ≻ 0 and E is non-singular this
implies |∆xt| → 0 exponentially.

Proof of Theorem 3.4

Proof. We would like to show that the condition (3.16) implies the existence of a con-
traction metric Vk for the system (3.13), for which Vk+1 ≤ λVk. Via Schur complement
(3.16) is equivalent to:

Eℓ + E⊤
ℓ − Pℓ −W ⊤

ℓ P −1
ℓ+1Wℓ ⪰ 0.

3.5 Proofs 67

For all admissible activation functions (slope restricted to the interval [−1, 1]) and
diagonal P ≻ 0, we have (ha−hb)⊤P −1(ha−hb) ≥ (ϕ(ha)−ϕ(hb))⊤P −1(ϕ(za)−ϕ(zb)).
Left and right multiplying by ∆h gives

∆⊤
hℓ+1

E⊤
ℓ+1P

−1
ℓ+1Eℓ+1∆hℓ+1 −∆⊤

h (E + E⊤ − P)∆h ≤ 0.

Introducing the storage function V ℓ
k (∆ℓ

hk
) = ∆ℓ

hk

⊤
E⊤

ℓ P −1
ℓ Eℓ∆ℓ

hk
and using the bound

E⊤P −1E ≻ E + E⊤ − P , we can see that V ℓ+1
k − V ℓ

k < 0. Summing this from
ℓ = 0,, L− 1 gives V L

k − V 0
k ≤ 0. Due to the periodicity, we have V 0

k+1 = λV L
k , so

V 0
k+1 ≤ λV 0

k , and the system is contracting in the metric V 0
k .

Proof of Theorem 3.6

Proof. For any ci-RNN, there is a robust RNN with the same dynamics and output
with θ such that F = 0, E = E , B1 = I, B2 = 0, C1 = C, D11 = 0, D12 = D,
Λ−1C2 = F , Λ−1D22 = B, b = Λ−1b, Λ = P −1 and P = P . By substituting θ into
(3.10) and (3.4), we recover the dynamics and output of the ci-RNN in (3.19). For
these parameters, θ ∈ Θ∗:

(3.20) =⇒ E + E⊤ − P − C⊤
2 Λ−1P −1Λ−1C2 ≻ 0

=⇒

E + E⊤ − P C⊤
2

C2 2Λ− P −1

 ≻ 0 =⇒ (3.11).

The remaining conditions P ≻ 0, Λ ∈ D+ and E + E⊤ ≻ 0 follow by definition.

Chapter 4

Lipschitz Bounded Equilibrium

Networks

In Chapter 3, we studied a class of recurrent neural networks that is closely related
to the Lure feedback interconnection and showed that a convex parameterization of
sequence-to-sequence maps with prescribed stability and Lipschitz bounds can be
constructed. In the proposed model, the term D̃21 was set to zero, due to well-
posedness concerns implied by the algebraic loop v = D̃21ϕ(v) that would otherwise
appear in the feedback interconnection between (3.3) and (3.4).

In this chapter, we study this algebraic loop in more detail and show that it is actually
an instance of a class of neural networks called an Equilibrium Network. We derive
less conservative well-posedness conditions than those that appeared previously in
the literature and show that the tightest known bounds on the Lipschitz constant
currently known can be easily imposed during training using unconstrained optimiza-
tion: no projections or barrier functions are required. These results are proved by
establishing novel operator splitting on non-Euclidean spaces and contracting neural
ODEs. In image classification experiments on the MNIST and CIFAR10 datasets,
we show that the Lipschitz bounds are very accurate and improve the robustness to
adversarial attacks.

4.1 Introduction 69

Publications

Some of the content of this chapter can be found in the following preprint:

Max Revay, Ruigang Wang, and Ian R. Manchester. Lipschitz bounded equilibrium
networks. arXiv preprint arXiv:2104.05942, 2021.

4.1 Introduction

Deep neural network models have revolutionized the field of machine learning: their
accuracy on practical tasks such as image classification and their scalability have led
to an enormous volume of research on different model structures and their properties
[118]. In particular, deep residual networks with skip connections [87] have had a ma-
jor impact, and neural ODEs have been proposed as an analog with “implicit depth”
[39]. Recently, a new structure has gained interest: equilibrium networks [14, 238],
a.k.a. implicit deep learning models [62], in which model outputs are defined by im-
plicit equations incorporating neural networks. This model class is very flexible: it
is easy to show that it includes many previous structures as special cases, includ-
ing standard multilayer networks, residual networks, and (in a certain sense) neural
ODEs.

However, model flexibility in machine learning is always in tension with model regular-
ity or robustness. While deep learning models have exhibited impressive generalization
performance in many contexts it has also been observed that they can be very brittle,
especially when targeted with adversarial attacks [209]. In response to this, there has
been a major research effort to understand and certify robustness properties of deep
neural networks, e.g. [170, 211, 123, 43] and many others. Global Lipschitz bounds
(a.k.a. incremental gain bounds) provide a somewhat crude but nevertheless highly
useful proxy for robustness [216, 66], and appear in several analyses of generalization
(e.g. [18, 257]).

4.2 Related work 70

Inspired by both of these lines of research, we propose new parameterizations of
equilibrium networks with guaranteed Lipschitz bounds. We build directly on the
monotone operator framework of [238] and the work of [66] on Lipschitz bounds.

Our main contribution is the ability to enforce tight bounds on the Lipschitz constant
of an equilibrium network during training with essentially no extra computational ef-
fort. In addition, we prove the existence of solutions with less restrictive conditions on
the weight matrix and more natural assumptions on the activation functions via novel
connections to convex optimization and contracting dynamical systems. Finally, we
show via small-scale image classification experiments that the proposed parameteri-
zations can provide significant improvement in robustness to adversarial attacks with
little degradation in nominal accuracy. Furthermore, we observe small gaps between
certified Lipschitz upper bounds and observed lower bounds computed via adversarial
attack.

4.2 Related work

Equilibrium networks, Implicit Deep Models, and Well-Posedness. As
mentioned above, it has been recently shown that many existing network architectures
can be incorporated into a flexible model set called an equilibrium network [14, 238] or
implicit deep model [62]. In this unified model set, the network predictions are made
not by forward computation of sequential hidden layers, but by finding a solution to
an implicit equation involving a single layer of all hidden units. One major question
for this type of networks is its well-posedness, i.e. the existence and uniqueness of a
solution to the implicit equation for all possible inputs. [62] proposed a computation-
ally verifiable but conservative condition on the spectral norm of hidden unit weight.
In [238], a less conservative condition was developed based on monotone operator the-
ory. Similar monotonicity constraints were previously used to ensure well-posedness
of a different class of implicit models in the context of nonlinear system identification
[214, Theorem 1]. On the question of well-posedness, our contribution is a more flex-
ible model set and more natural assumptions on the activation functions: that they

4.3 Problem Formulation and Preliminaries 71

are monotone and slope-restricted.

Neural Network Robustness and Lipschitz Bounds. The Lipschitz constant
of a function measures the worst-case sensitivity of the function, i.e., the maximum
“amplification” of the difference in inputs to differences in the outputs. The key fea-
tures of a good Lipschitz bounded learning approach include a tight estimation for
Lipschitz constant and a computationally tractable training method with bounds en-
forced. For deep networks, [216] proposed a computationally efficient but conservative
approach since its Lipschitz constant estimation method is based on the composition
of estimates for different layers, while [8] proposed a combination of a novel acti-
vation function and weight constraints. For equilibrium networks, [62] proposed an
estimation of Lipschitz bounds via input-to-state (ISS) stability analysis. [66] esti-
mates for deep networks based on incremental quadratic constraints and semidefinite
programming (SDP) were shown to give state-of-the-art results, however, this was
limited to the analysis of previously trained networks. The SDP test was incorpo-
rated into training via the alternating direction method of multipliers (ADMM) in
[164], however due to the complexity of the SDP, the training times recorded were
almost 50 times longer than for unconstrained networks. Our approach uses a similar
condition to [66] applied to equilibrium networks, however, we introduce a novel di-
rect parameterization method that enables learning robust models via unconstrained
optimization, removing the need for computationally expensive projections or barrier
terms.

4.3 Problem Formulation and Preliminaries

4.3.1 Problem statement

We consider the weight-tied network in which x ∈ Rd denotes the input, and z ∈ Rn

denotes the hidden units, y ∈ Rp denotes the output, given by the following implicit

4.3 Problem Formulation and Preliminaries 72

equation
z = σ(Wz + Ux + bz), y = Woz + by (4.1)

where W ∈ Rn×n, U ∈ Rn×d, and Wo ∈ Rp×n are the hidden unit, input, and output
weights, respectively, bz ∈ Rn and by ∈ Rp are bias terms. The implicit framework
includes most current neural network architectures (e.g., deep and residual networks)
as special cases. To streamline the presentation, we assume that σ : R → R is a
single nonlinearity applied elementwise, although our results also apply in the case
that each channel has a different activation function, nonlinear or linear.

Equation (4.1) is called an equilibrium network since its solutions are the equilibrium
points of the difference equation zk+1 = σ(Wzk + Ux + bz) or the ODE ż(t) =
−z(t)+σ(Wz(t)+Ux+bz). Our goal is to learn equilibrium networks (4.1) possessing
the following two properties:

• Well-posedness: For every input x and bias bz, equation (4.1) admits a unique
solution z.

• γ-Lipschitz: It has a finite Lipschitz bound of γ, i.e., for any input-output
pairs (x1, y1), (x2, y2) we have ∥y1 − y2∥2 ≤ γ∥x1 − x2∥2.

4.3.2 Preliminaries

Monotone operator theory. In this chapter, we will use the monotone operator
theory on non-Euclidean spaces [19], see Section 2.5.3 for a brief review of the relevant
aspects of monotone operator theory or [183] for a more in depth treatment. In
particular, we are interested in a finite-dimensional Hilbert spaceH, which we identify
as Rn equipped with a weighted inner product ⟨x, y⟩Q := y⊤Qx where Q ≻ 0. The
benefit of using a non-Euclidean space is that we can construct a more expressive set
of equilibrium networks.

An operator is a set-valued or single-valued function defined on a subset of the space
A ⊆ H×H; we use the notation A(x) = {y | (x, y) ∈ A}. A function f : H → R∪{∞}

4.3 Problem Formulation and Preliminaries 73

is proper if f(x) <∞ for at least one x. The subdifferential and proximal operators
of a proper function f are defined as

∂f(x) := {g ∈ H | f(y) ≥ f(x) + ⟨y − x, g⟩Q, ∀y ∈ H},

proxα
f (x) := {z ∈ H | z = arg min

u

1
2∥u− x∥2

Q + αf(u)}

respectively, where ∥x∥Q :=
√
⟨x, x⟩Q is the induced norm. For n = 1, we only

consider the case of Q = 1. An operator A is monotone if ⟨u − v, x − y⟩Q ≥ 0
and strongly monotone with parameter m if ⟨u − v, x − y⟩Q ≥ m∥x − y∥2

Q for all
(x, u), (y, v) ∈ A. The operator splitting problem is that of finding a zero of a sum of
two operators A and B, i.e. find an x such that 0 ∈ (A + B)(x).

Dynamical systems theory. Another approach to analyzing the properties of
(4.1) is to treat it as the equilibrium point of a dynamical system

ż(t) = f(z(t)). (4.2)

Then, the well-posedness and robustness properties of (4.1) can be guaranteed by
imposing the corresponding properties on the dynamical system’s solution set. A
central focus in robust and nonlinear control theory for more than 50 years – and
largely unified by the modern theory of integral quadratic constraints [145] – has
been on systems which are interconnections of linear mappings and “simple” nonlin-
earities, i.e. those easily bounded in some sense by quadratic functions. Fortuitously,
this characteristic is shared with deep, recurrent, and equilibrium neural networks, a
connection that we use heavily in this chapter and has previously been exploited by
[66, 62, 177] and others. We are interested in ensuring contraction:

Definition 4.1 (Contraction [129]). A continuous time dynamical system (4.2) is
termed contracting with rate λ if for any two solutions xa(t) and xb(t), given the
same input u(t), there exists some function b(xa(0), xb(0)) > 0 with b(x, x) = 0, such
that the resulting trajectories satisfy ∥xa(t)− xb(t)∥ ≤ b(xa(0), xb(0))e−λt.

4.4 Main Results 74

Contraction can be established by finding a Riemannian metric with respect to which
nearby trajectories converge, which is a differential analog of a Lyapunov function.

For time-invariant systems, contraction implies a unique equilibrium exists and pos-
sesses a certain level of robustness. Moreover, the contraction can also be linked
to monotone operators, i.e., a system is contracting w.r.t. to a constant (state-
independent) metric Q if and only if the operator −f is strongly monotone w.r.t.
Q-weighted inner product.

4.4 Main Results

This section contains the main theoretical results of the chapter: conditions implying
well-posedness and Lipschitz-boundedness of equilibrium networks, and direct (un-
constrained) parameterizations such that these conditions are automatically satisfied.

Assumption 1. The activation function σ is piecewise differentiable and slope-
restricted in [0, 1], i.e.,

0 ≤ σ(x)− σ(y)
x− y

≤ 1, ∀x, y ∈ R, x ̸= y. (4.3)

Remark 4.1. In [45], it is shown that Assumption 1 is equivalent to the assumption
on σ in [238], i.e. that σ(·) = prox1

f (·) for some piecewise twice-differentiable and
proper convex function f . However, the above assumption is arguably more natural,
since it is easily verified for standard activation functions. Note also that if different
channels have different activation functions, then we simply require that they all
satisfy (4.3).

The following conditions are central to our results on well-posedness and Lipschitz
bounds:

Condition 4.1. There exists a Λ ∈ D+, with D+ denoting diagonal positive-definite
matrices, such that W satisfies

2Λ− ΛW −W T Λ ≻ 0. (4.4)

4.4 Main Results 75

Condition 4.2. Given a prescribed Lipschitz bound γ > 0, there exists Λ ∈ D+ such
that W, Wo, U satisfy

2Λ− ΛW −W T Λ− 1
γ

W T
o Wo −

1
γ

ΛUUT Λ ≻ 0. (4.5)

Remark 4.2. Note that Condition 4.2 implies Condition 4.1 since 1/γ(W T
o Wo +

ΛUUT Λ) ⪰ 0. As a partial converse, if Condition 4.1 holds, then for any Wo, U there
exist a sufficiently large γ such that Condition 4.2 is satisfied.

The main theoretical results of this chapter are the following:

Theorem 4.1. If Assumption 1 and Condition 4.1 hold, then the equilibrium network
(4.1) is well-posed, i.e. for all x and bz, equation (4.1) admits a unique solution z.
Moreover, it has a finite Lipschitz bound from x to y.

Proof. See Section 4.7

Theorem 4.2. If Assumption 1 and Condition 4.2 hold, then the equilibrium network
(4.1) is well-posed and has a Lipschitz bound of γ.

Proof. See Section 4.7

As a consequence, we call (4.1) a Lipschitz bounded equilibrium network (LBEN) if
its weights satisfy (4.4). It is called an LBEN γ if its weights also satisfy (4.5). The
full proofs appear in Section 4.7, but here we sketch some of the main ideas. We can
represent (4.1) as an algebraic interconnection between linear and nonlinear parts:

v = Wz + Ux + bz, z = σ(v), y = Woz + by. (4.6)

It can be shown that for any pair of solutions to the nonlinear part za = σ(va), zb =
σ(vb), if we define ∆v = va − vb and ∆z = za − zb then Assumption 1 implies the
following:

⟨∆v −∆z, ∆z⟩Λ ≥ 0. (4.7)

4.4 Main Results 76

for any Λ ∈ D+. This and Condition 4.1 can be used to prove global stability of a
unique equilibrium of the differential equation

v̇ = −v + Wσ(v) + Ux + bz,

for any input and bias, which proves there is a unique solution to (4.1). Next, straight-
forward manipulations of Condition 4.2 show that any pairs of inputs xa, xb and
outputs ya, yb satisfy the following, where ∆x = xa − xb and ∆y = ya − yb:

γ∥∆x∥2
2 −

1
γ
∥∆y∥2

2 ≥ 2⟨∆v −∆z, ∆z⟩Λ ≥ 0,

where the inequality comes (4.7). This implies the Lipschitz bound ∥∆y∥2 ≤ γ∥∆x∥2.

4.4.1 Direct Parameterization for Unconstrained Optimiza-

tion

Training a network that satisfies Condition 4.1 or 4.2 can be formulated as an opti-
mization problem with convex constraints. In fact, Condition 4.1 is a linear matrix
inequality (LMI) in the variables Λ and ΛW , from which W can be determined
uniquely. Similarly, via Schur complement, Condition 4.2 is an LMI in the vari-
ables Λ, ΛW, ΛU, Wo, and γ, from which all network weights can be determined. In
a certain theoretical sense LMI constraints are tractable – [153] proved they are
polynomial-time solvable – however for even moderate-scale networks (e.g. ≤ 100
activations) the associated barrier terms, projections and/or line searches become a
major computational bottleneck. Furthermore, the constrained optimization schemes
for incorporating constraints (4.1) or (4.2) can be difficult implement and introduce
a large number of hyperparameters.

In this chapter, we propose a ‘direct’ parameterization that allows learning via un-
constrained optimization, i.e. all network parameters are constructed from free (un-
constrained) matrix variables in such a way that LMI constraints (4.4) or (4.5) are
automatically satisfied.

4.4 Main Results 77

For well-posedness, i.e. Condition (4.1), we parameterize via the following free vari-
ables: V ∈ Rn×n, d ∈ Rn, and skew-symmetric1 matrix S = −ST ∈ Rn×n, from which
the hidden unit weight is

W = I −Ψ(V T V + ϵI + S), (4.8)

where Ψ = diag
(
ed
)

and ϵ > 0 is some small constant to ensure strict positive-
definiteness. Then it follows from straightforward manipulations that Condition 4.1
holds with Λ = Ψ−1 if and only if W can be written as (4.8). When Ψ = I, this
reduces to the exactly the same parameterization as was used in [238].

Similarly, for a specific Lipschitz bound, i.e. Condition 4.2, we add to the parame-
terization the free input and output weights U and Wo, and arbitrary γ > 0. We can
construct

W = I −Ψ
[
V T V + ϵI + S + 1

2γ
(W ⊤

o Wo + Ψ−1UU⊤Ψ−1)
]

, (4.9)

for which (4.5) is automatically satisfied. Again, it can easily be verified that this
construction is necessary and sufficient, i.e. any W satisfying (4.5) can be constructed
via (4.9).

4.4.2 Monotone Operator Perspective

The LBEN (4.1) is closely related to an operator splitting problem:

Proposition 4.1. Finding a solution of LBEN (4.1) is equivalent to solving the well-
posed operator splitting problem 0 ∈ (A + B)(z) with the operators

A(z) = (I −W)(z)− (Ux + bz), B = ∂f (4.10)

where f(z) := ∑n
i=1 λif(zi) with λi as the ith diagonal element of Λ.

1Note that S can be parameterized via its upper or lower triangular components, or via S =
N−NT with N free, which can be more straightforward if W is defined implicitly via linear operators,
e.g. convolutions.

4.4 Main Results 78

Proof. See Section 4.7

The proof appears in Section 4.7 and Theorem 4.1 follows directly since the above
operator splitting problem has a unique solution for any x, bz. The solution can be
efficiently computed via various of operator splitting algorithms, e.g., ADMM [31] and
Peaceman-Rachford splitting [107]. In [238], it was found that Peaceman-Rachford
splitting converges very rapidly when properly tuned, and our experience agrees with
this. The convergence properties of the equilibrium solving algorithm can also be
improved by using suitable regularization techniques [16].

Gradient Backpropagation. As shown in [238, Section 3.5], the gradients of the
loss function ℓ(·) can be represented by

∂ℓ

∂(·) = ∂ℓ

∂z⋆

(I − JW)−1J
∂(Wz⋆ + Ux + bz)

∂(·) (4.11)

where z⋆ denotes the solution of (4.1), (·) denotes some learnable parameters in the
parameterization (4.8) or (4.9), and J ∈ Dσ(Wz⋆ + Ux + bz) with Dσ as the Clarke
generalized Jacobian of σ. Since σ is piecewise differentiable, then the set Dσ(Wz⋆ +
Ux + bz) is a singleton almost everywhere. The following proposition reveals that
(4.11) is well-defined, see proof in Section 4.7.

Proposition 4.2. The matrix I − JW is invertible for all z⋆, x and bz.

Proof. See Section 4.7

4.4.3 Contracting Neural ODEs

In this section, we will prove the existence of a solution to (4.1) from a different
perspective: by showing it is the equilibrium of a contracting dynamical system (a
“neural ODE”). We first add a smooth state v(t) ∈ Rn to avoid the algebraic loop
in (4.6). This idea has long been recognized as helpful for well-posedness questions

4.4 Main Results 79

[251]. We define the dynamics of v(t) by the following ODE:

(I − 1
2W)v̇(t) = −v(t) + Wz(t) + Ux + bz, z(t) = σ(v(t)). (4.12)

The well-posedness of (4.1) is equivalent to the existence and uniqueness of an equi-
librium of (4.12) for all x and bz, which is established by the following proposition.

Proposition 4.3. If Assumption 1 and Condition 4.1 hold, then the neural ODE
(4.12) is contracting w.r.t. some constant metric P ≻ 0.

Proof. See Section 4.7

4.4.4 Model Expressivity

In [238], a set of well-posed equilibrium network, called monotone operator equilib-
rium network (MON), is introduced via the following parameterization

W = (1−m)I − A⊤A + B⊤ −B (4.13)

where m > 0 is a hyper-parameter, and A, B are learnable matrices. The MON
parameterization can be understood as a special case of LBEN with a fixing Ψ = I.
In this section, we will illustrate the extra expressivity of LBEN compared with MON.

Example 4.1

Consider a toy example with W ∈ R2×2 and take a slice near W = 0 of the
form

W =
0 W12

0 W22

 , (4.14)

for which we have:

2I −W −W T =
 2 −W12

−W12 2− 2W22

 . (4.15)

4.4 Main Results 80

By Sylvester’s criterion, this matrix is positive-definite if and only if W22 < 1
and det(2I −W −W T) = 4(1−W22)−W 2

12 > 0, which defines a parabolic
region in the W12, W22 plane.

Applying our condition (4.4), without loss of generality take Λ = diag(1, α)
with α > 0 and we have

2Λ− ΛW −W T Λ =
 2 −W12

−W12 2α− 2αW22

 .

The positivity test is now W22 < 1 and 4α(1 −W22) −W 2
12 > 0. For each

W12 there is sufficiently large α such that the second condition is satisfied,
since the first implies 1 − W22 > 0. Hence the only constraint on W is
that W22 < 1, which yields a much larger region in the W12, W22 plane (see
Figure 4.1). Interestingly, in this simple example with ReLU activation,
the condition W22 < 1 is also a necessary condition for well-posedness [62,
Theorem 2.8].

Now we consider general L-layer feedforward networks, described by the following
recursive equation

z0 = x, zℓ+1 = σ(W ℓzℓ + bℓ), y = W LzL + bL (4.16)

with ℓ = 0, . . . , L−1. It can be rewritten as an equilibrium network (4.1) with hidden
units z = col(z1, . . . , zL) and weights Wo =

[
0 · · · 0 W L

]
,

W =

0

W 1 . . .
... . . . 0
0 · · · W L−1 0

, U =

W 0

0
...
0

 . (4.17)

The above equilibrium network is clearly well-posed as a unique solution always exists.
The following propositions show that (4.17) is an LBEN but does not necessarily
belong to the MON model set.

Proposition 4.4. The LBEN parameterization (4.8) contains all feedforward net-

4.4 Main Results 81

−80 −60 −40 −20 0
W22

−40

−20

0

20

40

W
12

Figure 4.1 – Valid coefficient ranges for Example 4.1.
Gray region: the condition from [238] is feasible: 2I −W −W T ≻ 0.

White region (including gray region): our well-posedness condition is feasible: ∃Λ ∈
D+ : 2Λ− ΛW −W T Λ ≻ 0.

Black region: neither condition feasible.

4.5 Experiments 82

works (4.16).

Proof. See Section 4.7

Proposition 4.5. The MON parameterization (4.13) does not contain all feedforward
networks (4.16), and if m ≥ 1 it does not contain any feedforward networks.

Proof. See Section 4.7

From the proof in Section 4.7.1, the set of feedforward networks in MON shrinks
as the hyper-parameter m increases. Most experiments in [238] use m = 1, which
excludes all feedforward networks.

Another interesting question is: can we further improve the model expressivity by
considering more general Λ, i.e., relaxing the requirement Λ ∈ D+ for (4.7)? In [66] it
was claimed that (4.7) holds with a richer (more powerful) class of multipliers Λ which
were previously introduced for robust stability analysis of systems with repeated
nonlinearities [42, 51, 116]. However this is not true: a counterexample was given
in [164], and here we provide a brief explanation: even if the nonlinearities σ(vi) are
repeated when considered as functions of vi, their increments ∆zi = σ(vi+∆vi)−σ(vi)
are not repeated when considered as functions of ∆vi, since they depend on the
particular vi which generally differs between units.

4.5 Experiments

In this section, we test our approach on the MNIST and CIFAR-10 image classifica-
tion problems. Our numerical experiments focus on model robustness, the trade-off
between model performance and the Lipschitz constant, and the tightness of the Lips-
chitz bound. We compare the proposed LBEN to unconstrained equilibrium networks,
the monotone operator equilibrium network (MON) of [238], and fully connected net-
works trained using Lipschitz margin training (LMT) [216]. When studying model
robustness to adversarial attacks, we use the L2 Fast Gradient Method, implemented

4.5 Experiments 83

as part of the Foolbox toolbox [174]. All models are trained on either a standard desk-
top computer with an NVIDIA GeForce RTX 2080 graphics card or using a google
cloud instance with a Nvidia Tesla V100 graphics card. Details of the models and
training procedure can be found in Section 4.8.

4.5.1 MNIST Experiments with Fully-Connected Networks

In Figure 4.2a we plot the test error versus the observed Lipschitz constant, com-
puted via an adversarial attack for each of the models trained. We can see clearly
that the parameter γ in LBEN offers a trade-off between test error and Lipschitz
constant. Comparing the LBENγ=5 with both MON and LBENγ<∞, we also note a
slight regularizing effect in the lower test error.

By comparison, LMT [216] with c as a tunable regularization parameter displays a
qualitatively similar trade-off, but underperforms LBEN in terms of both test error
and robustness. If we examine the unconstrained equilibrium model, we observe
a Lipschitz constant more than an order of magnitude higher, i.e., this model has
regions of extremely high sensitivity, without gaining any accuracy in terms of test
error.

For the LBEN models, the lower and upper bounds on the Lipschitz constant are very
close: the markers are very close to their corresponding lines in Section 4.2a, see also
the table of numerical results in Section 4.6 in which the approximation accuracy is
in many cases around 90%.

Next, we tested the robustness of classification accuracy to adversarial attacks of
various sizes, the results are shown in Figure 4.2b and summarized in Table 4.1. We
can clearly see that decreasing γ (i.e. stronger regularization) in the LBENs results
in a far more gradual degradation of performance as the perturbation size increases,
with only a mild impact on the nominal (zero perturbation) test error.

Next, we examined the impact of our parameterization on computational complexity
compared to other equilibrium models. The test and training errors versus the number

4.5 Experiments 84

(a) Nominal test error vs Lipschitz constant estimates: markers indi-
cate observed lower bounds for all methods, vertical lines indicate
certified upper bounds for LBEN

(b) Test error with adversarial perturbation versus size of adversarial
perturbation. Lower is better.

Figure 4.2 – Image classification results on MNIST character recognition data set.

4.5 Experiments 85

of epochs are plotted in Figure 4.5, and we can see that all models converge similarly,
and take roughly the same amount of time per epoch. This is a clear contrast to the
results of [164] in which imposing Lipschitz constraints resulted in fifty-fold increase
in training time. Interestingly, we can also see in Figure 4.5 the effect of regularization
for LBEN with γ = 5: higher training error but lower test error. We have observed
several cases where the unconstrained equilibrium model became unstable during
training, LBEN never exhibits this problem.

Finally, we examined the quality of the Lipschitz bounds as a function of network
size, comparing the upper and lower bounds on fully connected networks with width
20 to 1000. The results are shown in Figure 4.6. It can be observed that the network
size only has a mild effect on the quality of the Lipschitz bounds, which decrease
slightly as width is increased by a factor of 50.

4.5.2 CIFAR-10 Experiments With Convolutional Networks

In this section, we report several experiments exploring the use of LBEN with convo-
lutional layers on the CIFAR-10 dataset. We compare to feedforward convolutional
networks of similar sizes and to LBENs with their metric set to the identity, denoted
LBEN Λ=I to observe the effect of a flexible metric. Note that the model set LBEN

Λ=I,γ<∞ corresponds to the MON. Additional model details can be found in Section
4.8.2.

In Figure 4.3a, we have plotted the test performance versus the observed Lipschitz
constant for the LBEN and LBEN Λ=I for varying Lipschitz bound γ = 1, 2, 3, 5, 50,
along with the LBENγ<∞, MON, and feed-forward convolutional networks with 40,
81, 160, and 200 channels. As with the fully connected network on MNIST, we see
that the Lipschitz bound has a regularizing effect, trading off between nominal fit and
robustness. Additionally, we see that the LBEN provides both better performance
and robustness than the traditional feedforward convolutional networks of similar
sizes, highlighting the benefit of the equilibrium network structure.

Comparing LBEN and LBENΛ=I , we can see that the metric gives higher quality

4.5 Experiments 86

(a) Nominal test error vs observed lower bound on Lipschitz constant.

(b) Test error with adversarial perturbation versus size of adversarial
perturbation. Lower is better.

Figure 4.3 – Image classification results on CIFAR-10 data set.

4.6 Experimental Results on MNIST & CIFAR Image Classification 87

models for LBEN with specified γ, but it is slightly worse for LBEN γ <∞ compared
to MON. This is likely due to the extra expressiveness of the model leading to some
overfitting. This can also be seen in the training curves in Figure 4.7 in the Section
4.6.

Note that the accuracy of the MON shown in Figure 4.3a is lower than the reported
accuracy of 74.0% in Winston and Kolter [238]. This discrepancy is due to the
reduced number of epochs that we used to train the models, using 25 epochs instead
of 40. The number of training epochs was reduced as we found that applying the
forward-backward algorithm caused the number of iterations required to solve for the
equilibria of the LBEN increased over time and would significantly slow down training
after 25 epochs.

Figure 4.3b shows the test error versus the size of adversarial perturbation for the
LBEN and 162 channel feedforward convolutional network. We observe that the
LBEN provides a much more gradual loss in performance than the feedforward net-
work, with γ = 5 offering an excellent mix of nominal performance and robustness.
The feed-forward networks of different sizes exhibited similar results, however only
one is plotted in Figure 4.3b for clarity.

4.6 Experimental Results on MNIST & CIFAR

Image Classification

This section contains tables of results on MNIST and CIFAR-10 data sets.

Legend:

• Err: Test error (%),

• ∥a∥2: ℓ2 norm of adversarial attack.

• γup: certified upper bound on Lipschitz constant (for models that provide one).

• γlow: observed lower bound on Lipschitz constant via adversarial attack.

4.6 Experimental Results on MNIST & CIFAR Image Classification 88

Model Err: ∥a∥2 = 0 Err: ∥a∥2 ≤ 2 Err: ∥a∥2 ≤ 4 γup γlow γ approx
LBENγ<∞ 1.89 77.4 92.8 - 9.8 -
LBENγ=5 2.21 76.4 96.8 5 2.912 58.2%
LBENγ=0.8 2.59 45.9 96.8 0.8 0.715 89.4%
LBENγ=0.4 3.99 35.6 92.2 0.4 0.372 93%
LBENγ=0.2 7.59 36.8 85.4 0.2 0.184 92%
LBENγ=0.1 10.36 37.9 77.1 0.1 0.0996 99.6%

MON 1.95 80.2 95.1 - 7.75 -
UNC 2.06 70.5 90.9 - 239.0 -

LMTc=1 2.3 79.3 94.2 - 17.5 -
LMTc=100 3.4 86.1 95.4 - 7.66 -
LMTc=250 6.92 85.9 99.5 - 6.92 -
LMTc=1000 12.23 92.6 99.9 - 3.10 -

Lip-NN 3.55 - - 8.74 - -

Table 4.1 – Results from MNIST experiments.

• γ approx: approximation ratio of Lipschitz constant as percentage = 100 ×(
γlow

γup

)
.

Models:

• LBEN: the proposed Lipschitz bounded equilibrium network..

• MON: the monotone operator equilibrium network of [238].

• UNC: an unconstrained equilibrium network, i.e. W directly parameterized.

• LMT: Lipschitz Margin Training model as in [216].

• Lip-NN: The Lipschitz Neural Network model of [164]. Note these figures are
as reported in [164].

4.6 Experimental Results on MNIST & CIFAR Image Classification 89

F
ig

ur
e

4.
4

–
R

an
do

m
se

le
ct

io
n

of
M

N
IS

T
ad

ve
rs

ar
ia

le
xa

m
pl

es
fr

om
Fi

gu
re

4.
2b

.
To

p
to

bo
tt

om
is

in
cr

ea
sin

g
pe

rt
ur

ba
tio

n
siz

e.
Le

ft
to

rig
ht

ar
e

di
ffe

re
nt

ex
am

pl
es

.

4.6 Experimental Results on MNIST & CIFAR Image Classification 90

Figure 4.5 – Left: Training set error versus epochs. Right: Test set error versus
epochs. Note that the left and right plots are on different scales. The time per
epoch for the MON, unconstrained, LBENγ<∞ and LBENγ=5 networks are 14.4,
16.1, 14.9 and 14.8 seconds per epoch respectively.

Figure 4.6 – Approximation accuracy of the Lipschitz bound versus the network width
of LBEN from the MNIST example. The certified upper bound is γup and the
observed lower bound is γlow.

4.7 Proofs 91

Model Err: ∥a∥2 = 0 Err: ∥a∥2 ≤ 0.5 Err: ∥a∥2 ≤ 1.0 γup γlow γ approx
LBENγ<∞ 31.1 96.1 100 - 31.1 -
LBENγ=50 28.4 75.5 95.4 50 2.89 5.7%
LBENγ=5 29.9 65.8 85.5 5 1.39 27.8%
LBENγ=3 31.3 64.2 83.5 3 1.14 38.0%
LBENγ=2 37.9 62.5 80.5 2 0.92 46.0%
LBENγ=1 36.2 61.8 78.8 1 0.60 60.0 %
FFW =40 33.07 91.5 99.8 - 6.06 - %
FFW =81 32.6 93.3 100 - 8.42 - %
FFW =162 32.5 95.0 100 - 11.3 - %
FFW =200 32.6 94.5 100 - 12.4 - %

Table 4.2 – Results from CIFAR experiments. FF refers to the feed-forward convolu-
tional network.

4.7 Proofs

Proof of Theorem 4.1

We present two proofs for the well-posedness of equilibrium network (4.1). All these
proofs are based on the following lemma.

Lemma 4.1 ([198]). For a time-invariant contracting dynamical system, all its solu-
tions converge to a unique equilibrium.

(Monotone operator perspective): This proof is mainly based on Proposition 4.1, which
states that the solution of (4.1) is also a zero of the operator splitting problem 0 ∈ (A+
B)(z), where the operators A and B are given in (4.10). Condition 4.1 implies that
the operator A is strongly monotone while Assumption 1 implies that the operator
B is maximal monotone. Furthermore, the Clay operator CA is contractive and CB

is non-expansive. Thus, applying Peaceman-Rachford algorithm to 0 ∈ (A + B)(z)
yields a contracting discrete-time system (2.61) since CACB is a contractive operator.
Since (2.61) is time-invariant, it yields a unique solution z for any x and bz.

(Neural ODE perspective): This proof is built on Proposition 4.3, which states that
the neural ODE (4.12) is a contracting continuous-time dynamical system under the

4.7 Proofs 92

Figure 4.7 – LBEN and MON training error versus epochs on CIFAR-10 dataset. The
red curves have the metric set so that Λ = I whereas the blue curves optimize over
the metric. The line styles correspond to different gain bounds. Note that both
MON and LBENγ<∞ achieve zero training error.

4.7 Proofs 93

Assumption 1 and Condition 4.1. For any fixed input x and bz, system (4.12) is also
time-invariant and hence its solution converges to a unique equilibrium, which is also
the solution of (4.1).

We now prove the Lipschitz boundedness of a well-posed equilibrium network. Con-
dition 4.1 implies that there exists a constant ϵ > 0 such that

2Λ− ΛW −W T Λ ⪰ ϵI.

For any δ ∈ (0, ϵ) and weights Wo, U , we can find a sufficiently large but finite γ such
that

1
γ

(W T
o Wo + ΛUU⊤Λ) ⪯ (ϵ− δ)I.

Then, Condition 4.2 holds for Λ and γ since

2Λ− ΛW −W T Λ− 1
γ

(W T
o Wo + ΛUU⊤Λ) ⪰ δI ≻ 0.

From Theorem 4.2, γ is a Lipschitz bound for the well-posed equilibrium network
(4.1).

Proof of Theorem 4.2

Rearranging Eq. (4.5) yields

2Λ− ΛW −W T Λ ≻ 1
γ

(W T
o Wo + ΛUUT Λ) ⪰ 0.

The well-posedness of the equilibrium network (4.1) follows by Theorem 4.1. To
obtain the Lipschitz bound, we first apply Schur complement to (4.5):

2Λ− ΛW −W ⊤Λ− 1
γ
W ⊤

o Wo −ΛU

−U⊤Λ γI

 ≻ 0.

4.7 Proofs 94

Left-multiplying
[
∆⊤

z ∆⊤
x

]
and right-multiplying

[
∆⊤

z ∆⊤
x

]⊤
gives

2∆⊤
z Λ∆z − 2∆⊤

z ΛW∆z −
1
γ

∆⊤
z W ⊤

o Wo∆z − 2∆⊤
z ΛU∆x + γ∥∆x∥2

2 ≥ 0.

Since (4.6) implies ∆v = W∆z + U∆x and ∆y = Wo∆z, the above inequality is
equivalent to

γ∥∆x∥2
2 −

1
γ
∥∆y∥2

2 ≥ 2∆⊤
z Λ∆z − 2∆zΛ∆v = 2⟨∆v −∆z, ∆z⟩Λ. (4.18)

Then, the Lipschitz bound of γ for the equilibrium network (4.1) follows by (4.7).

Proof of Proposition 4.1

Similar to [238], we first show that the solution of (4.1), if it exists, is an fixed point
of the forward-backward iteration (2.60) with α = 1:

zk+1 = RB(zk−αAzk) = prox1
f (zk−α(I−W)zk + α(Ux + bz)) = σ(Wzk + Ux + bz).

The last equality follows by

σ(x) =

arg minz1

1
2(z1 − x1)2 + f(z1)

...
arg minzn

1
2(zn − xn)2 + f(zn)

 = arg min
z

1
2∥z−x∥2

Λ+
n∑

i=1
λif(zi) = prox1

f (x).

Note that the necessary condition for σ(·) to be diagonal is that the weight Λ is
positive diagonal.

Now we prove the well-posedness of LBEN by showing that the operator splitting
problem 0 ∈ (A + B)(z) has a unique solution for any x and bz. Both Condition 4.1
and 4.2 implies that the operator A is strongly monotone and its Cayley operator
CA is contractive. Then, the Peaceman-Rachford iteration (2.61) is contracting and
hence it converges to a unique fixed point.

4.7 Proofs 95

Proof of Proposition 4.2

The matrix J is diagonal with elements in [0, 1]. Decompose Λ = Π(J + µI) for
some small µ > 0, i.e. Π = Λ(J + µI)−1, which is diagonal and positive-definite. By
denoting H = Π(I −W) + (I −W)T Π we obtain the following inequality from (4.4):

ΠJ(I −W) + (I −W)T JΠ + µH ⪰ ϵI,

which can be rearranged as

Π(I − JW) + (I − JW)T Π ⪰ ϵI + 2Π(I − J)− µH.

Since 2Π(I − J) ⪰ 0, we can choose a sufficiently small µ such that

Π(I − JW) + (I − JW)T Π ≻ 0,

which further implies that I − JW is strongly monotone w.r.t. Π-weighted inner
product, and is therefore invertible.

4.7.1 Proof of Proposition 4.3

Firstly, we note that the condition 2Λ − ΛW − W T Λ ≻ 0 implies that I − W is
positive-stable (real part of eigenvalues positive), and hence so is (I − 1

2W), which is
therefore invertible, and so so the ODE is well-posed.

Secondly, if the ODE is contracting it converges to a unique equilibrium for any
input x, and it is clear that this equilibrium solves the equilibrium network, since
v̇ = 0⇒ v = Wσ(v) + Ux + bz.

It remains to be shown that the ODE is contracting. We consider the feedback
interconnection of a linear part z 7→ v and the activation functions v 7→ z. A
sufficient condition for contraction is that the linear part, denoted G(s), is stable and

4.7 Proofs 96

satisfies:

2Λ− ΛG(jω)−G(jω)T Λ ≻ 0 ∀w, G(0) = W, G(∞) = 0. (4.19)

the first time ensures contraction via the IQC theorem. The second ensures the
equilibrium condition solves the network. the third ensures G is strictly proper and
hence there is no algebraic loop in the interconnection (which would essentially require
solving the LBEN). This can be considered an interpolation problem (at points 0 and
∞) with a frequency-domain constraint.

We will proceed by transforming to a positive-real interpolation problem, then a
bounded real interpolation problem, and back again.

First, note that (4.19) can be re-written as

Z(s) + Z(s∗)T ≻ 0 ∀s ≥ 0 (4.20)

where Z(s) = I − LG(s)L−1 and L is the diagonal matrix with Λ = L2 (recall Λ
is diagonal and strictly positive). Then requiring G(0) = W corresponds to the
constraint Z(0) = Z0 = I − LWL−1, and G(∞) = 0 corresponds to the constraint
Z(∞) = I.

We next convert this positive-real interpolation problem into a bounded-real interpo-
lation problem. Recall that (4.20) is equivalent to ∥H(s)∥ < 1 for all s ≥ 0 where

H(s) = (I + Z(s))−1(I − Z(s)). (4.21)

We will construct H, then transform back to Z, then finally back to G.

Now let
H0 = (I + Z0)−1(I − Z0)

and set
H(s) = 1

s + 1H0

and note that since by construction ∥H0∥ < 1 and |1/(s + 1)| ≤ 1 for all s ≥ 0, we

4.7 Proofs 97

have ∥H(s)∥ < 1 for all s ≥ 0.

Now set
Z(s) = (I + H(s))−1(I −H(s))

and note that Z(0) = Z0 and Z(∞) = I, and Z(s) + Z(s∗)T ≻ 0 for all s ≥ 0. And
finally the construction

G(s) = L−1(I − Z(s))L

satisfies (4.19) and the interpolation conditions.

Now we show it can be written as ((I − 1
2Ws + I)−1W , via straightforward (but

slightly laborious) calculations. Now, we want to construct

G(s) = L−1(I − Z(s))L = L−1((I + H(s))−12H(s))L

Write p = 1/(s + 1) and WL = LWL−1, and we go through the above steps in detail:

H0 = (I + Z0)−1(I − Z0) = (2I −WL)−1WL (4.22)

H(s) = p(2I −WL)−1WL (4.23)

I + H(s) = (2I −WL)−1(2I −WL) + (2I −WL)−1pWL (4.24)

= (2I −WL)−1(2I + (p− 1)WL) (4.25)

(I + H(s))−1 = (2I + (p− 1)WL)−1(2I −WL) (4.26)

I − Z(s) = (I + H(s))−12H(s) (4.27)

= (2I + (p− 1)WL)−12pWL (4.28)

= ((s(I − 1
2WL) + I)−1WL (4.29)

G(s) = L−1(I − Z(s))L (4.30)

= L−1((s(I − 1
2WL) + I)−1WLL (4.31)

= (s(I − 1
2W) + I)−1W (4.32)

and the result is proved, since this transfer function corresponds to the linear part of
the ODE above.

4.7 Proofs 98

Proof of Proposition 4.4

The following lemma shows that any feedforward network (4.16) is an LBEN since
its hidden weight W (as shown in (4.17)) is strictly lower triangular.

Lemma 1. Condition 4.1 holds for any strictly lower triangular W .

Proof. We prove it by showing that for any δ > 0, there exists a Λ ∈ D+ such that

H(Λn, Wn) := Λn(I −Wn) + (I −Wn)⊤Λn ≻ 22−nδI. (4.33)

where Λn, Wn are the upper left n × n elements of Λ, W , respectively. For n = 1,
λ1 > δ is sufficient since W1 = 0. Assuming that (4.33) holds for Λn and Wn, then
we have

H(Λn+1, Wn+1)− 21−nδI =

H(Λn, Wn)− 21−nδI −Λnw⊤
n+1

−wn+1Λn 2(λn+1 − 2−nδ)

 , (4.34)

where Λn+1 = diag(Λn, λn+1) and Wn+1 =

[Wn 0] 0
wn+1 0

. By applying Schur com-

plement to (4.34), Inequality (4.33) holds for the case of n + 1 if λn+1 > 2−nδ +
2n−2|Λnwn+1|2/δ.

From the above lemma, we can construct a V such that V ⊤V = 1/2[Λ(I −W) + (I −
W)⊤Λ] − ϵI with ϵ = 21−nδ. By choosing Ψ = Λ−1 and S = (ΛW −W ⊤Λ)/2, the
LBEN parameterization (4.8) recovers the exact W in (4.17). Thus, LBEN contains
all feedforward networks (4.16).

We note that “skip connections” as in a residual network can easily be added to the
above structure via additional non-zero blocks in the lower-left part of the weight W .

4.8 Training Details 99

Proof of Proposition 4.5

From the MON parameterization (4.13) we have

H(m, W) := 2(1−m)I −W −W ⊤ = 2A⊤A ⪰ 0

where m > 0. Let Wm be the set of non-zero and strictly lower triangular W such
that H(m, W) ⪰ 0. Note that Wm1 ⊂ Wm2 if m1 > m2. Because H(m1, W) ⪰ 0
implies H(m2, W) = H(m1, W) + 2(m1 −m2)I ≻ 0.

Here we show that Wm→0 does not contain all feedforward networks. Since W is
a strictly lower triangular for a feedforward network, H(0, W) is a semidefinite ma-
trix whose diagnoal elements are 2. As the norm of W increases, H(0, W) becomes
indefinite. Taking the feedforward network (4.16) with L = 2 as an example, the
set of Wm→0 only contains those networks whose hidden unit weight W1 satisfies
W1W

⊤
1 ⪯ 4I since

H(0, W) =

 2I −W ⊤
1

−W1 2I

 ⪰ 0.

Now we show that Wm = ∅ for all m ≥ 1. Since the diagnoal elements of H(m, W)
are non-positive when m ≥ 1, the matrix H(m, W) is not semi-definite for any strictly
lower triangular W .

4.8 Training Details

4.8.1 MNIST Example

This section contains the model structures and the details of the training procedure
used for the MNIST examples. All models are trained using the ADAM optimizer
[111] with an initial learning rate of 1 × 103. All models are trained for 40 Epochs,
and the learning rate is reduced by a factor of 10 every 10 epochs.

4.8 Training Details 100

The models in the MNIST example are all fully connected models with 80 hidden
neurons and ReLU activations. For the equilibrium models, the forward and backward
passes models are performed using the Peaceman-Rachford iteration scheme with
ϵ = 1 and a tolerance of 1 × 10−2. When evaluating the models, we decrease the
tolerance of the spitting method to 1 × 10−4. We use the same α tuning procedure
as [238]. All models were trained using the same initial point. Note that for LBEN,
this requires initializing the metric Λ = I.

The feed-forward models trained using Lipschitz margin training were trained using
the original author’s code which can be found at https://github.com/ytsmiling/

lmt.

4.8.2 CIFAR-10 Example

This section contains the model structures and the details of the training procedure
used for the CIFAR-10 examples. All models are trained using the ADAM optimizer
[111] with an initial learning rate of 1× 103. The models were trained for 25 epochs
and the learning rate was reduced by a factor of 10 after 15 epochs. Each model
contains a single convolutional layer, an average pooling layer with kernel size 2, and
a linear output layer.

The convolutional LBEN has 81 channels and is parametrized as discussed below.
The MON similarly has 81 channels. Unless otherwise stated, the feed-forward con-
volutional network has 162 channels which gives it approximately the same number
of parameters as the LBEN.

The MON was evaluated using the Peaceman-Rachford Iteration scheme.

Convolutional LBEN

Following the approach of [238], we parametrize U and V in (4.9) via convolutions.
The skew symmetric matrix is constructed by taking the skew symmetric part of a
convolution S̄, so that S = 1

2(S̄ − S̄⊤). Similar, to [238], we also find that using a

https://github.com/ytsmiling/lmt
https://github.com/ytsmiling/lmt

4.8 Training Details 101

weight normalized parametrization improves performance. Specifically, we use the
following parametrization: V =

√
α V̂

|V̂ | , S̄ = β Ŝ
|Ŝ| , U = √η Û

|Û | and Wo =
√

ξ Ŵo

|Ŵo| .

In [238] Peaceman-Rachford is used and the operator I −W can be quickly inverted
using the fast Fourier transform. This situation is more complicated in our case
as the term W ⊤

outWout cannot be represented as a strict convolution and this is not
diagonalized by the Fourier matrix,. Instead, we apply Forward-Backward Splitting
algorithm shown in (2.60) which does not require a matrix inversion.

We have observed that the rate of convergence of the Forward-Backward splitting
algorithm is highly dependent on the monotonicity parameter m. In particular, for
the convolutional models, we found there was a strong trade-off between the ease
of solve for the equilibrium versus the model expressibility and the accuracy of the
Lipschitz bound.

Chapter 5

Recurrent Equilibrium Networks

In chapter 3 we studied recurrent neural networks as an interconnection between a
linear system and a static elementwise nonlinearity. Due to well-posedness concerns
about an algebraic loop, a particular term in the system was set to zero. In chapter
4, we studied this algebraic loop in more detail, constructed well-posedness condi-
tions, and showed that including it significantly expands the model expressivity to
contain all feedforward neural networks, residual networks, convolutional networks
and monotone operator equilibrium networks.

In this chapter, we combine the methods developed in Chapter 3 and Chapter 4 to
construct a new class of models that we call recurrent equilibrium networks (RENs).
RENs are a class of nonlinear dynamical models for applications in machine learning,
system identification, and control. The new model class has “built-in” guarantees of
stability and robustness: all models in the class are contracting and the models can
satisfy prescribed incremental integral quadratic constraints (IQC), including Lips-
chitz bounds and incremental passivity. RENs are otherwise very flexible: they can
represent all stable linear systems, all previously known sets of contracting recurrent
neural networks and echo state networks, all deep feedforward neural networks, and
all stable Wiener/Hammerstein models.

An additional benefit of the RENs compared to the Robust RNNs from chapter 3 is
that they permit a direct parameterization, i.e., they can be parameterized directly

5.1 Introduction 103

by a vector in RN . This simplifies learning since generic methods for unconstrained
optimization can be used. The performance and robustness of the new model set is
evaluated on benchmark nonlinear system identification problems. We also present
applications in data-driven nonlinear observer design and control with stability guar-
antees.

Publications

Some of the content of this chapter has previously appeared in the following publica-
tions:

Max Revay, Ruigang Wang, and Ian R. Manchester. Recurrent equilibrium networks:
Flexible dynamic models with guaranteed stability and robustness. Transaction on
Automatic Control (Under Review), 2021.

Max Revay, Ruigang Wang, and Ian R. Manchester. Recurrent equilibrium net-
works: Unconstrained learning of stable and robust dynamical models. Conference
on Decision and Control, 2021.

Note that the first of these publications is currently under review.

5.1 Introduction

In this chapter, we introduce a new model structure: the recurrent equilibrium network
(REN).

1. RENs are highly flexible and include many standard models as special cases,
including DNNs, RNNs, echo-state networks and stable linear dynamical sys-
tems.

2. RENs have built in guarantees of stability, robustness or other properties that
are relevant to safety critical systems or physics informed learning.

5.1 Introduction 104

3. RENs are easy to use as they permit a direct (unconstrained) parameterization
enabling learning of large-scale models via simple first-order methods such as
stochastic gradient descent.

RENs are guaranteed to be contracting [129], a strong form of nonlinear stability, and
their built-in robustness guarantees take the form of incremental integral quadratic
constraints (IQCs) [145]. This class of constraints includes user-definable bounds on
the Lipschitz constant (incremental gain) of the network, and the IQC framework is
inherently compatible with many commonly used tools for certifying system inter-
connection, including passivity methods in robotics [86], networked-system analysis
via dissipation inequalities [10], µ analysis [256], and standard tools for analysis of
nonlinear control systems [225]. The code to run all experiments is available via the
following link github.com/imanchester/REN.

5.1.1 Learning and Identification of Stable Models

The problem of learning dynamical systems with stability guarantees appears fre-
quently in system identification. When learning models with feedback, it is not un-
common for the model to be unstable even if the data-generating system is stable.

Even in the case of linear models, guaranteeing the stability of an identified model
is complicated by the fact that the set of stable matrices is nonconvex, and various
methods have been proposed to guarantee stability via regularization and constrained
optimization [131, 226, 117, 152, 147, 218, 134].

For nonlinear models, there has also been a substantial volume of research on stability
guarantees, e.g., for polynomial models [212, 214, 220, 219], Gaussian mixture models
[110], and recurrent neural networks [148, 218, 112, 176, 177]. However, the problem
is substantially more complex than the linear case due to the many different defini-
tions of nonlinear stability. Indeed, even verification of stability of a given model is
challenging. Contraction is a strong form of nonlinear stability [129] which is particu-
larly well suited to problems in learning and system identification since it guarantees

github.com/imanchester/REN

5.1 Introduction 105

stability of all solutions of the model, irrespective of inputs or initial conditions. This
is important in learning since the purpose of a model is to simulate responses to pre-
viously unseen inputs. In particular, the works [212, 214, 220, 219, 148, 176, 177] are
guaranteed to find contracting models.

5.1.2 Robustness Certification of Neural Networks

Beyond stability, model robustness can be characterized in terms of sensitivity to
small perturbations in the input. It has recently been shown that recurrent neural
network models can be extremely fragile [41], i.e. small changes to the input produce
dramatic changes in the output.

Formally, sensitivity and robustness can be quantified via Lipschitz bounds on the
input-output mapping defined by the model, e.g., incremental ℓ2 gain bounds and
related properties such as incremental passivity, which have a long history in systems
analysis [57]. In machine learning, Lipschitz constants are used in the proofs of gener-
alization bounds [18], analysis of expressiveness [257] and guarantees of robustness to
adversarial attacks [97, 168]. There is also ample empirical evidence to suggest that
Lipschitz regularity (and model stability, where applicable) improves generalization
in machine learning [80], system identification [176] and reinforcement learning [180].

Unfortunately, even calculation of the Lipschitz constant of a feedforward (static)
neural network is NP-hard [230] and instead approximate bounds must be used. The
tightest bound known to date is found by using quadratic constraints to construct
a behavioral description of the neural network activation functions [66]. Extending
this approach to network synthesis (i.e., training new neural networks with a pre-
scribed Lipschitz bound) is complicated by the fact that model parameters and IQC
multipliers are not jointly convex. In [164], Lipschitz bounded feedforward models
were trained using the Alternating Direction Method of Multipliers, and in Chapter
3, a convexifying implicit parameterization and an interior point method were used to
train Lipschitz bounded recurrent neural networks. Empirically, both works suggest
generalization and robustness advantages to Lipschitz regularization, however, the

5.1 Introduction 106

requirements to satisfy linear matrix inequalities at each iteration mean that these
methods are limited to relatively small-scale networks.

5.1.3 Applications of Stable and Robust Models in Data-

Driven Control and Estimation

Beyond system identification, the ability to learn flexible dynamical models with
contraction, robustness and behavioral constraints has many applications in control
and related fields, some of which we explore in this chapter.

The problem of nonlinear observer design (state estimation) can be posed as the
search for a contracting dynamical system that can reproduce the true system tra-
jectories [135] [243]. In this chapter, we formulate the observer design problem as a
supervised learning problem over a set of contracting nonlinear systems, and apply it
to a nonlinear reaction diffusion PDE.

In the optimization of linear controllers, a classical and widely-used approach is via
the Youla-Kucera (or Q) parameterization, which represents all stabilizing controllers
for a given system via a “free” stable system [256, 91]. This approach can be extended
to nonlinear systems [73], [225] in which the “free parameter” is a stable nonlinear
model. In this chapter, we show how learning over stable nonlinear models can be
used to optimize nonlinear feedback policies for constrained linear control. This can
be considered a data-driven approach to explicit model predictive control [5] with
stability guarantees.

Beyond these settings, there are many further applications of flexible models with
stability and robustness guarantees. In reinforcement learning [207], it has recently
been found that the Lipschitz constant of policies has a strong effect on their robust-
ness to adversarial attack [180]. In robotics, many approaches to control use passivity
constraints to ensure stable interactions with physical environments, e.g. [69, 190].
In [105] it was shown that privacy preservation in dynamic feedback policies can be
represented as an incremental ℓ2 gain bound, and thus the models we present here
can be used for learning feedback policies with privacy guarantees.

5.1 Introduction 107

5.1.4 Convex and Direct Parameterizations

In this chapter, we provide convex parameterizations of contracting and robust RENs
via linear matrix inequality (LMI) constraints. Although convex, LMIs can be com-
putationally challenging to incorporate for large-scale models. For example, a path-
following interior point method, as proposed in [177] generally requires computing
gradients of barrier functions, line search procedures, and a combination of “inner”
and “outer” iterations as the barrier parameter changes.

A major benefit of RENs is that we can also provide direct i.e. unconstrained pa-
rameterizations of contracting and robust models. That is, we construct a smooth
mapping from RN to the model weights such that every model in the image of this
mapping satisfies the desired behavioral constraints.

The approach is somewhat similar to the method of [36] for semidefinite programming,
in which a positive-semidefinite matrix X is represented by its factors X = V V ⊤, so
that V can be treated as a “free” variable ensuring X ⪰ 0. Despite introducing
non-convexity, this approach has proven to be beneficial for large-scale semidefinite
programming problems. Our parameterization differs in that the method of [36] gen-
erally requires nonlinear equality constraints to be satisfied, whereas in our method
the associated optimization problems are completely unconstrained. The major ben-
efit of this is that a wide variety of algorithms from unconstrained optimization can
be directly applied, e.g. methods such as stochastic gradient descent and Adam [111]
that have been developed for large-scale machine learning applications.

Another advantage of a direct parameterization is that it allows easy random sam-
pling of nonlinear models with the required stability and robustness constraints. In
this sense, our parameterization is also similar in spirit to that proposed in [37] for
randomized design of robust linear control systems, and also has application to the
generation of echo state networks, i.e. large-scale recurrent networks with fixed dy-
namics and learnable output maps (see, e.g., [34, 244] and references therein).

5.2 Learning Stable and Robust Models 108

5.2 Learning Stable and Robust Models

This chapter is concerned with the learning of nonlinear dynamical models, i.e., find-
ing a particular model within a set of candidates based on some data. The overall
objective is to construct models that are flexible enough to make use of available data,
and yet guaranteed to be well-behaved in some sense.

Given a dataset z̃, we consider the problem of learning a nonlinear state-space dy-
namical model of the form

xt+1 = f(xt, ut, θ), yt = g(xt, ut, θ) (5.1)

that minimizes some loss or cost function depending (in part) on the data, i.e., to
solve a problem of the form

min
θ∈Θ
L(z̃, θ). (5.2)

In the above, xt ∈ Rn, ut ∈ Rm, yt ∈ Rp, θ ∈ Θ ⊆ RN are the model state, input,
output and parameters, respectively. Here f : Rn×Rm×Θ→ Rn and g : Rn×Rm×
Θ→ Rp are piecewise continuously differentiable functions.

In the context of system identification, we may have z̃ = (ỹ, ũ) consisting of finite
sequences of input-output measurements, and aim to minimize the simulation error:
simulation error :

L(z̃, θ) = ∥y − ỹ∥2
T (5.3)

where y = Ra(ũ) is the output sequence generated by the nonlinear dynamical model
(5.1) with initial condition x0 = a and inputs ut = ũt. Here the initial condition a

may be part of the data z̃, or considered a learnable parameter in θ.

In this chapter, we are primarily concerned with constructing model parameterizations
that have favorable stability and robustness properties, and we make the following
definitions:

Definition 5.1. A model parameterization (5.1) is called a convex parameterization
if Θ ⊆ RN is a convex set. Furthermore, it is called a direct parameterization if

5.2 Learning Stable and Robust Models 109

Θ = RN .

Direct parameterizations are useful for learning large-scale models since many scalable
unconstrained optimization methods (e.g., stochastic gradient descent) can be applied
to solve the learning problem (5.2).

Definition 5.2. A model (5.1) is said to satisfy the incremental integral quadratic
constraint (IQC) defined by (Q, S, R) where 0 ⪰ Q ∈ Rp×p, S ∈ Rm×p, and R =
R⊤ ∈ Rm×m, if for all pairs of solutions with initial conditions a, b ∈ Rn and input
sequences u, v ∈ ℓm

2e, the output sequences ya = Ra(u) and yb = Rb(v) satisfy

T∑
t=0

ya
t − yb

t

ut − vt

⊤ Q S⊤

S R

ya

t − yb
t

ut − vt

 ≥ −d(a, b), ∀T (5.4)

for some function d(a, b) ≥ 0 with d(a, a) = 0.

Important special cases of incremental IQCs include:

• Q = − 1
γ
I, R = γI, S = 0: the model satisfies an ℓ2 Lipschitz bound, a.k.a.

incremental ℓ2-gain bound, of γ:

∥Ra(u)−Ra(v)∥T ≤ γ∥u− v∥T , ∀u, v ∈ ℓm
2e, T ∈ N.

• Q = 0, R = −2νI, S = I where ν ≥ 0: the model is incrementally input passive:

T∑
t=0

(Ra(ut)−Ra(vt))⊤(ut − vt) ≥ ν∥u− v∥2
T

for all u, v ∈ ℓm
2e and T ∈ N.

• Q = −2ρI, R = 0, S = I where ρ > 0: the model is incrementally strictly
output passive:

T∑
t=0

(Ra(ut)−Ra(vt))⊤(ut − vt) ≥ ρ∥Ra(u)−Ra(v)∥2
T

5.3 Recurrent Equilibrium Networks 110

for all u, v ∈ ℓm
2e and T ∈ N.

In other contexts, Q, S, R may be decision variables in a separate optimization prob-
lem to validate the stability of interconnected systems.

Remark 5.1. Given a model class guaranteeing an incremental IQC defined by con-
stant matrices Q, S, R, it is straightforward to construct models satisfying frequency-
weighted IQCs. E.g., by constructing a model R that is contracting and satisfies an
ℓ2 Lipschitz bound, and choosing stable linear filters W1, W2, with W1 having a stable
inverse, the new model

y = Wa(u) = W −1
1 Ra(W2u)

is contracting and satisfies the frequency-weighted bound

∥W1(Wa(u)−Wa(v))∥T ≤ γ∥W2(u− v)∥T .

This can be useful e.g. if a model should be sensitive over only a selected range of
frequencies.

5.3 Recurrent Equilibrium Networks

The model structure we propose – the recurrent equilibrium network (REN) – is a
state-space model of the form (5.1) with

xt+1 = Axt + B1wt + B2ut + bx, (5.5)

yt = C2xt + D21wt + D22ut + by, (5.6)

where wt is the solution of an equilibrium network, a.k.a. implicit network [14, 238, 62]
and Chapter 4:

wt = σ(D11wt + C1xt + D12ut + bv) (5.7)

and σ is a scalar nonlinearity applied elementwise. We will show below how to
ensure that a unique solution w∗

t to (5.7) exists and can be computed efficiently.

5.3 Recurrent Equilibrium Networks 111

G

σ

uy

wv

Figure 5.1 – REN as a feedback interconnection of a linear system G and a nonlinear
activation σ.

The term “equilibrium” comes from the fact that any solution of the above implicit
equation is also an equilibrium point of the difference equation wk+1

t = σ(Dwk
t + bw)

or the ordinary differential equation d
ds

wt(s) = −wt(s) + σ(Dwt(s) + bw), where bw =
C1xt + D12ut + bv is “frozen” for each time-step.

One interpretation of the REN model is that it represents a two-timescale or sin-
gular perturbation model, in which the “fast” dynamics in w are assumed to reach
equilibrium well within each time-step of the “slow” dynamics xt → xt+1.

RENs can be conveniently represented as a feedback interconnection of a linear system
G and a static, memoryless nonlinear operator σ, as depicted in Fig. 5.1:

xt+1

vt

yt

 =

W︷ ︸︸ ︷
A B1 B2

C1 D11 D12

C2 D21 D22

xt

wt

ut

+

b︷ ︸︸ ︷
bx

bv

by

, (5.8)

wt = σ(vt) :=
[
σ(v1

t) σ(v2
t) · · · σ(vq

t)
]⊤

, (5.9)

where vt, wt ∈ Rq are the input and output of neurons respectively. The learnable
parameters are the weight matrix W ∈ R(n+p+q)×(n+m+q), and the bias vector b ∈
Rn+p+q. The nonlinear “activation function” σ is fixed, and for simplicity we assume
the same nonlinearity is applied to each channel, although this is not essential.

5.3 Recurrent Equilibrium Networks 112

5.3.1 Flexibility of Equilibrium Networks

The equilibrium network (5.7) is quite flexible as it contains many feedforward net-
work architectures as special cases. For example, a standard L-layer deep neural
network takes the form

z0 = u,

zl+1 = σ(Wlzl + bl), l = 0, ..., L− 1 (5.10)

y = WLzL + bL

where zl is the output of the lth hidden layer. This can be written as an equilibrium
network with

w = col(z1, . . . , zL), bv = col(b0, . . . , bL−1), by = bL

D12 = col(W0, 0, . . . , 0), D21 =
[
0 · · · 0 WL

]
,

D11 =

0

W1
. . .

... . . . 0
0 · · · WL−1 0

.

Equilibrium networks can represent many other interesting structures including resid-
ual, convolution, and other feedforward networks. The reader is referred to [62, 238]
and chapter 4 for further details.

5.3.2 Acyclic RENs and Well-Posedness

A useful subclass of REN is the acyclic REN (aREN) where the weight D11 is con-
strained to be strictly lower triangular. We can interpret D11 as the adjacency matrix
of a directed graph defining interconnections between the neurons (activations func-
tions) in the equilibrium network. If D11 is strictly lower triangular, then this graph
is guaranteed to be acylic. Compared to the general REN, the aREN is simpler to

5.3 Recurrent Equilibrium Networks 113

implement since model evaluation does not require a fixed point equation to be solved
and in our experience often provides similar quality of solutions.

The general REN with full D11 may include many cycles. Well posedness of such a
model is given by the Theorem 4.1, i.e., if

2Λ− ΛD −D⊤Λ ≻ 0. (5.11)

then the equilibrium network is well-posed.

5.3.3 Computational Details of RENs

For a well-posed REN with full D11, solutions can be computed by formulating an
equivalent monotone operator splitting problem [183].

When training an equilibrium network via gradient descent, we need to compute
the Jacobian ∂w∗

t /∂(·) where w∗
t is the solution of the implicit equation (5.7), and (·)

denotes the input to the network or model parameters. By using the implicit function
theorem, ∂w∗

t /∂(·) can be computed via

∂w∗
t

∂(·) = (I − JD)−1J
∂(Dw⋆

t + bw)
∂(·) (5.12)

where J is the Clarke generalized Jacobian of σ at Dw∗
t + bw. From Assumption 5.1

in Section 5.3.4, we have that J is a singleton almost everywhere. In particular,
J is a diagonal matrix satisfying 0 ⪯ J ⪯ I. The matrix I − JD is invertible by
Condition (5.11), see Proposition 4.2.

5.3.4 Contracting and Robust RENs

We call the model of (5.8), (5.9) a contracting REN (C-REN) if it is contracting
and a robust REN (R-REN) if it satisfies the incremental IQC defined by (Q, S, R).
Similarly, contracting a-REN (C-aREN) and robust a-REN (R-aREN) can be defined
by imposing an additional structural constraint (i.e., D11 is strictly lower-triangular).

5.3 Recurrent Equilibrium Networks 114

Here we present the conditions for C-RENs and R-RENs based on incremental anal-
ysis.

For any two sequences za = (xa, wa, va, ua) and zb = (xb, wb, vb, ub) generated by (5.1),
the dynamics of ∆z := za − zb can be represented by

∆xt+1

∆vt

∆yt

 =

A B1 B2

C1 D11 D12

C2 D21 D22

∆xt

∆wt

∆ut

 , (5.13)

∆wt = σ(vt + ∆vt)− σ(vt). (5.14)

We make the following assumption on σ, which holds for most activation functions
in the literature [78].

Assumption 5.1. The activation function σ is piecewise differentiable and slope-
restricted in [0, 1], i.e.,

0 ≤ σ(y)− σ(x)
y − x

≤ 1, ∀x, y ∈ R, x ̸= y. (5.15)

By taking a conic combination of the above constraint in the ith channel with mul-
tipliers λi > 0, we obtain the following incremental quadratic constraint

Γt =

∆vt

∆wt

⊤ 0 Λ

Λ −2Λ

∆vt

∆wt

 ≥ 0, ∀t ∈ N (5.16)

where Λ = diag(λ1, . . . , λq) ∈ D+.

The following proposition gives conditions for contracting and robust RENs using the
IQC framework [145].

Proposition 5.1. A REN in (5.8), (5.9) is contracting if there exist P ≻ 0 and
Λ ∈ D+ satisfying

 P −C⊤
1 Λ

−ΛC1 W

−
A⊤

B⊤
1

P

A⊤

B⊤
1

⊤

≻ 0 (5.17)

5.4 Convex Parameterizations of RENs 115

where W = 2Λ− ΛD11 −D⊤
11Λ. It satisfies the incremental IQC defined by (Q, S, R)

if there exist P ≻ 0 and Λ ∈ D+ such that

P −C⊤

1 Λ C⊤
2 S⊤

−ΛC1 W D⊤
21S

⊤ − ΛD12

SC2 SD21 −D⊤
12Λ R + SD22 + D⊤

22S
⊤

−

A⊤

B⊤
1

B⊤
2

P

A⊤

B⊤
1

B⊤
2

⊤

+

C⊤

2

D⊤
21

D⊤
22

Q

C⊤

2

D⊤
21

D⊤
22

⊤

≻ 0.

(5.18)

Proof. See Section 5.11

Remark 5.2. Note that neither of the Conditions (5.17) and (5.18) are not jointly
convex in the model parameter θ, stability certificate P , and multiplier Λ.

Remark 5.3. If only non-incremental forms of stability are considered, i.e. sig-
nal boundedness rather than contraction, then we can incorporate a richer (more
powerful) class of multipliers for repeated nonlinearities, as previously discussed in
[42, 51, 116]. However, these multipliers are not valid for the incremental case since
the ∆wi

t explicitly depend on the values of vi
t which may differ among channels [178].

5.4 Convex Parameterizations of RENs

In this section, we propose convex parameterizations for C-RENs/R-RENs, which are
based on the following implicit representation of the linear component G:

Ext+1

Λvt

yt

 =

F B1 B2

C1 D11 D12

C2 D21 D22

xt

wt

ut

+ b̃ (5.19)

where E is an invertible matrix and Λ is a positive-definite diagonal matrix. Note
that the explicit linear model (5.8) can be easily constructed from (5.19) by inverting
E and Λ. While the parameters E and Λ do not expand the model set, the extra

5.4 Convex Parameterizations of RENs 116

degrees of freedom will allow us to formulate sets of C-RENs and R-RENs that are
jointly convex in the model parameter, stability certificate, and multipliers.

Definition 5.3. A model of the form (5.19), (5.9) is said to be well-posed if it yields
a unique (wt, xt+1) for any xt, ut and b, and hence a unique response to any initial
conditions and input.

To construct a convex parameterization of C-RENs, we introduce the following LMI
constraint:

E + E⊤ − P −C⊤
1 F ⊤

−C1 W B⊤
1

F B1 P

 ≻ 0, (5.20)

where W = 2Λ − D11 − D⊤
11. The convex parameterization of C-RENs is then given

by
ΘC := {θ | ∃P ≻ 0 s.t. (5.20)}.

To construct convex parameterization of R-RENs, we propose the following convex
constraint:

E + E⊤ − P −C⊤
1 C⊤

2 S⊤

−C1 W D⊤
21S

⊤ −D12

SC2 SD21 −D⊤
12 R + SD22 + D⊤

22S
⊤

−

F ⊤

B⊤
1

B⊤
2

P−1

F ⊤

B⊤
1

B⊤
2

⊤

+

C⊤

2

D⊤
21

D⊤
22

Q

C⊤

2

D⊤
21

D⊤
22

⊤

≻ 0

(5.21)

where Q ⪯ 0, S, and R are given. The convex parameterization of R-RENs is then
defined as

ΘR := {θ | ∃P ≻ 0 s.t. (5.21)}.

The following result relates the above parameterizations to the desired model behav-
ioral properties:

5.4 Convex Parameterizations of RENs 117

Theorem 5.1. All models in ΘC are well-posed and contracting. All models in ΘR

are well-posed, contracting, and satisfy the IQC defined by (Q, S, R).

Proof. See Section 5.11.

Remark 5.4. We can modify Condition (5.17) to characterize C-RENs with a spec-
ified contraction rate α ∈ [0, 1):

E + E⊤ − 1

α
P −C⊤

1 F ⊤

−C1 W B⊤
1

F B1 P

 ≻ 0.

One can even allow α > 1 to characterize “slowly expanding” networks if desired.

Remark 5.5. It is straightforward to enforce an acyclic property on the REN or any
other sparsity structure on D11 e.g. corresponding to the standard feedforward net-
work in Section 5.3.1 with specified layers. Since Λ is diagonal, the sparsity structures
of D11 and D11 = Λ−1D11 are identical, and so the desired structure can be added as
a convex constraint on D11.

The following result implies that all contracting models in our set are also Lipschitz
bounded;

Theorem 5.2. All models in ΘC ⊃ ΘR have a finite ℓ2 Lipschitz bound.

Proof. See Section 5.11

5.5 Direct Parameterizations of RENs 118

The proof is based showing that (5.21) is equivalent to

R := R + SD22 + D⊤
22S

⊤ + D⊤
22QD22 ≻ 0, (5.22a)

E + E⊤ − P −C⊤
1 F ⊤

−C1 W B⊤
1

F B1 P

 ≻

C⊤

2

D⊤
21

B2

R−1

C⊤

2

D⊤
21

B2

⊤

−

C⊤

2

D⊤
21

0

Q

C⊤

2

D⊤
21

0

⊤

, (5.22b)

where C2 = (D⊤
22Q + S)C2 and D21 = (D⊤

22Q + S)D21 −D⊤
12.

5.5 Direct Parameterizations of RENs

In the previous section, we gave convex parameterizations of contracting and robust
RENs. While convexity of a model set is useful, the conditions involve linear matrix
inequalities which can be challenging to verify for large-scale models.

In this section, we provide direct parameterizations, i.e. smooth mappings from RN

to the weights and biases of contracting and robust RENs. We first present the direct
parametrization for contracting RENs in Section 5.5.1, and then present the direction
parametrization for robust RENs in Section 5.5.2. These Direct parametrizations
allows learning to be done via unconstrained optimization, significantly enhancing the
ease of use of RENs, and enables random sampling of REN models with prescribed
stability and robustness conditions.

5.5.1 Direct Parameterizations of Contracting RENs

The main idea of our construction is to notice that the matrix in the contraction LMI
(5.20) is dense and quite simple in its relation to the model parameters, so we can
parameterize it directly as X⊤X + ϵI with X a free matrix variable and ϵ a small

5.5 Direct Parameterizations of RENs 119

positive constant, and from this extract the required model parameters. This idea is
closely relate to the Burer-Monteiro method [36] for solving large-scale semidefinite
programs.

To be precise, let

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 = X⊤X + ϵI (5.23)

which is positive-definite by construction, where we have partitioned H into blocks
of size n, n, and q. Comparing (5.23) to (5.20) we get

E + E⊤ − P −C⊤

1 F ⊤

−C1 W B⊤
1

F B1 P

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 . (5.24)

We can calculate the implicit model parameters directly from the matrix H, giving

F = H31, B1 = H32, P = H33, C1 = −H21. (5.25)

Furthermore, it can easily be verified that the construction

E = 1
2(H11 + P + Y1 − Y ⊤

1), (5.26)

where Y1 is a free matrix variable, results in H11 = E + E − P .

To obtain an aREN, we need to construct a strictly lower-triangular D11 satisfying

H22 =W = 2Λ−D11 −D⊤
11. (5.27)

By taking the following matrix partition

H22 = D − L− L⊤ (5.28)

5.5 Direct Parameterizations of RENs 120

where D is a diagonal matrix and L is a strictly lower triangular matrix, we have

Λ = 1
2D, D11 = L. (5.29)

Other model parameters do not affect model stability and can be treated as free
parameters.

To summarize, the parameter vector θ of a C-aREN consists of free variables: X ∈
R(2n+q)×(2n+q), B2 ∈ Rn×m, C2 ∈ Rp×n, D12 ∈ Rq×m, D21 ∈ Rp×q, D22 ∈ Rp×m and
Y1 ∈ Rn×n, and model parameters are constructed via (5.25), (5.26) and (5.29).

The construction of a contracting REN with full (not acyclic) D11 is the same except
that we introduce two additional free variables: g ∈ Rq and Y2 ∈ Rq×q, and then
construct a positive diagonal matrix Λ = ediag(g) and

D11 = Λ− 1
2(H22 + Y2 − Y ⊤

2), (5.30)

which also results in (5.27).

5.5.2 Direct Parameterizations of Robust RENs

We now provide a direct parameterization of RENs satisfying the robustness condition
(5.21) which is equivalent to conditions (5.22a) and (5.22b). Our direct parametriza-
tion contains two steps:

1. We first construct a direct parametrization of the matrix D22 satisfying (5.22a).

2. We then construct a direct parametrization of the remaining model parameters
satisfying (5.22b).

In many applications it is acceptable to have a model in which D22, the direct
feedthrough from input to output, is zero. E.g., for LTI systems, this corresponds to
a strictly proper model. In such a case (5.22a) reduces to R ≻ 0 and the first step
below can be skipped.

5.5 Direct Parameterizations of RENs 121

Construction of D22 Satisfying (5.22a)

We first define Q = Q− ϵI ≺ 0 where ϵ > 0 as a small constant, which may be fixed
or parameterized, and rewrite (5.22a) as

R + SD22 + D⊤
22S

⊤ + D⊤
22QD22 ≻ 0 (5.31)

note that ϵ can be omitted if Q ≺ 0.

Now, the direct parameterization of D22 proceeds as follows: let X3, Y3 ∈ Rs×s be the
free variables, where s = max(p, m), and define

M = X⊤
3 X3 + Y3 − Y ⊤

3 + ϵI. (5.32)

Now set
Z =

[
(I −M)(I + M)−1

]
p×m

(5.33)

where [A]n×m denotes the upper-left (n, m)-block of the matrix A.

Now we construct the following factorizations:

L⊤
QLQ = −Q, L⊤

RLR = R− SQ−1S⊤ (5.34)

and finally we construct D22 as:

D22 = −Q−1S⊤ + L−⊤
Q ZLR. (5.35)

and we have the following proposition:

Proposition 5.2. The construction of D22 om (5.32), (5.33), (5.34), (5.35) satisfies
Condition (5.31).

Proof. See Section 5.11.

Construction of Remaining Model Parameters

5.5 Direct Parameterizations of RENs 122

The construction of remaining parameters is similar to the case above for contracting
RENs. Condition (5.22b) is automatically satisfied if we choose

HQSR =X⊤X + ϵI+
C⊤

2

D⊤
21

B2

R−1

C⊤

2

D⊤
21

B2

⊤

−

C⊤

2

D⊤
21

0

Q

C⊤

2

D⊤
21

0

⊤

≻ 0,
(5.36)

and then compute the model parameters of robust RENs based on the following
matrix partition

E + E⊤ − P −C⊤

1 F ⊤

−C1 W B⊤
1

F B1 P

 =

HQSR

11 HQSR
12 HQSR

13

HQSR
21 HQSR

22 HQSR
23

HQSR
31 HQSR

32 HQSR
33

 , (5.37)

in a similar manner to Section 5.5.1.

Examples of Robust RENs

We will now illustrate these ideas with some common REN parameterizations:

Example 5.1 — Lipschitz REN

A Lipschitz REN is described by the behavioral parameters Q = − 1
γ
I, S = 0

and R = γI. In this case, we construct LQ = 1√
γ
I and LR = √γI and

construct the implicit model parameters as follows:

M = X⊤
3 X3 + Y3 − Y ⊤

3 , D22 = γ
[
(I −M)(I + M)−1

]
p×m

, (5.38)

R = γI − 1
γ

D⊤
22D22 (5.39)

5.5 Direct Parameterizations of RENs 123

We now construct HQSR as in (5.36), giving

HQSR =X⊤X + ϵI+
C⊤

2
D⊤

21
B2

[
γI − 1

γ
D⊤

22D22

]−1

C⊤

2
D⊤

21
B2

⊤

+ γ

C⊤

2
D⊤

21
0

C⊤
2

D⊤
21
0

⊤

≻ 0,
(5.40)

where C2 = − 1
γ
D⊤

22C2 and D21 = − 1
γ
D⊤

22D21−D⊤
12. The free parameters are

given by θ = (C2, D21, D12,B2, X, X3, Y1, Y2, Y3).

The remaining implicit model parameters are then calculated from the ma-
trix partition (5.37).

Example 5.2 — Output Passive REN

An output passive REN is described by the behavioral parameters Q =
−2ρI, S = I and R = 0, where ρ > 0. Note that for a REN to be passive
we must have p = m. In this case, we construct LQ =

√
2ρI and LR = 1√

2ρ
I

and we can construct the implicit model parameters as follows:

M = X⊤
3 X3 + Y3 − Y ⊤

3 , (5.41)

D22 = 1
2ρ

[
I + (I −M)(I + M)−1

]
= 1

ρ

[
(I + M)−1

]
, (5.42)

R = D22 + D⊤
22 − 2ρD⊤

22D22 (5.43)

We now construct HQSR as in (5.36), giving

HQSR = X⊤X+ϵI +

C⊤

2
D⊤

21
B2

 [D22 + D⊤
22 − 2ρD⊤

22D22
]−1

C⊤

2
D⊤

21
B2

⊤

+ 2ρ

C⊤

2
D⊤

21
0

C⊤
2

D⊤
21
0

⊤

≻ 0,

(5.44)

where C2 = (I − 2ρD22)C2 and D21 = (I − 2ρD⊤
22)D21 − D⊤

12. The free
parameters are given by θ = (C2, D21, D12,B2, X, X3, Y1, Y2, Y3).

The remaining implicit model parameters are then calculated from the ma-

5.5 Direct Parameterizations of RENs 124

trix partition (5.37).

Example 5.3 — Input Passive REN

An input passive REN is described by the behavioral parameters Q = 0,
S = I and R = −2νI, where ν > 0. Note that for a REN to be passive we
must have p = m. In this case, (5.22a) is simplyR = −2νI+D22+D⊤

22 which
is satisfied by any D22 ≻ νI. We can write this direct parameterization via

M = X⊤
3 X3 + Y3 − Y ⊤

3 , (5.45)
D22 = νI + M, (5.46)

R = D22 + D⊤
22 − 2νI (5.47)

We now construct HQSR as in (5.36), giving

HQSR = X⊤X+ϵI +

C⊤

2
D⊤

21
B2

 [D22 + D⊤
22 − 2νI

]−1

C⊤

2
D⊤

21
B2

⊤

≻ 0, (5.48)

where C2 = C2 and D21 = D21 − D⊤
12. The free parameters are given by

θ = (C2, D21, D12,B2, X, X3, Y1, Y2, Y3).

The remaining implicit model parameters are then calculated from the ma-
trix partition (5.37).

5.5.3 Random Sampling of Nonlinear Systems and Echo State

Networks

One benefit of the direct parameterizations of RENs is that it is straightforward to
randomly sample systems with the desired behavioral properties. Since contracting
and robust RENs are constructed as the image of RN under a smooth mapping
(Sections 5.5.1 and 5.5.2), one can sample random vectors in RN and map them
to random stable/robust nonlinear dynamical systems.

An “echo state network” is a state-space model with randomly sampled, but fixed,

5.6 Expressivity of REN Model Class 125

state dynamics, and a learnable output map:

xt+1 = f(xt, ut) (5.49)

yt+1 = g(xt, ut, θ) (5.50)

where f is fixed and g is affinely parameterized by θ, i.e.

g(xt, ut, θ) = g0(xt, ut) +
∑

i

θig
i(xt, ut).

Then, e.g., system identification with a simulation error criteria can be solved as a
basic least squares problem. This approach is reminiscent of system identification via
a basis of stable linear responses (see, e.g., [232]).

For this approach to work, it is essential that the random dynamics are stable. In
[34, 244] and references therein, contraction of (5.49) is referred to as the “echo state
property”, and simple parameterizations are given for which contraction is guaran-
teed.

The direct parameterization of REN can be used to randomly sample from a rich
class of contracting models, by sampling X, Y1, Y2,B2,D12 to construct the state-
space dynamics and equilibrium network. Such a model can be used, e.g., for system
identification by simulating its response to inputs to generate data ũt, x̃t, w̃t, and then
the output mapping

yt = C2x̃t + D21w̃t + D22ũt + by

can be fit to ỹt, minimizing (5.3) via least-squares to obtain the parameters C2, D21, D22, by.
We will also see in Section 5.9 how this approach can be applied in data-driven feed-
back control design.

5.6 Expressivity of REN Model Class

The set of RENs contain many prior model structures as special cases. We now
discuss the relationship to some prior model types:

5.6 Expressivity of REN Model Class 126

Robust and Contracting RNNs and Echo State Networks

If we set D11 = 0, then the nonlinearity is not an equilibrium network but a single-
hidden-layer neural network, and our model set ΘC reduces to the model set proposed
in Chapter 3. Therefore, the REN model class also includes all other models that
were proven to be in that model set in Chapter 3, including:

1. all stable linear time-invariant (LTI) systems satisfying the corresponding IQC.

2. all prior sets of contracting RNNs including the ciRNN, s-RNN[148].

We note that the stability test for the ciRNN, contraction with respect to a diagonal
metric, is the same as that proposed for echo state networks [34, 244], by randomly
sampling RENs as in Section 5.5.3 we sample from a strictly larger set of echo state
networks than previously known.

Block Structured Models

Block structured models are constructed from series interconnections of LTI systems
and static nonlinearities [188, 75]. The REN contains block structured models as a
subset, where the built-in equilibrium network can approximate any continuous static
nonlinearity and the linear system represents the LTI block. For simplicity, we only
consider two simple block-oriented models:

1. Wiener systems consist of an LTI block followed by a static non-linearity. This
structure is replicated in (5.8), (5.9) when B1 = 0 and C2 = 0. In this case the
linear dynamical system evolves independently of the non-linearities and feeds
into a equilibrium network.

2. Hammerstein systems consist of a static non-linearity connected to an LTI sys-
tem. This is represented in the REN when B2 = 0 and C1 = 0. In this case the
input passes through a static equilibrium network and into an LTI system.

Other more complex block-oriented models such as [189] can also be constructed as
RENs in a similarly straightforward manner.

5.7 Use Case: Stable and Robust Nonlinear System Identification 127

Nonlinear Finite Impulse Response Models

Finite impulse response models are finite memory nonlinear filters. These have a
similar construction to Wiener systems, where the LTI system contains a delay system
that stores a finite history of inputs. The REN recovers a set of finite memory filters
when

A =

0
I 0

I
. . .
. . .

, B2 =

I

0
0
...

 , B1 = 0. (5.51)

The output is then a nonlinear function of a truncated history of inputs.

5.7 Use Case: Stable and Robust Nonlinear Sys-

tem Identification

We demonstrate the proposed model set on the F16 ground vibration [157] and Wiener
Hammerstein with process noise [187] system identification benchmark. We will com-
pare the C-aREN and Lipschitz bounded R-aREN (i.e., robust REN with some pre-
scribed Lipschitz bound of γ, denoted by R-aREN γ < γ) with an LSTM and RNN
with a similar number of parameters. We will also compare to the Robust RNN
proposed in Chapter 3.

An advantage of using a direct parameterization is that unconstrained optimization
techniques can be applied. We fit models by minimizing simulation error:

Lse(z̃, θ) = ||ỹ −Ra(ũ)||2T (5.52)

using minibatch gradient descent with the Adam optimizer [111].

When training RENs, we use the Peaceman-Rachford monotone operator splitting
algorithm [183, 238, 178] to solve for the fixed points in (4.1). We use the conjugate

5.7 Use Case: Stable and Robust Nonlinear System Identification 128

gradient method to solve for the gradients with the respect to the equilibrium layer
(4.1). The remaining gradients are calculated using the automatic differentiation tool,
Zygote [99].

Model performance is measured using normalized root mean square error on the test
sets, calculated as:

NRMSE = ||ỹ −Ra(ũ)||T
||ỹ||T

. (5.53)

Model robustness is measured in terms of the maximum observed sensitivity:

γ = max
u,v,a

||Ra(u)−Ra(v)||T
||u− v||T

. (5.54)

We find a local solution to (5.54) using gradient ascent with the Adam optimizer.
Consequently γ is a lower bound on the true Lipschitz constant of the sequence-to-
sequence map.

5.7.1 Benchmark Datasets and Training Details

F16 System Identification Benchmark

The F16 ground vibration benchmark dataset [157] consists of accelerations measured
by three accelerometers, induced in the structure of an F16 fighter jet by a wing-
mounted shaker. We use the multisine excitation dataset with full frequency grid.
This dataset consists of 7 multisine experiments with 73,728 samples and varying
amplitude. We use datasets 1, 3, 5 and 7 for training and datasets 2, 4 and 6 for
testing. All test data was standardized before model fitting.

All models fit have approximately 118,000 parameters. That is, the RNN has 340
neurons, the LSTM has 170 neurons and the RENs have width n = 75 and q = 150.
Models were trained for 70 epochs with a sequence length of 1024. The learning rate
was initalized at 10−3 and was reduced by a factor of 10 every 20 Epochs.

5.7 Use Case: Stable and Robust Nonlinear System Identification 129

Wiener-Hammerstein With Process Noise Benchmark

The Wiener Hammerstein with process noise benchmark dataset [187] involves the
estimation of the output voltage from two input voltage measurements for a block-
oriented Wiener-Hammerstein system with large process noise that complicates model
fitting. We have used the Multi-sine fade-out dataset consisting of two realizations
of a multi-sine input signal with 8192 samples each. The test set consists of two
experiments, a random phase multi-sine and a sine sweep, conducted without the
added process noise.

All models trained have approximately 42,000 parameters. That is, the RNN has
200 neurons, the LSTM has 100 neurons, and the RENs have n = 40 and q = 100.
Models were trained for 60 epochs with a sequence length of 512. The initial learning
rate was 1× 10−3. After 40 epochs, the learning rate was reduced to 1× 10−4.

5.7.2 Results and Discussion

We have plotted the mean test performance versus the observed sensitivity of the
models trained on the F16 and Wiener-Hammerstein Benchmarks in Fig. 5.2 and 5.3,
respectively. The dashed vertical lines show the guaranteed upper bounds on the
Lipschitz constant for the RENs. In all cases, we observe that the REN provides the
best trade-off between nominal performance and robustness, with the REN slightly
outperforming the LSTM in terms of nominal test error for large γ. By tuning γ,
nominal test performance can be traded-off for robustness, signified by the consistent
trend moving diagonally up and left with decreasing γ. In all cases, we found that the
REN was significantly more robust than the RNN, typically having about 10% of the
sensitivity for the F16 benchmark and 1% on the Wiener-Hammerstein benchmark.
Also note that for small γ, the observed lower bound on the Lipschitz constant is very
close to the guaranteed upper bound, showing that the real Lipschitz constant of the
models is close to the upper bound.

Compared to the robust RNN (from Chapter 3), the REN has similar bounds on
the incremental ℓ2 gain, however the added flexibility from the term D11 significantly

5.7 Use Case: Stable and Robust Nonlinear System Identification 130

10 100 1000
0.1

0.2

0.3

0.4

0.5

0.6

γ

N
RM

SE
R-aREN γ < 10
R-aREN γ < 20
R-aREN γ < 40
C-aREN
Robust RNN γ < 10
Robust RNN γ < 20
Robust RNN γ < 40
Robust RNN γ < ∞
LSTM
RNN

Figure 5.2 – Nominal performance versus robustness for models trained on F16 ground
vibration benchmark dataset. The dashed vertical lines are the guaranteed upper
bounds on γ corresponding to the models with matching color.

improves the nominal model performance for a given gain bound. Additionally, while
both the C-aREN and Robust RNN γ <∞ are contracting models, we note that the
C-aREN is significantly more expressive with a NRMSE of 0.16 versus 0.24.

It is well known that many neural networks are very sensitive to adversarial pertur-
bations. This is shown, for instance, in Fig. 5.4 and 5.5, where we have plotted the
change in output for a small adversarial perturbation ||∆u|| < 0.05, for a selection
of models trained on the F16 benchmark dataset. Here, we can see that both the
RNN and LSTM are very sensitive to the input perturbation. The R-aREN on the
hand, has guaranteed bounds on the effect of the perturbation and is significantly
more robust.

We have also trained R-RENs and C-RENs for the F16 and Wiener Hammerstein
Benchmark datasets. The resulting nominal performance and sensitivities for the
aRENs and RENs are shown in Table 5.1. We do not observe a significant difference
in performance between the cyclic and acyclic model classes.

Finally, we have plotted the loss versus the number of epochs in Fig. 5.6 for some

5.7 Use Case: Stable and Robust Nonlinear System Identification 131

10 100 1000
0.25

0.30

0.35

0.40

0.45

0.50

γ

N
RM

SE

R-aREN γ < 1.5
R-aREN γ < 2.5
R-aREN γ < 3.5
C-aREN
LSTM
RNN

Figure 5.3 – Nominal performance versus robustness for models trained on Wiener-
Hammerstein with process noise benchmark dataset. The dashed vertical lines are
the guaranteed upper bounds on γ corresponding to the models with matching
color.

0 1000 2000 3000

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Time Steps

∆
y 1

RNN
LSTM
R-aRENγ < 40
R-aRENγ < 10

Figure 5.4 – Change in output of models subject to an adversarial perturbation of
||∆u|| < 0.05. The incremental gains from ∆u to ∆y are 980, 290, 37 and 8.6
respectively.

5.7 Use Case: Stable and Robust Nonlinear System Identification 132

1000 1100 1200 1300 1400 1500
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Time Steps

∆
y 1

RNN
LSTM
R-aRENγ < 40
R-aRENγ < 10

Figure 5.5 – Zoomed in version of Fig. 5.4.

0 20 40 60

1

10

Epochs

Lo
ss

R-aREN γ < 4
R-aREN γ < 10
R-aREN γ < 40
C-aREN
LSTM
RNN

Figure 5.6 – Nominal performance versus robustness for models trained on F16 ground
vibration benchmark dataset.

5.7 Use Case: Stable and Robust Nonlinear System Identification 133

Table 5.1 – Upper and lower bounds on incremental ℓ2 gain and nominal performance
for aREN and REN.

γ̄ 10 20 40 60 100 ∞

aREN
γ 8.8 17.5 36.7 44.9 60.56 91.0

NRMSE (%) 30.0 25.7 20.1 18.5 17.2 16.2

REN
γ 9.1 17.1 36.0 44.6 57.9 85.26

NRMSE (%) 30.3 26.8 21.8 19.9 19.3 16.8

5.8 Use Case: Learning Nonlinear Observers 134

of the models on the F16 dataset. Compared to the LSTM, the REN takes a similar
number of steps and achieves a slightly lower training loss. The LSTM is a model
designed to be easy to train.

5.8 Use Case: Learning Nonlinear Observers

Estimation of system states from incomplete and/or noisy measurements is an impor-
tant problem in many practical applications. For linear systems with Gaussian noise,
a simple and optimal solution exists in the form of the Kalman filter, but for nonlinear
systems even achieving estimation stability is non-trivial and many approaches have
been investigated, e.g. [11, 109, 25]. State estimation a.k.a. observer design was one
of the original motivations for contraction analysis [129], and in this section, we show
how a flexible set of contracting models can be used to learn stable state observers
via snapshots of a nonlinear system model.

Given a nonlinear system of the form

xt+1 = fm(xt, ut, wt), yt = gm(xt, ut, wt) (5.55)

where xt ∈ X is an internal state to be estimated, yt is an available measurement,
ut ∈ U is a known (e.g. control) input, and wt comprises unknown disturbances and
sensor noise. Here X,U are some compact sets. We consider wt = 0 to represent a
nominal deterministic model.

A standard structure, pioneered by Luenberger, is an observer of the form

x̂t+1 = fm(x̂t, ut, 0) + l(x̂t, ut, yt) (5.56)

i.e. a combination of a model prediction fm and a measurement correction function
l. A common special case is l(x̂t, ut, yt) = L(x̂)(yt− gm(x̂t, ut, 0)) for some gain L(x̂).

In many practical cases the best available model fm, gm is highly complex, e.g. based

5.8 Use Case: Learning Nonlinear Observers 135

on finite element methods or algorithmic mechanics [68]. This poses two major chal-
lenges to the standard paradigm:

1. How to design the function l such that the observer (5.56) is stable (preferably
globally) and exhibits good noise/disturbance rejection.

2. The model itself may be so complex that evaluating fm(x̂t, ut, 0) in real-time is
infeasible, e.g. for stiff systems where short sample times are required.

Our parameterization of contracting models enables an alternative paradigm, first
suggested for the restricted case of polynomial models in [135].

Proposition 5.3. If we construct an observer of the form

x̂t+1 = fo(x̂t, ut, yt) (5.57)

such that the following two conditions hold:

1. The system (5.57) is contracting with rate α ∈ (0, 1) for some constant metric
P ≻ 0.

2. The following “correctness” condition holds:

fm(x, u, 0) = fo(x, u, gm(x, u, 0)), ∀(x, u) ∈ X× U. (5.58)

Then when w = 0 we have x̂t → xt as t → ∞. Suppose that the observer (5.57)
satisfies Conditions 1) and

3) The following error bound holds:

|e(x, u)| ≤ ρ, ∀(x, u) ∈ X× U, (5.59)

where e(x, u) := fo(x, u, gm(x, u, 0))− fm(x, u, 0).

5.8 Use Case: Learning Nonlinear Observers 136

Then when w = 0 we have

|x̂t − xt| ≤
2ρ

1− α

√√√√σ(P)
σ(P) , ∀t ≥ T (5.60)

for some sufficiently large T ∈ N, where σ(P) and σ(P) denote the maximum and
minimum singular values of P , respectively.

The reasoning is simple: (5.58) implies that if x̂0 = x0 then x̂t = xt for all t ≥ 0, i.e.
the true state is a particular solution of the observer. But contraction implies that all
solutions of the observer converge to each other. Hence all solutions of the observer
converge to the true state. The proof of the estimation error bound can be found in
Section 5.11.

In this section we propose designing such observers as a supervised learning problem
over our class of contracting models.

1. Sample a dataset z̃ = {xi, ui, i = 1, 2, ..., N} where (xi, ui) ∈ X× U.

2. Compute gi
m = gm(xi, ui, 0) and f i

m = fm(xi, ui, 0) for each i.

3. Learn a contracting system fo minimizing the loss function

Lo(z̃, θ) =
N∑

i=1

∣∣∣f i
m − fo(xi, ui, gi

m)
∣∣∣2 (5.61)

Remark 5.6. An observer of traditional form (5.56) with l(x̂t, ut, yt) = L(x̂)(yt −
gm(x̂t, ut, 0)) will always satisfy the correctness condition, but designing L(x̂) to
achieve global convergence may be difficult. In contrast, an observer design using
the proposed procedure will always achieve global convergence, but may not achieve
correctness exactly. If the dataset is sufficiently dense, and the loss (5.61) can be
driven near zero, then we can establish the estimation error bound based on Propo-
sition 5.3 and the generalization bound of the observer learning problem.

5.8 Use Case: Learning Nonlinear Observers 137

5.8.1 Example: Reaction-Diffusion PDE

We illustrate this approach by designing an observer for the following semilinear
reaction-diffusion partial differential equation:

∂ξ(z, t)
∂t

= ∂2ξ(z, t)
∂z2 + R(ξ, z, t), (5.62)

ξ(z, 0) = 1, ξ(1, t) = ξ(0, t) = b(t) (5.63)

y = g(ξ, z, t) (5.64)

where, the state ξ(z, t) is a function of both the spatial coordinate z ∈ [0, 1] and time
t ∈ R+. Models of the form (5.62) model processes such as combustion [74], biore-
actors [146] or neural spiking dynamics [74]. The observer design problem for such
systems has been considered using complex back-stepping methods that guarantee
only local stability [146].

We consider the case where the local reaction dynamics have the following form,
which appears in models of combustion processes [74]:

R(ξ, z, t) = 1
2ξ(1− ξ)(ξ − 1

2).

We consider the boundary condition b(t) as a known input and assume that there is
a single measurement taken from the center of the spatial domain so y(t) = ξ(0.5, t).

We discretize z into N intervals z1, ..., zN where zi = (i− 1)∆z. The state at spatial
coordinate zi and time t is then described by ξ̄t = (ξ1

t , ξ2
t , ..., ξN

t) where ξi
t = ξ(zi, t).

The dynamics over a time period ∆t can then be approximated using the following
finite differences:

∂ξ(z, t)
∂t

≈
ξi

t+∆t − ξi
t

∆t
, (5.65)

∂2ξ(z, t)
∂z2 ≈ ξi+1

t + ξi−1
t − 2ξi

t

∆z2 . (5.66)

Substituting (5.65) and (5.66) into (5.62) and rearranging for ξ̄t+∆t leads to an N

5.8 Use Case: Learning Nonlinear Observers 138

dimensional state space model of the form:

ξ̄t+∆t = ard(ξ̄t, bt) (5.67)

yt = crd(ξ̄t) (5.68)

We generate training data by simulating the system (5.67), (5.68) with N = 51 for
105 time steps with the stochastic input bt+1 = bt + 0.05ωt where ωt ∼ N [0, 1]. We
denote this training data by z̃ = (ξ̃t, ỹt, b̃t) for t = 0, . . . , 105∆t.

To train an observer for this system, we construct a C-aREN with n = 51 and q = 200.
We optimize the one step ahead prediction error:

L(z̃, θ) = 1
T

T −1∑
t=0
|a(ξ̃t, b̃t)− fo(ξ̃t, b̃t, ỹt)|2,

using stochastic gradient descent with the Adam optimizer [111]. Here, fo(ξ, b, y) is
a C-aREN described by (5.8), (5.9) using direct parametrization discussed in Section
5.5.1. Note that we have taken the output mapping in (5.8) to be [C2, D21, D22] =
[I, 0, 0].

We have plotted results of the PDE simulation and the observer state estimates in
Fig. 5.7. The simulation starts with an initial state of ξ(z, 0) = 1 and the observer
has an initial state estimate of ξ̄0 = 0. The error between the state estimate and
the PDE simulation’s state quickly decays to zero and the observer state continues
to track the PDE’s state.

We have also provided a comparison to a free run simulation of the PDE with initial
condition ξ(z, 0) = 0 in Fig. 5.8 and 5.9. Here we can see that the simulated trajec-
tories with different initial conditions do not converge. This suggests that the system
is not contracting and the state cannot be estimated by simply running a parallel
simulation. The state estimates of the observer, however, quickly converge on the
true model state.

5.8 Use Case: Learning Nonlinear Observers 139

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Time Steps

Tr
ue

O
bs

er
ve

r
Er

ro
r

Figure 5.7 – Simulation of a semi-linear reaction diffusion equation and the observer’s
state estimate, with a measurement in the centre of the spatial domain. The y-
axis corresponds to the spatial dimension and the x-axis corresponds to the time
dimension.

5.8 Use Case: Learning Nonlinear Observers 140

0 500 1000 1500 2000
0.00

0.25

0.50

0.75

1.00

Time Steps

ξ1 t

True
Observer
Simulation

(a) True and estimated states for ξ1
t , located at PDE boundary.

0 500 1000 1500 2000
0.00

0.25

0.50

0.75

1.00

Time Steps

ξ1
0

t

(b) True and estimated states for ξ10
t .

Figure 5.8 – True state and state estimates from the designed observer and a free run
simulation of the PDE.

5.8 Use Case: Learning Nonlinear Observers 141

0 500 1000 1500 2000
0

2

4

6

Time Steps

Er
ro

r

Observer
Simulation

Figure 5.9 – State estimation error for the nonlinear observer compared to a free run
simulation from the same initial conditions.

5.9 Use Case: Data-Driven Feedback Control Design 142

5.9 Use Case: Data-Driven Feedback Control De-

sign

In this section we show how a rich class of contracting nonlinear models can be useful
for nonlinear feedback design for linear dynamical systems with stability guarantees.
Even if the dynamics are linear, the presence of constraints, non-quadratic costs, and
non-Gaussian disturbance can mean that non-linear policies are superior to linear
policies. Indeed, in the presence of constraints, model predictive control is a common
solution.

The basic idea we illustrate in this section is to build on a standard method for linear
feedback optimization: the Youla-Kucera parameterization, a.k.a Q-augmentation
[248, 256]. For a linear system model

xt+1 = Axt + B1wt + B2ut, (5.69)

ζt = C1xt + D11wt + D12ut. (5.70)

yt = C2xt + D21wt. (5.71)

with x the state, u the controlled input, wt external inputs (reference, disturbance,
measurement noise), y a measured output, and ζ comprises the “performance” outputs
to kept small (e.g. tracking error, control signal). We assume the system is detectable
and stabilizable, i.e. there exist L and K such that A − LC and A − BK are Schur
stable. Note that if A is stable we can take L = 0,K = 0. Consider a feedback
controller of the form:

x̂t+1 = Ax̂t + B2ut + Lỹ (5.72)

ỹt = yt − C2x̂t (5.73)

ut = −Kx̂t + vt (5.74)

i.e. a standard output-feedback structure with vt an additional control augmentation.

5.9 Use Case: Data-Driven Feedback Control Design 143

The closed-loop input-output dynamics can be written as the transfer matrix
ζ

ỹ

 =

Pζw Pζv

Pỹw 0

w

v

 (5.75)

where we have used the fact that v maps to x and x̂ equally, as the mapping from v

to ỹ is zero.

It is well-known that the set of all stabilizing linear feedback controllers can be pa-
rameterised by stable linear systems Q : ỹ 7→ v, and moreover this convexifies the
closed-loop dynamics. A standard approach (e.g. [91, 32]) is to construct an affine pa-
rameterization for Q via a finite-dimensional truncation of a complete basis of stable
linear systems, and optimize to meet various criteria on frequency response, impulse
response, and response to application-dependent test inputs.

However, if the control augmentation v is instead generated by a contracting nonlinear
system v = Q(ỹ), then the closed-loop dynamics w 7→ ζ are nonlinear but contracting
and have the representation

ζ = Pzww + PzvQ(Pỹww). (5.76)

This presents opportunities for learning stabilizing controllers via parameterizations
of stable nonlinear models.

5.9.1 Echo State Network and Convex Optimization

Here we describe a particular setting in which the data-driven optimization of non-
linear policies can be posed as a convex problem. Suppose we wish to design a causal
feedback controller solving (at least approximately) a problem of the form:

min
θ

J(ζ) (5.77)

s.t. c(ζ) ≤ 0 (5.78)

5.9 Use Case: Data-Driven Feedback Control Design 144

where ζ is the response of the performance outputs to a particular class of inputs w,
J is a convex objective function, and c is a set of convex constraints, e.g. state and
control signal bounds.

If we take Q as an echo state network, c.f. Section 5.5.3:

qt+1 = fq(qt, ỹt)

vt = gq(qt, ỹt, θ)

where fq is fixed and gq is linearly parameterized by θ, i.e.

gq(qt, ỹt, θ) =
∑

i

θig
i
q(qt, ỹt).

Then Q has the representation

Q(ỹ) =
∑

i

θiQ
i(ỹ)

where Qi is a state-space model with dynamics fq and output gi
q. Then, we can

perform data-driven controller optimization in the following way:

1. Construct (e.g. via random sampling, experiment) a finite set of test signals
wj.

2. Compute ỹj
t = Pỹwwj for each j.

3. For each j, compute the response to ỹj:

qt+1 = fq(qt, ỹj
t), vij

t = gi
q(qt, ỹj

t).

4. Construct the affine representation

ζj = Pzwwj +
∑

i

θPzvvij.

5.9 Use Case: Data-Driven Feedback Control Design 145

5. Solve the convex optimization problem:

θ⋆ = arg min
θ

J(ζ) + R(θ)

s.t. c(ζj) ≤ 0

where R(θ) is an optional regularization term.

The result will of course only be approximately optimal, since wj are but a represen-
tative sample and the echo state network provides only a finite-dimensional span of
policies. However it will be guaranteed to be stabilizing.

Remark 5.7. This framework can be extended to parameterizing robustly stabilizing
controllers [256] and stabilizing controllers for nonlinear systems [225], and adaptive
control via online convex optimization, e.g. [2, 197] use the Youla parameterization
with Q parameterized via its impulse response.

5.9.2 Example

We illustrate the approach on a simple discrete-time linear system with transfer func-
tion

Pζw = Pζv = −Pỹw = 1
q2 + 2ρ cos(ϕ)q + ϕ2

with q the shift operator, ρ = 0.8, and ϕ = 0.2π. We consider the task of minimizing
the ℓ1 norm of the output in response to step disturbances, while keeping the control
signal u bounded: |ut| ≤ 5 for all t.

Training data is generated by a 25,000 sample piecewise constant disturbance that
has a hold time of 50 samples and a magnitude uniformly distributed in the interval
[-10, 10]. An example is shown in Fig. 5.10.

We construct a contracting model Q with n = 50 states and q = 500 neurons by
randomly sampling a matrix Xij ∼ N

[
0, 4

2n+q

]
where X ∈ R2n+q×2n+q and construct-

ing a C-aREN using the method outline in Section 5.5.1. The remaining parameters

5.9 Use Case: Data-Driven Feedback Control Design 146

0 250 500 750 1000

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Time Steps

Example Disturbance

Figure 5.10 – Example of the training disturbance.

5.10 Conclusions and Future Work 147

are then sampled from the Glorot normal distribution [76]. We construct a linear Q

parameter of the form

qt+1 = Aqqt + Bqỹt, vt+1 = Cqqt + Dqỹt.

We construct Aq by first sampling a matrix Āij ∼ N
[
0, 1

2n+q

]
and then normalizing

the eigenvalues so that Aq = (1−λ) Ā
ρ(Ā) so that Aq is a stable matrix with a contraction

rate of λ. We sample Bq from the Glorot normal distribution [76].

The response to test inputs are shown in Figure 5.11. The benefits of learning a
nonlinear Q parameter are that the control can respond aggressively to small dis-
turbances, driving the output quickly to zero, but respond less aggressively to large
disturbances to stay within the control bounds. In contrast, the linear control policy
must respond proportionally to disturbances of all sizes. Therefore, since the control
constraints require less aggressive response to large disturbances, the controller also
responds less aggressively to small disturbances and does not drive the output to zero.

5.10 Conclusions and Future Work

In this chapter, we have introduced RENs as a new model class for learning dynamical
systems with stability and robustness constraints. The model set is flexible and admits
a direct parameterization, allowing learning via unconstrained optimization.

We have illustrated the benefits of the new model class on problems in system iden-
tification, observer design, and control. On system identification benchmarks, the
REN structure outperformed the widely-used RNN and LSTM models in terms of
model fit while achieving far lower sensitivity to input perturbations. We illustrated
the use in state estimation via data-driven observer design for an unstable nonlinear
PDE. And finally, we illustrated the benefits for control design by linear constrained
nonlinear feedback policies for linear systems.

Our future work will further explore uses of RENs for robust reinforcement learning,
learning of robot motion primitives with passivity constraints, and privacy-preserving

5.10 Conclusions and Future Work 148

0 100 200 300 400 500 600

−2.5

0.0

2.5

5.0

7.5

Time Steps

Disturbance
Open Loop
Linear
aREN

0 100 200 300 400 500 600

−4

−2

0

2

Time Steps

Linear
aREN
Contraints

Figure 5.11 – Output (top) and control signal (bottom) responses to step disturbances
for nonlinear (aREN) and linear data-driven optimization of feedback controllers.

5.11 Proofs 149

control policy design, as well as applications in online learning of feedback policies.

5.11 Proofs

Proof of Proposition 5.1

To prove contraction, we consider (5.13) with ∆u = 0. By left-multiplying
[
∆x⊤

t ∆w⊤
t

]
and right-multiplying

[
∆x⊤

t ∆w⊤
t

]⊤
to (5.17), we obtain the following incremental

Lyapunov inequality:
Vt+1 − Vt < Γt ≤ 0, (5.79)

where Vt = ∆x⊤
t P∆xt. The second inequality follows by the incremental quadratic

constraint (5.16). Since Vt is a quadratic form in ∆xt, it follows that Vt+1 ≤ αVt for
some α ∈ [0, 1) and Vt ≤ αtV0.

Similarly, from (5.18) we can prove that the following incremental dissipation inequal-
ity holds for (5.13), (5.14):

Vt+1 − Vt −

∆yt

∆ut

⊤ Q S

S⊤ R

∆yt

∆ut

 < Γt ≤ 0. (5.80)

Proof of Theorem 5.1

To show well-posedness, from (5.20) we have E + E⊤ ≻ P ≻ 0 and W = 2Λ −
ΛΛ−1D11 − D⊤

11Λ−1Λ ≻ 0. The first LMI implies that E is invertible [214] and thus
(5.8) is well-posed. The second one ensures that the equilibrium network (4.1) is
well-posed by the main result of [178].

To prove contraction, applying the inequality E⊤P−1E ⪰ E + E⊤ − P and Schur
complement to (5.20) gives

E⊤P−1E −C⊤
1

−C1 W

−
F ⊤

B⊤
1

P−1

F ⊤

B⊤
1

⊤

≻ 0.

5.11 Proofs 150

By substituting F = EA, B1 = EB1, B2 = EB2, C1 = ΛC1 and D11 = ΛD11 into the
above inequality, we obtain (5.17) with P = E⊤P−1E. Thus, ΘC is a set of C-RENs.

Similarly, we can show that (5.21) implies (5.18), i.e., ΘR is a set of R-RENs.

Proof of Theorem 5.2

We first show that ΘR ⊂ ΘC . Applying Schur complement to (5.21) yields

E + E⊤ − P −C⊤
1 C⊤

2 F ⊤

−C1 W D⊤
21 B⊤

1

C2 D12 R B⊤
2

F B1 B2 P

 ≻ −

C⊤
2

D⊤
21

0
0

Q

C⊤
2

D⊤
21

0
0

⊤

.

By swapping the last two rows and columns for the above inequality, and then ap-
plying Schur complement to the component R, we obtain Inequality (5.22). Then,
Condition (5.20) follows by the facts R ≻ 0 and Q ⪯ 0.

Now we show that any REN in ΘC has a finite ℓ2 Lipschitz bound. That is, Condi-
tion (5.20) implies that there exists a sufficiently large but finite γ such that (5.22)
holds for Q = − 1

γ
I, R = γI, S = 0, i.e.,

E + E⊤ − P −C⊤

1 F ⊤

−C1 W B⊤
1

F B1 P

 ≻ Φγ (5.81)

5.11 Proofs 151

where

Φγ = 1
γ

C⊤

2

D⊤
21

0

C⊤
2

D⊤
21

0

⊤

+

− 1

γ
C⊤

2 D22

− 1
γ
D⊤

21D22 −D12

B2

(

γI − 1
γ

D⊤
22D22

)−1

− 1

γ
C⊤

2 D22

− 1
γ
D⊤

21D22 −D12

B2

⊤

.

For sufficiently large γ, we have

Φγ ≈
1
γ

C⊤
2

D⊤
21

0

C⊤
2

D⊤
21

0

⊤

+

0
−D12

B2

0
−D12

B2

⊤ ,

which is a positive-semidefinite matrix with arbitrary small spectral radius. Thus,
for any model in ΘC , Condition (5.81) holds for some sufficiently large but finite gain
bound γ.

Proof of Proposition 5.2

By construction M + M⊤ ≻ 0, so we have

I − Z⊤Z ≻ 0,

by the properties of the Cayley transform. Then by direct substition, D22 as con-
structed in (5.35) satisfies

R− SQ−1S⊤ ≻
(
LQD22 − L−⊤

Q S⊤
)⊤(

LQD22 − L−⊤
Q S⊤

)
,

which can rearranged as (5.31) via the factorizations (5.34).

5.11 Proofs 152

Proof of Proposition 5.3

When the correctness condition (5.58) holds, we have that x̂t = xt for all t ≥ 0 if
x̂0 = x0, i.e. the true state trajectory is a particular solution of the observer. But
contraction implies that all solutions of the observer converge to each other. Hence
when w = 0 we have x̂t → xt as t→∞.

Now we consider the case where the correctness condition does not hold but its error
is bounded, i.e., |e(x, u)| ≤ ρ. The dynamics of ∆x := x̂− x can be written as

∆xt+1 = fo(x̂t, ut, yt)− fm(xt, ut)

= F (xt, ut)∆xt + et

where F (xt, ut)∆xt := fo(xt + ∆xt, ut, yt) − fo(xt, ut, yt) and et := e(xt, ut). Letting
Vt := ∆x⊤

t P∆xt, we have

Vt+1 − Vt =2e⊤
t P∆xt + ∆x⊤

t F ⊤PF∆xt −∆x⊤
t P∆xt

≤2e⊤
t P∆xt − (1− α)∆x⊤

t P∆xt.

The above inequality is based on F ⊤PF−αP ⪯ 0 (i.e., contraction). When t ≥ T with
T sufficiently large, the estimation error satisfies 2e⊤

t P∆xt − (1 − α)∆x⊤
t P∆xt ≥ 0,

which gives the bound in (5.60).

Chapter 6

Distributed Identification Of

Monotone and/or Contracting

Networks

In the previous chapters, we developed methods for training neural network and re-
current neural network models with behavioural guarantees in the form of incremental
IQCs. These model sets can guarantee properties such as contraction, Incremental
ℓ2 gain bounds and incremental passivity using quadratic constraints, however, the
reliance on quadratic constraints inherently limits the scalability of the methods.

In this chapter, we study a new problem setting; the problem of learning with be-
havioral constraints in a large-scale networked setting. Specifically, we propose
methods for the identification of large-scale networked systems with guarantees that
the resulting model will be contracting and/or monotone, i.e., the order relations be-
tween states are preserved. The main challenges that we address are: simultaneously
searching for model parameters and a certificate of stability while also scaling to net-
works with hundreds or thousands of nodes. We propose a model set that admits
convex constraints for stability and monotonicity, and has a separable structure that
allows distributed identification via the alternating directions method of multipliers
(ADMM). The performance and scalability of the approach is illustrated on a vari-

6.1 Introduction 154

ety of linear and nonlinear case studies, including a nonlinear traffic network with a
200-dimensional state space.

Note that the methods developed in this chapter are distinct from the prior chapters
and it might be best to view this as a stand-alone chapter.

Publications

Some of the content of this chapter has previously appeared in the following publica-
tion:

Max Revay, Ruigang Wang, and Ian R. Manchester. Distributed identification of
contracting and/or monotone network dynamics. Transactions on Automatic Con-
trol, 2021.

6.1 Introduction

System identification is the process of generating dynamic models from data [127],
and is also referred to as learning dynamical systems (e.g. [208]). When scaling
control and identification algorithms to large-scale systems, it can be useful to treat
a system as a sparse network of local subsystems interconnected through a graph
[21, 195, 223].

However, if the models of local subsystems are identified separately and then recom-
bined as a networked model, the quality of fit can deteriorate dramatically due to
unmodelled dynamic interactions between subsystems. In particular, model insta-
bility is a common outcome even if the underlying data-generating system is stable.
Furthermore, many large-scale systems have known behavioral properties such as
monotonicity or positivity (see Sec 6.1.3), and it is often important that the identi-
fied network model preserves these.

6.1 Introduction 155

In this chapter, we propose model structures and algorithms for the identification of
networked systems in state space form:

xt+1 = a(xt, ut, ut+1), (6.1)

where xt ∈ Rn and ut ∈ Rm are the state and input respectively, and the model
dynamics a(·, ·, ·) can be either linear or nonlinear. We assume that measurements
(or estimates) of state and input sequences are available.

Our approach:

1. uses distributed computation, i.e., network nodes only share data and parame-
ters with immediate neighbors,

2. can (optionally) generate models with certificates of a strong form of nonlinear
stability called contraction [129],

3. can (optionally) generate monotone and positive models, i.e. with prescribed
ordering and sign relations between states [202].

If the system to be modelled is known to be contracting and/or monotone, then
requiring these behavioral properties of the identified models provides two main ben-
efits:

1. Firstly, it may be required that the model satisfies these properties for it to
be useful, e.g. an unstable model is useless for long-term predictions, while a
model of traffic density in a road network is non-sensical if it predicts a negative
number of vehicles will be present, and similarly for chemical concentrations in
a reaction model. Furthermore, several algorithms for control design make use
of monotonicity properties of models (see Section 6.1.3).

2. Even if not a model requirement, these behavioral properties comprise prior
information about the system, and imposing them on the model can be thought
of as a form of regularization. We observe in numerical experiments in Section

6.1 Introduction 156

6.6 that this can result in significantly-improved quality of fit compared to
unconstrained models.

The key technical difficulty we address is the identification of large-scale systems
while simultaneously guaranteeing model stability and/or monotonicity. We propose
a convex model set with scalable behavioral constraints and an algorithm based on
ADMM that decomposes the identification problem into easily solvable subproblems
that require only local communication between subsystems.

6.1.1 Identification of Networked Systems

Standard approaches to system identification do not work well for large-scale net-
worked systems for three reasons [83]: firstly, the dataset must be collected at a cen-
tral location, a process which may be prohibitive for complex systems; secondly, the
computational and memory complexities prohibit the application of many methods to
large systems; finally, the network structure may not be preserved by identification.
For instance, standard subspace identification methods have O[n3] an O[n2] computa-
tional and memory complexities respectively, and the sparsity patterns corresponding
to network structure are destroyed through a dense similarity transformation [229].
These issues motivate approaches based on modelling subsystems within a network.

Previous work in networked system identification can be loosely categorized into two
areas; the identification of a network’s topology [139, 140, 185], and the identification
of a system’s dynamics with known topology. In the latter category, almost all prior
work has focused on the case where the subsystems are linear time invariant (LTI) and
described by state space models [83, 249, 250] or transfer functions (a.k.a. modules)
[224, 53].

When identifying the subsystem dynamics, the states or outputs of neighbors are
treated as exogenous inputs, ignoring the feedback loops induced by the network
topology. This improves scalability as the identification of each subsystem can be
performed in parallel. However, accurate identification of the individual subsystems

6.1 Introduction 157

does not imply accurate identification of the full network, because the ignored feed-
back loops may have a strong effect and even introduce instability. A simple case with
two subsystems which has received significant attention is closed-loop identification
(see e.g. [70]).

In prior works on networked system identification, the only sense in which model
stability or other behavioral properties have been guaranteed is via identifiability
[234] and consistency [223]. That is, if it can be proven that in the limit of infinite
data the model converges to the true system, and the true system is stable, then with
sufficient data a stable model will be found. However, in real applications, the data
set is always finite and the real system is never in the model set, and as such there
are no hard guarantees of model stability with existing methods.

6.1.2 Identification of Stable and Contracting Models

While the problem of model instability is exacerbated by the interconnection of lo-
cal models, even in standard (centralized) identification, it is a significant and well-
studied problem. Even for linear system identification, the problem is non-trivial,
since the set of stable models is not convex using standard parameterizations, and
several methods have been suggested based on regularization or model constraints
[226, 131, 117, 147, 220].

For linear systems most definitions of stability are equivalent. For nonlinear systems
the situation is more nuanced, and the definition used depends on the requirements
of the problem at hand. Classical Lyapunov stability is arguably not appropriate in
system identification as the stability certificate must be constructed about a known
stable solution, whereas the purpose of system identification is to predict a system’s
response to previously unseen inputs. Contraction [129] and incremental stability (e.g.
[215]) are more appropriate since they ensure the stability of all possible solutions and
consequently, do not require a-priori knowledge of the inputs and state trajectories.

A central technical problem in identifying stable nonlinear models is the following:
while the search for a stability certificate such as a Lyapunov function or contraction

6.1 Introduction 158

metric for a given model is convex, the joint search for a model and a certificate
of its stability is not. Some approaches, e.g., [222, 148], effectively fix the stability
certificate, but this can be conservative even for linear systems.

This chapter builds on previous work in jointly-convex parameterization of models
and their stability certificates via implicit models [144, 30, 212, 214] and chapters
3 and 5, and associated convex bounds for model fidelity via Lagrangian relaxation
[214, 219, 218].

While convex, these approaches are not well-suited to large-scale systems, since they
are based on linear matrix inequalities and sum-of-squares constraints that scale
poorly with large state dimension. A key development in this chapter is to signifi-
cantly improve scalability of this approach via a novel model parameterization and
new contraction constraints that are separable into many smaller constraints which
can be enforced in parallel.

6.1.3 Monotone and Positive Systems

Monotone systems are a class of dynamic system characterized by the preservation
of an order relation for solutions (c.f. Definition 6.2 below). A closely related class
is positive systems, for which state variables remain non-negative for all non-negative
inputs (c.f. Definition 6.3 below). A monotone system is also positive if the zero state
is a solution with zero input, and for linear systems positivity and monotonicity are
equivalent. Processes such as traffic networks [46, 130, 49], chemical reactions [55],
combination therapies [173, 89, 90, 101], wildfires [203] and power scheduling [173]
exhibit monotone and/or positive dynamics.

A useful property of monotone systems is that they often admit simplified stability
tests. In particular, for linear positive systems the existence of separable Lyapunov
functions, i.e. those representable as the sum or maximum over functions of individual
state variables, is necessary and sufficient for stability [24]. This property has been
used to simplify analysis [84], control [172] and identification [217] of positive systems.
Separable stability certificates have also been shown to exist for certain classes of

6.1 Introduction 159

nonlinear monotone systems [92, 58, 137, 106]. and have been used for distributed
stability verification [48] and control [193]. Monotonicity can also simplify nonlinear
model predictive control [173] and formal verification using signal temporal logic [184].

There are however, few identification algorithms that guarantee monotonicity. In
[191], monotone gene networks are identified using the monotone P-splines developed
in [192]. This approach, however, does no guarantee model stability.

6.1.4 Model Quality-of-Fit Criteria

Identification and learning typically involve the optimization of a quality of fit metric,
a.k.a. a loss function, over a model set. Arguably the simplest and most widely-
applied quality-of-fit metric in system identification is least-squares equation error
(a.k.a. one-step-ahead prediction error):

Jee(θ) =
T −1∑
t=0
|a(x̃t, ũt)− x̃t+1|2, (6.2)

where x̃t ∈ Rn and ũt ∈ Rm are state and input measurements or estimates.

Least-squares equation error is a natural choice for optimizing short-term predictions.
In many contexts, system state measurements are not available. Nevertheless, equa-
tion error frequently arises as a sub-problem via estimated states, e.g. in subspace
identification algorithms [227, 228, 250], where states are estimated using using matrix
factorizations, or in maximum likelihood identification via the expectation maximiza-
tion (EM) algorithm where they are estimated from the joint smoothing distribution
[186, 220].

Long-term prediction performance can be evaluated via simulation error, defined as

Jse(θ) =
T −1∑
t=0
|xt − x̃t|2, s.t. xt+1 = a(xt, ũt), (6.3)

where the initial conditions may be fixed or estimated. The dependence on simulated
states, however, renders the cost function non-convex [200, 127] and notoriously dif-

6.2 Preliminaries and Problem Setup 160

ficult to optimize [179]. Consequently, equation error optimization is often used to
initialize local optimization of simulation error (e.g. via gradient descent) or used as a
surrogate for simulation error that is easier to optimize. In the latter context, model
stability is particularly important since a model can have small equation error but be
unstable and therefore exhibit very large simulation error. In fact, when a model is
contracting, it can be shown that small equation error implies small simulation error
[144].

6.2 Preliminaries and Problem Setup

Notation

We will introduce some additional notation that is specific to this chapter.

A graph G is defined by a set of nodes (vertices) V = [1, ..., N] and edges E ⊂ V × V .
The vector 1 is the column vector of ones, with size inferred from context. For vectors
v, v > 0 refers to the element-wise inequality. For matrices M , M ≥ 0 and M ≤ 0
refer to element-wise inequalities. For symmetric matrices M , M ≻ 0 means that M

is positive definite. For a vector v, diag(v) is the matrix with the elements of v along
the diagonal. The set of n× n non-singular M-matrices is denoted Mn. For a matrix
A, A ∈ Mn means Aij ≤ 0, ∀i ̸= j and real(λi) > 0 for i = 1, ..., n, where λi are the
eigenvalues of A. For brevity, we will sometimes drop the arguments from a function
where the meaning may be inferred from context.

6.2.1 Behavioural Properties via Differential Dynamics

Both contraction [129] and monotonicity [202] can be verified by way of a system’s
differential dynamics, a.k.a. linearized, variational, or prolonged dynamics. For the
system (6.1), the differential dynamics are

δxt+1 = A(xt, ut, ut+1)δxt + B(xt, ut, ut+1)δut . (6.4)

6.2 Preliminaries and Problem Setup 161

where A = ∂a
∂x

and B = ∂a
∂u

. In conjunction with (6.1), the differential dynamics
describe the linearized dynamics along all solutions of the system.

Contraction Analysis

We use the following definition of nonlinear stability:

Definition 6.1 (Contraction). A system is termed contracting with rate α, where
0 < α < 1, if for any two initial conditions xa

0, xb
0, given the same input sequence ut,

and some p ∈ [1,∞], there exists a continuous function bp(xa
0, xb

0) > 0 such that the
corresponding trajectories xa

t , xb
t satisfy |xa

t − xb
t |p < αtbp(xa

0, xb
0).

Contraction can be proven by finding a contraction metric which verifies conditions
on the differential dynamics [129]. A contraction metric is a function V (t, x, δx) such
that:

V (t, x, 0) = 0, V (t, x, δ) ≥ µ|δ|p, (6.5)

V (t + 1, xt+1, δxt+1) ≤ αV (t, x, δx). (6.6)

for some µ > 0

The choice of contraction metric V (t, x, δ) is problem dependent. Prior works have
proposed quadratic contraction metrics for which (6.6) is linear in the stability certifi-
cate and can be verified using semi-definite programming. A number of works have
also noted that using a weighted ℓ1 norm can lead to separable constraints [182, 48]
allowing for stability verification of large-scale networked systems.

In the context of system identification, the joint search for model a in (6.1) and
contraction metric V is non-convex due to the nonlinear function composition V (t +
1, xt+1, δxt+1) = V (t + 1, a(x, u), A(x, u)δxt).

Monotone and Positive Systems

We now define system monotonicity and positivity of dynamical systems.

6.2 Preliminaries and Problem Setup 162

Definition 6.2 (Monotone System). A system (6.1) is termed monotone if for inputs
ua

t and ub
t and initial conditions xa

0, xb
0, the following implication holds:

xa
0 ≥ xb

0, ua
t ≥ ub

t ∀t =⇒ xa
t ≥ xb

t ∀t.

Monotonicity results from A(x, u) ≥ 0 and B(x, u) ≥ 0 where A and B come from
the differential dynamics (6.4).

Definition 6.3 (Positive System). A system (6.1) is positive if for all inputs u0, ..., uT ≥
0 and initial conditions x0 ≥ 0, the resulting trajectory has x1, ..., xT ≥ 0.

A sufficent condition for a system to positive is for it to be monotone and admit
xt = 0, ut = 0∀t as a solution, i.e. a(0, 0, 0) = 0 in (6.1).

6.2.2 Network Structure

We assume model (6.1) is partitioned into N subsystems. The interactions between
these subsystems is described by a directed graph G = (V , E). Here, we have a set of
nodes denoted V = {1, ..., N} corresponding to the subsystems. Each subsystem has
its own state denoted xi ∈ Rni and may take an input denoted ui ∈ Rmi (we allow for
the case mi = 0). The whole-network state and input is attained by concatenating
the states and inputs of each subsystem,

x =

x1

...
xN

 , u =

u1

...
uN

 . (6.7)

The set of edges E ⊆ V × V describes how the subsystems interact with each other.
In particular, (j, i) ∈ E means that the state of subsystem j affects the state of
subsystem i. The edge list E may arise naturally from the context of the problem,
e.g. in traffic networks where edges come from the physical topology of the road
network, or may be identified from data [139, 141].

6.2 Preliminaries and Problem Setup 163

Figure 6.1 – Illustration of upstream/downstream notation: in a directed graph,
node i’s upstream neighbours V i

u have edges going towards i, while its downstream
neighbours V i

d have edges coming from i.

For each subsystem i ∈ V , we define the set of upstream neighbours V i
u = {j|(j, i) ∈

E } and the set of downstream neighbours V i
d = {j|(i, j) ∈ E }. The term upstream

neighbours of i refers to the subsystems whose state affects the state of subsystem i,
and the term downstream neighbours refers to the subsystems whose state is affected
by subsystem i’s state. In general, we allow self-loops so that a node can (and
generally will) be both upstream and downstream to itself. This notation is illustrated
in Fig. 6.1.

We can write the dynamics of the individual interacting subsystems as follows:

xi
t+1 = ai(x̆i

t, ŭi
t, ŭi

t+1), i = 1, ..., N. (6.8)

where ai corresponds to the ith element in (6.1) and x̆i = {xj | j ∈ V i
u} and ŭi =

{uj | j ∈ V i
u}.

6.2 Preliminaries and Problem Setup 164

6.2.3 Separable Optimization using ADMM

Consider an optimization problem of the form,

min
θ

J(θ), (6.9)

which may include constraints on θ via indicator functions appearing in J . The
indicator function for the constraint θ ∈ Θ is the function IΘ(θ) which is zero for
θ ∈ Θ and infinite otherwise.

Definition 6.4 (Separable). The problem (6.9) is termed separable with respect to
the partitioning θ = {θi | i = 1, .., N} if it can be written as J(θ) = ∑N

i=1 J i(θi).

In this cahpter we encounter problems of the form:

min
θ

N∑
i=1

J i
a(θi

a) +
M∑

j=1
J j

b (θj
b), (6.10)

where {θi
a | i = 1, ..., N} and {θj

b | j = 1, ..., M} are two different partitions of the
same vector θ. In our context, these partitionings correspond to the sets of upstream
or downstream neighbors discussed in the previous section. For such problems, the
alternating directions method of multipliers (ADMM) can be applied [31]. We write
(6.10) as

min
θ,ϕ

N∑
i=1

J i
a(θi

a) +
M∑

j=1
J j

b (ϕj
b), (6.11)

s.t. θ − ϕ = 0.

Applying ADMM results in iterations in which each step is separable with respect to
the partition θa or θb, and can thus be solved via distributed computing. For convex
problems, ADMM is guaranteed to converge to the optimal solution [31].

6.3 A Model Class with Convex Behavioural Constraints 165

6.2.4 Problem Statement

To summarise, the main objective of this chapter is: Given state and input measure-
ments {x̃t, ũt | t = 1, .., T}, and a graph G describing the network topology, identify
models (6.8) at each node such that:

1. During the identification procedure, each subsystem only communicates with
immediate (upstream and downstream) neighbours;

2. Convergence of the algorithm is guaranteed and least-squares equation error is
small at each subsystem;

3. Model behavioural constraints such as contraction, monotonicity, and/or posi-
tivity can be guaranteed for the interconnected model (6.1).

6.3 A Model Class with Convex Behavioural Con-

straints

In this section, we develop a convex parametrization of models with contraction,
monotonicity and/or positivity guarantees. As described in subsection 6.2.1, jointly
searching for a model (6.1) and contraction metric is nonconvex.

Following [212, 214], we solve this problem by instead searching for models in the
following implicit form:

e(xt+1, ut+1) = f(xt, ut). (6.12)

The differential dynamics of (6.12) are:

E(xt+1, ut+1)δxt+1 = F (xt, ut)δxt + K(xt, ut)δut , (6.13)

where E = ∂e
∂x

, F = ∂f
∂x

and K = ∂f
∂u

.

6.3 A Model Class with Convex Behavioural Constraints 166

Definition 6.5 (Well-Posed). An implicit model of the form (6.12) is termed well-
posed if for every xt, ut, ut+1 there is a unique xt+1 satisfying (6.12).

I.e., well-posedness means that e(x, u) is a bijection with respect to its first argument,
and implies the existence of an explicit model of the form (6.1) where a = e−1 ◦
f . Furthermore, it implies that for any initial condition x0 and sequence of inputs
u0, ..., uT , there exists a unique trajectory x1, ..., xT satisfying (6.12).

6.3.1 Stability and Monotonicity Constraints

In this section, we propose convex conditions on the implicit model (6.12) that guar-
antee well-posedness, monotonicity, positivity, and contraction. The main result is
the following:

Theorem 6.1. A model of the form (6.12) is:

1. well-posed if there exists ϵ > 0 such that for all (x, u),

E(x, u) + E(x, u)T ≻ ϵI, (6.14)

2. contracting with rate α if (a) holds and there exists a matrix function S(x, u) :
Rn × Rm → Rn×m such that for all (x, u):

− S(x, u) ≤ F (x, u) ≤ S(x, u), (6.15)

1⊤(αE(x, u)− S(x, u)) ≥ 0, (6.16)

3. monotone if (a) holds and for all (x, u):

F (x, u) ≥ 0, K(x, u) ≥ 0, E(x, u) ∈Mn, (6.17)

4. positive if (c) holds and:

e(0) = f(0, 0), (6.18)

6.3 A Model Class with Convex Behavioural Constraints 167

5. contracting and monotone if (a) and (c) hold, and for all (x, u)

1⊤(αE(x, u)− F (x, u)) ≥ 0. (6.19)

Positivity is also enforced if (6.18) holds.

Proof. See Section 6.8.

We refer to the stability conditions in Theorem 6.1 (b) or (e) as ℓ1 contraction con-
ditions as they ensure contraction using a state dependent weighted ℓ1 norm of the
differentials: V (t, x, δ) = |E(x, u)δ|1, noting that for the purpose of contraction anal-
ysis the exogenous input u can be considered as a time-variation.

Remark 6.1. Theorem 6.1 requires an exponential contraction rate α to be specified.
A weaker form of incremental stability can also be imposed by replacing (6.16) with

1⊤(E(x, u)− S(x, u)) ≥ µ1⊤ (6.20)

for some µ > 0, and similarly for (6.19). This implies that ∑∞
t=0 |xa

t − xb
t |1 < ∞ and

hence xa
t → xb

t asymptotically, following a line of reasoning similar to [214].

6.3.2 Specific Model Parametrizations

As formulated above, Theorem 6.1 applies to models represented by the infinite-
dimensional space of continuously differentiable functions e and f . In practice, these
functions are usually parametrized by a finite-dimensional vector. In this section we
briefly discuss some common model parametrizations and how the constraints can be
enforced.

For linear models, (6.14) is a semidefinite constraint, (6.15)-(6.19) are linear and can
be enforced using semidefinite programming. Furthermore, if E is diagonal, then
(6.14) is also linear and the model set is polytopic.

6.4 Distributed Identification 168

If the functions e and f are multivariate polynomials or trigonometric polynomials,
then the constraints can be enforced using sum of squares programming [162, 143].

The model set (6.12) also contains a class of recurrent neural networks with slope-
restricted, invertible activation functions. In this case, e(x) is the inverse of the
activation functions, f(x, u) is affine, and simulation of the explicit model a = e−1 ◦f

yields the equation of a standard recurrent neural network [64]. The conditions in
Theorem 6.1 (b) or (d) then correspond to diagonal dominance conditions on the
weight matrices which can be enforced via linear constraints.

Finally, if the requirement for global verification of these properties is relaxed, then
these constraints can be applied pointwise for arbitrary parametrizations e and f ,
which amount to linear and semidefinite constraints if e and f are linearly parametrized.

6.4 Distributed Identification

In this section we consider the problem of distributed identification of networked sys-
tems with the behavioral constraints introduced in Theorem 6.1. First, we propose a
particular structure for (6.12) for which the constraints in Theorem 6.1 are separable.
We then formulate an objective function that is separable (with respect to a different
partition). Finally we propose an algorithm based on ADMM for fitting the proposed
models that requires only local communication between subsystems at each step.

6.4.1 Distributed Model

We propose the following model structure for distributed identification, in which e

depends only on local states and inputs, and f is a summation of nonlinear functions
of states and inputs from upstream neighbours:

ei(xi
t+1, ui

t+1) =
∑

j∈V i
u

f ij(xj, uj). (6.21)

6.4 Distributed Identification 169

Models of the form (6.21) are widely used for statistical modelling, and are referred
to as generalized additive models (GAMs) [85]. This class of models also includes
linear systems, and a class of recurrent neural networks. We assume that each of the
functions ei : Rni × Rmi 7→ Rni and f ij : Rnj × Rmi 7→ Rni are linearly parametrized
by θi

e and θij
f respectively.

We define two partitions of the model parameters; the sets of upstream and down-
stream parameters. These are denoted θi

u = {θi
e, θij

f |j ∈ V i
u} and θi

d = {θi
e, θji

f |j ∈ V i
d }

respectively. Objective functions, constraints and optimization problems are called
upstream-separable or downstream-separable if they are separable with respect to these
partitions. Upstream and downstream separable optimization problems are closely
related to the column-wise and row-wise separable optimization problems used in
[233].

For the parametrization (6.21), the differential dynamics have a sparsity pattern
determined by the network topology. In particular, the (i, k)th block of F is:

F ik = ∂

∂xk

∑
j∈V i

u

f ij(xj, uj) =

∂f ik

∂xk , k ∈ V i
u

0, k /∈ V i
u

.

and E is block diagonal. This means F ik depends only on parameters θik
f and the block

Eii depends only on θi
e. As each block of E and F has an independent parametrization,

functions of disjoint sets of elements of E or F will be separable.

6.4.2 Convex Bounds for Equation Error

In Section 6.4.1 we propose a convex set of implicit models. However, this approach
shifts the convexity problem from the model set to the objective function as equation
error (6.2), with a = e−1 ◦ f , is not convex with respect to e and f .

A simple approach is be to minimize the implicit equation error

Jiee =
T −1∑
t=1
|e(x̃t+1, ũt+1)− f(x̃t, ũt)|2 (6.22)

6.4 Distributed Identification 170

as a surrogate for equation error. This approach, however, strongly biases the re-
sulting model and leads to poor performance [218]. Instead we use the convex upper
bound for equation error proposed in [218], which is based on Lagrangian relaxation.

The least-squares equation error (6.2) for the implicit model (6.12) is:

min
θ,x2,...,xT

Jee(θ) =
T −1∑
t=1
|xt+1 − x̃t+1|2 (6.23)

s.t. e(xt+1, ũt+1) = f(x̃t, ũt), ∀t = 1, ..., T − 1.

Note that this problem is not jointly convex in xt+1 and θ. The following convex
upper bound was proposed in [218]:

Jee ≤ Ĵee(θ) =
T −1∑
t=1

sup
xt+1

{
|xt+1 − x̃t+1|2

− 2λ(xt+1)⊤(e(xt+1, ũt+1)− f(x̃t, ũt))
}

, (6.24)

where λt(xt+1) = xt+1 − x̃t+1 is a Lagrange multiplier. The function (6.24) is convex
in θ as it is the supremum of an infinite family of convex functions [214].

For our parametrization (6.21), E is block-diagonal which then implies that (6.24) is
upstream separable, so it can be written as

Ĵee(θ) =
N∑

i=1
Ĵ i

ee(θi
u), (6.25)

where

Ĵ i
ee(θi

u) =
T −1∑
t=1

sup
xi

t

{
|xi

t+1 − x̃i
t+1|2

− 2(xi
t+1 − x̃i

t+1)⊤
(

ei(xi
t+1, ũi

t+1)−
∑

j∈V i
u

f ij(x̃j
t , ũj

t)
)}

.

The evaluation of Ĵ i
ee is not trivial as it involves the calculation of the supremum of

a nonlinear multivariate function. In this work, we linearise (6.25) with respect to xi
t

6.4 Distributed Identification 171

and solve for the supremum of the resulting concave quadratic function, giving:

Ĵ i
ee(θi

u) ≈ J̄ i
l (θi

u) =
T −1∑
t=1

ϵi
t

⊤(Ei
t + Ei

t

⊤ − I)−1ϵi
t, (6.26)

where ϵi
t = ei(xi

t+1, ũi
t+1)−

∑
j∈V i

u
f ij(x̃j

t , ũj
t) is the implicit equation error and Ei(xi, ui) =

∂ei/∂xi and Ei
t = Ei(x̃i

t, ũi
t). The cost function (6.26) can be optimized via a semidef-

inite program. Alternative methods for minimizing LREE can also be found in [218].

6.4.3 Alternating Directions Method of Multipliers (ADMM)

In Section 6.4.1 we introduced a model set for which the constraints in Theorem 6.1
are downstream separable and in Section 6.4.2 we introduced an upstream separable
objective function. Note however, that the constraints and objective are not jointly
separable with respect to the same partition. We use ADMM to solve this problem.

We now develop the algorithm for the case where (6.12) is well-posed, monotone and
contracting, however, a parallel construction without monotonicity or contraction
constraints is straightforward. Consider the following set of parameters

Θmℓ1 = {θ | (6.14), (6.17), (6.18), (6.19)}. (6.27)

Applying ADMM as discussed in Section 6.2.3 to the problem minθ∈Θmℓ1
Ĵee gives the

following iteration scheme for iteration k:

θ(k + 1) = arg min
θ

Ĵee(θ) + ρ

2 ||θ − ϕ(k) + v(k)||2, (6.28)

ϕ(k + 1) = arg min
ϕ∈Θmℓ1

ρ

2 ||θ(k + 1)− ϕ− v(k)||2, (6.29)

v(k + 1) = v(k)− θ(k + 1) + ϕ(k + 1). (6.30)

for ρ > 0.

When using a GAM structure (6.21), we have the following result:

6.5 Discussion 172

Proposition 6.1. For the model structure (6.21), the ADMM iteration (6.28) sep-
arates into N upstream-separable optimization problems of the form (6.31) and the
ADMM iteration (6.29) separates into N downstream-separable optimization problems
of the form (6.32).

Proof. See Section 6.8.

In particular, the ADMM approach corresponds to performing the following iterations
locally at each node i = 1, ..., N :

θi
u(k + 1) = arg min

θi
u

Ĵ i
ee(θi

u) + ρ

2 ||θ
i
u − ϕi

u(k) + vi
u(k)||2, (6.31)

ϕi
d(k + 1) = arg min

ϕi
d

IΘmℓ1
(ϕi

d) + ρ

2 ||θ
i
d(k + 1)− ϕi

d + vi
d(k)||2, (6.32)

vi
u(k + 1) = vi

u(k)− θi
u(k + 1) + ϕi

u(k + 1). (6.33)

The distributed algorithm is listed in Algorithm 6.1. The steps (6.31) and (6.32)
require access to the upstream and downstream parameters, respectively. These can
be solved by the nodes in the graph, however, communication between both upstream
and downstream parameters is necessary between steps. The update (6.33) is trivially
separable and can be solved as either an upstream or downstream separable problem.

Termination of ADMM after a finite number of iterations means that in general the
two parameter vectors θ and ϕ will disagree. For this reason, we take ϕ as the solution
to ensure that the well-posedness, monotonicity, and contraction constraints (6.14),
(6.17), (6.19) are satisfied.

6.5 Discussion

6.5.1 Conservatism of the Separable Model Structure

We have proposed searching over the model set (6.21) with θ ∈ Θmℓ1 (6.27), and it
is important to understand which systems may fall into this model set. A particular

6.5 Discussion 173

Algorithm 6.1: Distributed Algorithm
Result: ϕ
Initialize ρ > 0;
Initialize: θ(0), ϕ(0), v(0);
for k = 1, ... do

for i = 1, ..., N do
Get: {x̆i

t}T
t=1;

Compute θi
u(k + 1) using (6.31);

Send θi
u(k + 1) to upstream neighbours;

Compute ϕi
d(k + 1) using (6.32);

Send ϕi
d(k + 1) to downstream neighbours;

Compute vi
u using (6.33);

Send vi
u(k + 1) to upstream neighbours;

end
end

6.5 Discussion 174

question of interest is whether there are contracting and monotone systems which
cannot be represented by this structure, and there are two main reasons why this
may occur: the separable structure of the model (6.21), and the assumption of a
separable contraction metric in condition (6.19).

An exact characterization of the functions that be approximated via the GAM struc-
ture (6.21) is difficult to give, however, they have widely applied in statistical mod-
elling, see [85] for details. Note that while the functions in the implicit system (6.21)
are additive, the resulting explicit system (6.8) may not be. For example, the scalar
functions e(x) =

√
x and f(x, y) = (x + y). Both e and f are additive; however, the

function e−1 ◦ f(x, y) = x2 + 2xy + y2 is not.

Conservatism may also be introduced by the assumption of a separable contraction
metric. For the case of linear positive systems, it is has been shown that the existence
of a separable Lyapunov functions is both necessary and sufficient [24]. This means
that Θmℓ1 contains all positive linear systems [217]:

Theorem 6.2. For the system (6.21), if e and f are affine in (x, u), then the model set
characterised by (6.14), (6.17) and (6.19) is a parametrization of all stable, discrete-
time, positive linear systems.

Proof. See Section 6.8.

The situation is more complicated for nonlinear monotone systems. Separable con-
traction metrics have been shown to exist for certain classes of monotone systems
[137] and separable weighted ℓ1 contraction metrics have been used for the analysis
of monotone systems [46, 48]. For incrementally exponentially stable systems, it has
been shown that the existence of weighted ℓ1 contraction metrics, are necessary and
sufficient [106], however the state-dependant weighting depends on the all system
states and is therefore not separable in the sense we use. To the authors’ knowledge,
a complete characterisation of the class of contracting monotone systems that admit
separable metrics is still an open problem.

6.5 Discussion 175

6.5.2 Consistency

It has be previously noted that system identification approaches that guarantee sta-
bility lead to a bias towards systems that are too stable [131, 117, 138]. Empirical
evidence suggests that for methods based on Lagrangian relaxation [219, 218] this
bias is smaller.

There are a number of situations that lend themselves towards consistent identifica-
tion. Firstly, consider the situation where we have noiseless state and input measure-
ments produced by a model with θ∗ ∈ Θmℓ1 such that Jee(θ∗) = 0. Then we also have
J̄l(θ)∗ = 0 so the bound is tight and LREE recovers the true minimizer of equation
error.

Now, consider the situation where the unconstrained minimizer of equation error
(6.2), is a monotone, additive function that is contracting in the identity metric.
That is, for the function aϕ∗(x, u) where ϕ∗ = arg min Jee(ϕ), the following hold:

1. aϕ∗(x, u) is additive so that (6.8) can be written as ai(x, u) = ∑
j∈V i

u
aij(xj, uj),

2. 1⊤(αI − A(x, u)) ≥ 0,

3. A(x, u) ≥ 0.

where A = ∂a
∂x

. Then, optimizing (6.26) returns the same solution as the unconstrained
least squares minimizer of Jee.

Proposition 6.2. Consider models of the form (6.21) with eθ(x, u) = Ex and fθ(x, u) =
aϕ∗(x, u) for some θ. If properties 1, 2, 3 hold for aϕ∗(x, u) where ϕ∗ = arg min Jee(ϕ),
then for θ∗ = arg min

θ∈Θmℓ1

J̄l(θ), we have aϕ∗(x, u) = e−1
θ∗ fθ∗(x, u).

Proof. The proof follows the same line of argument as [218, Sec. IV Proposition
1].

6.5 Discussion 176

6.5.3 Iteration Complexity of Distributed Algorithm

In this section, we investigate the computational complexity of each step in the dis-
tributed algorithm. In general, the complexity depends on the model parametrization
used, however, we limit our discussion to the case where the models are parametrized
by polynomials and the constraints are enforced using sum-of-squares programming.

The first step, (6.31), is a semi-definite program and can be solved using standard
solvers. If no structural properties are exploited, a primal-dual interior point method
(IPM), would require O

[
max{n3

θi
u
, nθi

u
ni

3, n2
θi

u
n2

i }
]

operations per iteration per node
[126], where nθi

u
is the number of upstream free parameters .

The second step, (6.32), is a sum-of-squares problem that can solved as a semidefinite
program. If e and f both have degree 2d, then the size of Gram matrix corresponding
to (6.19) for the additive model (6.21) is p = 1 + ∑

j∈V i
d

[(
nj+mi+d

d

)
− 1

]
. Solving

(6.32) using a primal-dual IPM requires approximately O
[
max{n3

θi
d
, nθi

d
p3, n2

θi
d
p2}

]
operations per iteration per node [126], where nθi

d
is the number of downstream free

parameters.

In a distributed computing setting, if a computational resource is associated with
each node in the network, and the network graph has bounded degree (neighbours
per node), then the iteration complexity is independent of the number of nodes.
However, the computational complexity will grow with the number neighbours per
node, the size of the local states, and the degrees of the polynomials used in the
model.

6.5.4 Other Quality of Fit Criteria

Lagrangian relaxation of least-squares equation error was chosen as it is convex, up-
stream separable, quick to compute, and leads to a simple implementation of ADMM.
Any method that treats neighbouring states as exogenous inputs will be upstream sep-
arable. However, any such approach will also be susceptible to instability due to the
introduction of new feedback loops via the network topology, even if it guarantees

6.6 Numerical Experiments 177

stability of the local models. Consequently, one can similarly apply any convex qual-
ity of fit criteria such us convex upper bounds on simulation error [214, 219] and still
guarantee convergence of ADMM. Alternatively, a non-convex quality of fit criteria
like simulation error can be used at the expense of ADMM’s convergence guarantees.

We note that the conditions proposed in Section 6.3 can be used for non-separable
models with centralized algorithms to ensure stability and/or monotonicity. Joint
convexity of the model set and stability constraints is still an important as it simpli-
fies constrained optimization allowing for the easy application of penalty, barrier or
projected gradient methods as in chapter 3.

6.6 Numerical Experiments

In this section we present numerical results exploring the scalability and identification
performance the proposed approach.

This section is structured as follows: first, we look at the identification of positive
linear systems, and explore the computational complexity of the ℓ1 and ℓ2 contraction
conditions; we then explore the consistency of fitting nonlinear models when the true
system lies in the model set, essentially analysing the effect of convex bound on
equation error; finally, we apply the method to the identification of a (simulated)
nonlinear traffic network. The traffic network does not lie in the model set so only an
approximate model can be identified. We explore the regularising effect of the model
constraints and scalability of the method to large networks.

Previous methods for the identification of models with stability guarantees have en-
sured contraction using a quadratic metric [214, 219, 218]. Contraction is implied by
the following semidefinite constraint:

W (x, u, θ) ⪰ 0 ∀(x, u), (6.34)

W (x, u, θ) =

E(x, u) + E(x, u)⊤ − P − ηI F (x, u)⊤

F (x, u) P

6.6 Numerical Experiments 178

where P ∈ Sn×n, P ≻ 0, η > 0. We refer to (6.34) as an ℓ2 contraction condition as it
implies the contraction conditions (6.6) with a state dependent weighted ℓ2 norm of
the differentials V = δ⊤

xt
E(xt, ut)⊤P −1E(xt, ut)δxt .

We will make future reference to the following convex sets of parameters, in addition
to θml1 defined in (6.27):

Θu = {θ | (6.14), (6.18)}, Θm = {θ | (6.14), (6.17), (6.18)}

Θmℓ2 = {θ | (6.17), (6.18), (6.34)}

Here the subscripts refer to the following properties:

• mℓ1 - Monotone ℓ1 contracting models i.e. θ ∈ Θmℓ1 ,

• m - Monotone models i.e. θ ∈ Θm,

• u - Models that are not constrained to be contracting or monotone i.e. θ ∈ Θu,

• mℓ2 - Models that are monotone and contracting in ℓ2, i.e. θ ∈ Θmℓ2 ,

All functions ei, and f ij are polynomials in all monomials of their arguments up to a
certain degree.

As a baseline for comparison, we will also compare to models denoted Poly, with
explicit polyonomial models (6.1) fit by least-squares without any separable structure
imposed. We will also compare to standard wavelet and sigmoid Nonlinear AutoRe-
gressive with Exogenous input (NARX) models implemented as part of the Matlab
system identification toolbox.

For the implicit models, the model class prefix is followed by the degrees of the
polynomials in e and f in parenthesis. For example, the notation u(3, 5) refers to
unconstrained models with e having degree 3 and f having degree 5. For the explicit
polynomial models Poly, the degree used follows in parenthesis, so Poly(5) are explicit
polynomial models of degree 5 in all arguments.

6.6 Numerical Experiments 179

The NARX models were fit at each node using the regressors (x̆i
t, ŭi

t, ŭi
t+1). The

wavelet NARX models were set to automatically choose the number of basis functions
and the sigmoid NARX models were set to use 10 basis functions. The focus for each
model was set to produce the best performance. For the wavelet network, we used a
focus on simulation and for the sigmoid network, we used a focus on prediction.

The constraints (6.14), (6.17), (6.18), (6.19) and (6.34) are enforced using sum of
squares programming [162]. All programs are solved using the SDP solver MOSEK
with the parser YALMIP [128] on a standard desktop computer (intel core i7, 16GB
RAM).

6.6.1 Identification of Linear Positive Systems

In this subsection we study the scalability of the proposed method for the identifica-
tion of linear positive systems.

We compare the computation time using the proposed ℓ1 contraction constraint to
a previously proposed ℓ2 contraction constraint (i.e. quadratic Lyapunov function).
Note that for linear systems, the model sets mℓ1 and mℓ2 both are parameterizations
of all stable positive linear systems so no difference in quality of fit is observed.

Scalability of Separable Linear and Quadratic Metrics

We illustrate the difference in scalability between the models mℓ1(1, 1) and mℓ2(1, 1).
Each experimental trial consists of the following steps:

1. A stable positive system with state dimension nx is randomly generated using
Matlab’s rand function; A ∈ Rnx×nx has a banded structure with band width
equal to 9. Stability was ensured by rescaling A to have a spectral radius of
0.95.

2. The system is simulated for T = 104 time steps; x̃1:T is obtained by adding
white noise to the simulated states at SNR equal to 40dB.

6.6 Numerical Experiments 180

101 102 103 104
10-2

100

102

104

Figure 6.2 – Computation time as function of system size. The slopes of the lines of
best fit are: mℓ2(1, 1) - 2.66, mℓ1(1, 1) - 1.04 .

3. This process is repeated 5 times for each nx.

The time taken to solve each optimization problem is shown in Fig. 6.2. Here, we
see a significant improvement in the computational complexity from approximately
cubic growth for mℓ2 to linear growth for mℓ1. The networked approach allows us to
solve stable identification problems with at least 3000 states.

Note that no explicit attempts to exploit the sparsity of the system were made; use of
solvers and parsers designed to exploit sparsity could improve performance, especially
for the SDPs associated with the LMI parametrization, e.g. [7].

6.6 Numerical Experiments 181

6.6.2 Identification of Nonlinear Models

In this section we study the consistency of fitting nonlinear implicit models via the
LREE bound on equation error. In Section 6.5.2 we saw that in the noiseless case,
optimization of LREE will return the true model parameters. We will now explore the
effect of introducing noise on the model estimates. The experiments in this section
can be seen to supplement those in [218, Sec. IV] which studied the effects of noise
and model stability on consistency in the linear setting.

We generate models a∗(x, u) by sampling a parameter vector θ and then projecting
onto the set Θmℓ1 . The models have degree 3, state size n = 2 and m = 1. We
then generate training data with T samples by randomly sampling (x̃t, ũt) from the
uniform distribution on [0, 1] and generated noisy measurements of xt+1 by x̃t+1 =
a∗(x̃t, ũt) + vt, where vt is normally distributed noise with a specified Signal to Noise
Ratio (SNR). Models a(x, u) are then trained by minimizing J̄l with θ ∈ Θmℓ1 and
performance measured using Normalized Equation Error (NEE):

NEE = |a(x, u)− a∗(x, u)|22
|a∗(x, u)|22

(6.35)

where a(x, u) is the identified dynamic model and a∗(x, u) is the true where |f(x)|2 =∫
x∈D |f(x)|2dx is the sample estimate of the 2-norm of the function f .

In Figure 6.3, we have plotted the NEE that results from fitting models from mℓ1(3, 3)
by optimizing LREE (6.26) and implicit equation error (6.22). We can see that LREE
provides a much better fit than implicit equation error, especially as the number of
data points increases.

To explore the effect of noise on the consistency of LREE, we have plotted NEE
versus the size of the dataset for varying noise level (measured in decibels) in Figure
6.4. If we had a consistent estimator of the explicit model (6.1), we would expect to
see lim

T →∞
NEE = 0 with consistent slope for all SNR levels. What we in fact observe,

however, is that in noisier conditions the NEE initially decreases and then plateaus
at a certain level.

6.6 Numerical Experiments 182

102 103

10-4

10-3

Figure 6.3 – Comparison of implicit equation error and LREE: Normalized equation
error versus number of training data points. The training data has gaussian noise
with SNR = 30dB. For each method, the central line shows the median NEE for
50 model realizations and the shaded region shows the upper and lower quartiles.

6.6 Numerical Experiments 183

102 103
10-7

10-6

10-5

10-4

10-3

Figure 6.4 – Normalized equation error versus number of training data points for three
different SNRs. The central line shows the median NEE for 25 model realisations
and the shaded region shows the upper and lower quartiles. The SNR is measured
in decibels.

6.6 Numerical Experiments 184

This phenomena can also be seen in [218, Sec. IV], where LREE produces models
biased towards being too stable, even in the infinite data limit.

6.6.3 Identification of Traffic Networks

In this section we examine a potential application of our approach, the identification
of a traffic network. The dynamics of traffic networks are thought to be monotone
when operating in the free flow regime [130]. Note that monotonicity of some traffic
models is lost when certain nodes are congested [47].

The data are generated using the model in [130], which is not in the proposed model
set. Hence this section provides a test of robustness of the proposed approach to
modelling assumptions.

For this application, we consider using equation error as a surrogate for simulation
error. Model performance is therefore measured using Normalized Simulation Error
(NSE):

NSE =
∑

t |xt − x̃t|2∑
t |x̃t|2

, (6.36)

where xt are the simulated states.

We will first introduce the model, then study the effect of the model constraints by
comparison to existing methods, and finally examine scalability to large networks.

Simulation of a traffic network

The dynamics are simulated over a graph (e.g. Fig. 6.6), where, each node i represents
a road with state corresponding to the density of traffic on the road, denoted ρi. Nodes
marked in allow cars to flow into the network, and nodes marked out allow cars to
flow out of the network. Each edge (i, j) is randomly assigned a turning preference
denoted Rij such that ∑i Rij = 1 (this ensures that the total number of cars at each
intersection is conserved). Each node i has a capacity of Ci = 1. Vehicles transfer

6.6 Numerical Experiments 185

from roads i to j according to the routing policy,

fi→j(ρ) = Rjidi(ρi) min
{

1,
sj(ρj)∑

k∈V i
u

Rkjdk(ρj)

}
,

where di(ρ) = min(10, ρ) and si(ρ) = max(2Ci − ρ, 0) are monotone demand and
supply curves for road i. The dynamics of the complete system are then found to be

ρ̇i = f i
in − f i

out, (6.37)

where

f i
in =

ui , i ∈ in∑

j∈V i
u

fj→i , i /∈ in

f i
out =

di(ρi) , i ∈ out∑

j∈V i
d

fi→j , i /∈ out.

The input nodes i ∈ in take a time varying input ui. We use the following method
to generate data sets of size T :

(i) First, we generate an input signal for each ui of size T . This signal changes
value every 5 seconds to a new value that is normally distributed with mean µu

and standard deviation σu. Negative values of u are set to zero. An example
input signal is shown in Fig. 6.5.

(ii) The dynamics (6.37) are integrated over tf seconds.

(iii) A training set of size T = 2tf is generated by sampling every 0.5 seconds.

Regularization Effect of Model Constraints

In this section we will explore the effects of introducing monotonicity, positivity, and
contraction constraints.

6.6 Numerical Experiments 186

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.5 – Example input signal to network (µu = 0, σu = 0.2).

6.6 Numerical Experiments 187

Figure 6.6 – A small traffic network. Each node represents a road and each link
represents an intersection.

Introducing model constraints limits the expressivity of our model. Consequently, one
might expect the estimator bias to increase and the variance to decrease [72, Chapter
7]. Empirical evidence in this section suggests that a judicious choice of constraints
can reduce the variance with a minimal increase in bias.

Using the method outlined in Section 6.6.3 for simulating a traffic network and the
graph depicted in Fig. 6.6, we generate 100 different training sets of size T = 1000
with µu = 0, σu = 0.2 and then compare the results on three different validation
sets. The first validation set has inputs generated with parameters µu = 0, σu = 0.2
(the same as the training set). The second and third validation sets have parameters
µu = 0, σu = 0.3 and µu = 0, σu = 0.4 respectively. These are used to test the
generalizability of our model to inputs outside the training set.

In figures 6.7 and 6.8, we have plotted the NSE on both the training set and validation
sets 1 and 2 for our proposed model sets, the polynomial model, the NARX models
and the model set mℓ2. The percentage of total models that displayed instability is
indicated in both the bar graph in the upper portion of the figures.

In all cases, the identified linear models performed poorly. This is unsurprising as the
true system is highly non-linear.

6.6 Numerical Experiments 188

0

50

100

10 -2

10 -1

10 0

(a) Training set (σu = 0.2, µu = 0) over 100
realizations.

0

50

100

10 -2

10 -1

10 0

(b) Validation set 1 (σu = 0.2, µu = 0) over
100 realizations.

0

50

100

10 -2

10 -1

10 0

(c) Validation set 2 (σu = 0.3, µu = 0) over
100 realizations.

Figure 6.7 – Box plots showing normalized simulation error for 100 model realizations
for different behavioural constraints. The bar graph shows the percentage of models
that displayed instability.

6.6 Numerical Experiments 189

0

50

100

10 -2

10 -1

10 0

(a) Training set (σu = 0.2, µu = 0) over 100
realizations.

0

50

100

10 -2

10 -1

10 0

(b) Validation set 1 (σu = 0.2, µu = 0) over
100 realizations.

0

50

100

10 -2

10 -1

10 0

(c) Validation set 2 (σu = 0.3, µu = 0) over
100 realizations.

Figure 6.8 – Box plots showing normalized simulation error for 100 model realizations
for different model structures. The bar graph shows the percentage of models that
displayed instability.

6.6 Numerical Experiments 190

mℓ1(1, 1) m(1, 1) u(1, 1) mℓ1(3, 3) m(3, 3) u(3, 3) mℓ1(5, 5) m(5, 5) u(5, 5) Wavelet Sigmoid
train. (σu = 0.2) 0% 0% 2% 0% 0% 66% 0% 0% 89% 88% 36%
val. 1 (σu = 0.2) 0% 0% 0% 0% 5% 65% 0% 6% 84% 87% 31%
val. 2 (σu = 0.3) 0% 0% 0% 0% 64% 90% 0% 78% 94% 88% 51%
val. 3 (σu = 0.4) 0% 0% 0% 0% 88% 95% 0% 97% 89% 88% 63%

Table 6.1 – Percentage of unstable models that diverged on training and validation
data. In each case the input u has µu = 0.

Comparing the models mℓ1 and mℓ2 with the remaining models, we can see that
the stability constraints have a regularizing effect where increasing the degree of the
polynomials reduces the median NSE; in other words, increasing model complexity
improves model fidelity. The other models on the other hand perform worse with
increasing the complexity. This is most clearly seen in the models u, where increase
the polynomial degree results in poorer fits on validation data.

Our results also suggest that model stability constraints significantly improve robust-
ness. Without stability constraints, a model that appears stable during training may
turn out to be unstable under a slight shift in the input data distribution. This can
be seen most clearly in the models m(5, 5) and Poly(3), where on the training data
distribution, most models are stable. However, increasing the variance of the inputs
to the network results a large number of unstable models with unbounded NSE, c.f.
Fig. 6.7c and Fig. 6.8c. Further evidence is shown in Table 6.1, where we can see
that once the variance of the input data doubles, almost all models that do not have
stability constraints are unstable.

To compare to a standard approach, we also compare to wavelet and sigmoid NARX
models fit using the Matlab system identification tool box. The resulting NSE is
shown in Fig. 6.8 and show the number of models producing unstable models and
negative state estimates in tables 6.1 and 6.2 respectively. While we observed ex-
tremely high performance of the individually identified sub-systems, simulating the
network interconnection of those sub-systems produces many unstable models, many
negative state estimates and poor quality of fit.

For positive linear systems, both Θmℓ1 and Θmℓ2 are parameterizations of the same
set of models. This is not the case for nonlinear monotone systems and the choice
of parametrization impacts the resulting model performance. This can be seen in

6.6 Numerical Experiments 191

mℓ1(1, 1) m(1, 1) u(1, 1) mℓ1(3, 3) m(3, 3) u(3, 3) mℓ1(5, 5) m(5, 5) u(5, 5) Wavelet Sigmoid
train. (σu = 0.2) 0% 0% 2% 0% 0% 66% 0% 0% 89% 100% 91%
val. 1 (σu = 0.2) 0% 0% 0% 0% 0% 65% 0% 0% 84% 100 % 93%
val. 2 (σu = 0.3) 0% 0% 2% 0% 0% 90% 0% 0% 94% 100 % 99%
val. 3 (σu = 0.4) 0% 0% 1% 0% 0% 95% 0% 0% 99% 100 % 100%

Table 6.2 – Percentage of total models that predicted negative states. In each case
the input u has µu = 0.

Fig. 6.8a, Fig. 6.8b and Fig. 6.8c where the models fit using our proposed ℓ1 con-
traction constraint outperform those fit using the previously-proposed ℓ2 contraction
constraint.

Finally, looking at Table 6.2, we can see that when models were not constrained to be
positive u and Poly, a large number of models producing negative state estimates were
identified. This can lead to non-sensical results in many applications, and prevents
the application of synthesis methods that depend on monotonicity.

Scalability Comparison of ℓ1 and ℓ2 contraction

We now explore the scalability of the ℓ1 and ℓ2 contraction constraints for nonlinear
models.

We construct traffic networks consisting of N = P + 2M nodes by placing P points
randomly in a unit square and triangulating. M in nodes and M out nodes are then
randomly assigned throughout the network. We generate training data using the
method described in Section 6.6 with T = 600, µu = 0, σu = 0.4 and a corresponding
validation set. We then fit models mℓ1(3, 3) and mℓ2(3, 3) using an interior point
method. This is repeated 5 times for a varying number of nodes.

Figure 6.9 shows a plot of the time taken to solve each problem versus the total
number of nodes. We observe that fitting models with an ℓ2 contraction constraint
has a complexity O[N3] in the number of nodes while models using the ℓ1 contraction
constraint have a complexity of O[N1.5] in the number of nodes. The improved
complexity of the ℓ1 constraint is a result of its separable structure.

The validation NSE versus the number of agents is shown in Fig. 6.10 for the model
set in mℓ1(3, 3). We observe no deterioration of model performance as the number

6.6 Numerical Experiments 192

101 102
100

105

Figure 6.9 – Computation time for models mℓ2(3, 3) and mℓ1(3, 3) for a varying
system size. The slopes of the lines are 3.06 and 1.49 respectively.

of agents increases, suggesting that our method can be effective when scaled to large
networks.

Scalability Compared to Interior Point Methods

We conclude our numerical experiments with a comparison of the computational com-
plexity of the proposed distributed algorithm to centralized optimization via standard
interior point methods.

We introduce additional notation to distinguish between the centralized and dis-
tributed algorithms. We will use a subscript C to refer to models fit using the off-
the-shelf interior point method. The subscript D is used to denote models fit using
ADMM. For example, mℓ1(3, 3)D is the problem of fitting the model mℓ1(3, 3) solved
using the distributed algorithm.

6.6 Numerical Experiments 193

101 102
10-3

10-2

Figure 6.10 – NSE for models mℓ1(3, 3) for varying system size.

6.7 Conclusion 194

To control for the number of neighbors of each node, we generate random, connected,
regular graphs of size N and degree 4 and randomly assign P

2 in nodes and P
2 out

nodes. Training data is generated according to Section 6.6.3 with T = 500 and
σu = 0.2.

We then solve the problems mℓ1(3, 3)C and mℓ1(3, 3)D using the stopping criteria
from [31, Section 3.3] (ϵabs = 10−4, ϵrel = 10−3).

The results are displayed in Fig. 6.11. The line mℓ1(3, 3)D−serial indicates the total
time taken to fit a model using ADMM, where the sub-problems (6.31), (6.32) are
solved without parallelization (consecutively, on a single computer). Additionally, we
calculate the total time that would be taken if the computation had been distributed
among N nodes, indicated by the line mℓ1(3, 3)D−parallel.

While the program mℓ1(3, 3)D−serial takes longer on the selected problems than mℓ1(3, 3)C ,
it has superior scalability with O[N1.05] compared to O[N1.36], suggesting that for a
larger number of nodes, it will be faster.

Of more interest is mℓ1(3, 3)D−parallel with an observed complexity of O[N0.05] in the
number of nodes. This suggests that if the computation is distributed, the problem
can be solved in near constant time. It is important to note, however, that this does
not take into account many of the complexities of distributed computing, for example
the overhead associated with communication between nodes.

6.7 Conclusion

In this chapter we have proposed a model set for system identification that allows
model behavioral guarantees such as stability (contraction), monotonicity, and posi-
tivity. Furthermore, we have introduced a particular separable structure that allows
distributed identification and scalability to large networked systems via local node-
to-node communication.

We have examined the proposed approach via a selection of numerical case studies
including a nonlinear traffic network. The main conclusions are that the approach

6.7 Conclusion 195

10 1 10 210 0

10 1

10 2

10 3

Figure 6.11 – Runtime of ADMM compared to IPM where the number of threads is
one or equal to the number of nodes. When calculating the results for "simulated"
distributed computing, ADMM is run in series and time per iteration is taken to
be the sum of the maximum times to solve each step. The slopes of the lines are
1.05, 1.36 and 0.047 respectively.

6.8 Proofs 196

scales much better than previous approaches guaranteeing stability, and that behav-
ioral constraints such as stability and monotonicity can have a regularizing effect that
leads to superior model predictions.

6.8 Proofs

Proof of Theorem 6.1

We use the following lemma in the proof of Theorem 6.1:

Lemma 6.1. Suppose that for the system (6.21), there exists a weighted differential
ℓ1 storage function Vt = |E(xt, ut)δt|1, where E : Rn×Rm →Mn such that Vt+1 ≤ αVt

and there exists some K ≻ 0 such that |δt|1 ≺ K|Etδt|1, then the system is contracting
in the sense of definition 2.1.

Proof. Consider the family of solutions to (6.21), parametrized by ρ ∈ [0, 1], having
initial conditions ρx1(0) + (1− ρ)x2(0) and input u(t), denoted xρ(t).

Define δρ(t) = ∂xρ(t)
∂ρ

. Now, consider:

|x1(t)− x2(t)|1 =
∣∣∣∣∫ 1

0
δρ(t)dρ

∣∣∣∣
1

≤
∫ 1

0
|δρ(t)|1dρ

≤
∫ 1

0
K|Etδρ(t)|1dρ

By assumption, Vt+1 ≤ αVt which means that |Etδ(t)|1 ≤ α|Et−1δt−1|1. This inequal-
ity can be applied repeatedly to give:

|x1(t)− x2(t)|1 ≤ Kαt
∫ 1

0
|E0δρ(0)|1dρ

Taking b(x1(0), x2(0)) = K
∫ 1

0 |E0δρ(0)|1dρ gives Definition 2.1.

6.8 Proofs 197

Proof of Theorem 6.1. First we will show well-posedness and monotonicity. We will
then prove stability of monotone contracting systems and finally just contracting sys-
tems. For brevity of the equations, we will use a subscript t to refer to the evaluation
of a function at a specific time, so Et = E(xt, ut).

Well-posedness: Assume (6.14). Since E is a non-singular M matrix, there exists a
diagonal matrix D such that ED + DE⊤ ≻ 0. Well posedness follows from the same
argument as [214, Theorem 5].

Monotonicity: Assume (6.17). Since E as an M-matrix, it is inverse positive and
E−1F ≥ 0. The differential dynamics of the explicit system (6.8) can be written as
δxt+1 = E−1

t+1Fδxt . Therefore, the explicit system is monotone.

Contraction: Assume conditions (6.15) and (6.16). Condition (6.15) implies that

|F (x, u)| ≤ S(x, u). (6.38)

Condition (6.16) then implies,

1⊤(αE(x, u)− S(x, u)) ≥ 0, (6.39)

=⇒ 1⊤(αE(x, u)− |F (x, u)|) ≥ 0, (6.40)

=⇒ 1⊤(α− |F (x, u)|E−1(x, u)) ≥ 0, (6.41)

=⇒ 1⊤(α− |F (x, u)E−1(x, u)|) ≥ 0, (6.42)

=⇒ (α− ||F (x, u)E−1(x, u)||1) ≥ 0, (6.43)

where || · ||1 is the induced matrix norm , ||M || := maxj
∑

i M ij. Stability follows
from the same argument as in the proof of Theorem 6.1. Multiply by |Etδt|1, we get:

(
α− ||F (x, u)E−1(x, u)||1)

)
|Etδt|1 ≥ 0, (6.44)

=⇒ α|Etδt|1 − |F (x, u)E−1
t Etδt|1) ≥ 0, (6.45)

=⇒ |Ftδt|1 − α|Etδt|1 ≤ 0, (6.46)

=⇒ |Et+1δt+1|1 − α|Etδt|1 ≤ 0. (6.47)

6.8 Proofs 198

Contraction then follows from Lemma 1 with contraction metric Vt = |E(xt, ut)δt|1.
Monotonicity and Contraction Finally, to see how contraction follows from (6.17) and
(6.19), note that they imply conditions (6.15) and (6.16).

Proof of Proposition 6.1

Proof. The first step (6.28) can be broken up into the following sum:

θ(k + 1) = arg min
θ

N∑
i=1

Ĵ i
ee(θi

u) + ρ

2 ||θ
i
u − ϕi

u(k) + ui
u(k)||2,

which is equivalent to the N optimization problems in (6.31). The second step (6.29)
can be written as

ϕ(k + 1) = arg min
ϕ
IΘmℓ1

(ϕ) +
N∑

i=1

ρ

2 ||θ
i
d(k + 1)− ϕi

d + ui
d(k)||2. (6.48)

We will show that the indicator function can be written as a sum over i = 1, ..., N

indicator functions each depending on ϕi
d. Splitting it up in terms of the individual

constraints, we get

IΘmℓ1
(ϕ) = IFx≥0(ϕ) + IFu≥0(ϕ) + IE∈M(ϕ)+

I1⊤(αE−F ≥0)(ϕ). (6.49)

The first two terms can be written as element-wise SOS constraints. The last two
terms can then be written as a sum over the columns of the matrices E and F . We
can therefore right (6.49) as:

IΘmℓ1
(ϕ) =

∑
i

Iϕi
d
∈Θi

mℓ1
(ϕi

d)

6.8 Proofs 199

where,

Iϕi
d
∈Θi

mℓ1
(ϕi

d) = IαEii−
∑

k∈V i
d

F ki≥0(ϕi
d) + IEii+Eii⊤>ϵ(ϕ

i
d)+∑

k∈V i
d

IEki≥0(ϕi
d) +

∑
k∈V i

d

IF ki≥0(ϕi
d).

Proof of Theorem 6.2

Sufficiency follows from Theorem 1.

We now prove necessity, i.e. that if a positive linear system is Schur stable, then
θ ∈ Θmℓ1 . Suppose a matrix A is Schur stable. Then by [171, proposition 2], there
exists some z > 0 such that z⊤A − z⊤ < 0. We can always rescale z such that
z⊤A− z⊤ ≤ −ϵ1. With this z, we choose E = diag(z) ≥ 0 and F = EA ≥ 0. Then

z⊤A− z⊤ ≤ −ϵ1⊤ =⇒ 1⊤(F − E) ≤ −ϵ1⊤ =⇒ θ ∈ Θmℓ1

Chapter 7

Conclusion

The central theme of this thesis has been the development of model sets that are
expressive, yet also allow for certain behavioral constraints to be easily imposed during
training. These constraints are useful for: improving model robustness, improving
model generalization, and ensuring safety when the model must interact with other
systems. As discussed in Section 2.3, the behaviors that we wish to encode can be
described by infinite dimensional inequality constraints which are intractable for most
model sets. To guarantee that models obey these behavioral constraints, we introduce
a series of relaxation methods in section 2.4 that we use throughout the thesis.

In chapter 3, we studied recurrent neural networks and showed that by using a combi-
nation of implicit parameterizations and incremental quadratic constraints, we could
construct a convex description of stable and Lipschitz bounded RNNs. We then
showed that the proposed model is highly expressive and contains all previously pub-
lished sets of stable RNNs and all stable linear time-invariant (LTI) systems. Our
numerical experiments showed that these constraints are beneficial for model robust-
ness, generalizability, and lead to good bounds on the Lipschitz constant.

In Chapter 4, we studied a particular algebraic loop that can be viewed as a fixed
point of a neural ode or RNN. We showed that this algebraic loop results in a class
of equilibrium networks which contains many standard neural network structures.
Using incremental quadratic constraints, we developed conditions guaranteeing well-

7.1 Future Research Directions 201

posedness and Lipschitz boundedness for that class of equilibrium networks. A signifi-
cant advantage of the model class is that it permits a direct parameterization allowing
for training via unconstrained optimization methods. We ran experiments with the
model set on small-scale image classification tasks and showed that the proposed pa-
rameterization allows for tight Lipschitz bounds to be imposed during training. We
also found that imposing these Lipschitz bounds significantly improved the model
robustness to adversarial attacks with limited loss in performance.

In Chapter 5, we combined the methods developed in the previous two chapters to
develop a new model class, the recurrent equilibrium network. We showed that the
recurrent equilibrium network has direct parameterizations which ensure: contrac-
tion, Lipschitz bounds, or incremental passivity. We also showed that the recurrent
equilibrium network is highly expressive and contains many commonly used model
classes for learning static and dynamic mappings. We demonstrated the model class
on benchmark nonlinear system identification problems and demonstrated two novel
applications of behaviorally constrained models: data-driven nonlinear observer de-
sign and control with stability guarantees.

Finally, in Chapter 6, we extended our approach to the learning of large-scale networks
of models with a guarantee that their interconnection is stable and/or monotone. We
proposed a particular class of storage function that is well suited to monotone systems
and has a separable structure, allowing for the distributed identification of both a
model and its stability certificate via the alternating directions method of multipliers
(ADMM). We then demonstrated the approach on a variety of linear and nonlinear
case studies, including a nonlinear traffic network with a 200-dimensional state space.

7.1 Future Research Directions

We will conclude with some remarks on future research directions and open problems.

7.1 Future Research Directions 202

Model Scalability

The work in this thesis has demonstrated that imposing behavioral constraints can
significantly improve model generalizability and robustness. An obvious application
for such models is the training of large-scale models in computer vision, which are
known to be very brittle. We were able to demonstrate our approach on small-
scale image processing tasks in Chapter 4 and found promising results, however, we
had difficulty extending the approach to large-scale convolutional models. The main
difficulty was that multilayer convolutional LBENs were not easily compatible with
the Peaceman-Rachford operator splitting, requiring us to use the Forward-Backward
splitting scheme. While the Forward-Backward Scheme worked for small models, it
could take many iterations to converge for larger models, making training difficult.

As the scalability issues result from having to solve for an equilibrium condition, we
see two approaches to improving model scalability: a) remove the need to solve for
equilibria, or b) make the equilibria easier to find.

a) As we demonstrated in chapter 5, it is possible to construct robust, direct
parameterizations where it is not necessary to solve for the equilibria, e.g. the
acyclic REN. The acyclic REN is not well suited to image processing tasks as
model evaluation would be slow on a GPU as there are many sequential layers.
There may, however, exist parameterizations that are similar in structure to
traditional deep feedforward neural networks that are quick to evaluate on a
GPU.

b) Recent work on equilibrium networks has shown that by regularizing the con-
ditioning of the equilibrium equation can make model evaluation much faster
[16]. This could easily applied to the LBEN and it is likely that as the study of
equilibrium networks progresses, tools and training processes will emerge that
further extend the scalability of equilibrium networks.

7.1 Future Research Directions 203

Further Applications of the REN

In Chapter 5, we introduced the REN and demonstrated its application in system
identification, observer design, and nonlinear feedback design, however, the REN also
has many further applications in reinforcement learning and online learning.

Recent work in reinforcement learning has suggested that including Lipschitz bounds
on policies may improve system robustness [180]. There is also a great need for
reinforcement learning methods with stability certificates for safety critical systems
[22, 81, 245]. The REN may find application in stability certified reinforcement learn-
ing by exploiting the compositional properties of IQCs [10]. For example, learning
passive feedback policies for robotic manipulators would ensure stability of the ma-
nipulator when interacting with passive environments.

At the end of Chapter 5, we demonstrated how a REN could be used to construct a
stable Q-parameter which was fit via a convex program. This problem could also be
solved online to construct stable nonlinear adaptive controllers.

Distributed Identification

In Chapter 6, we used Lagrangian Relaxation of equation error as a quality-of-fit
metric as it significantly simplified the model fitting. For many problems, however, the
state estimates required by Lagrangian relaxation of equation error are not available.

When state estimates are unavailable, it is common to combine equation error mini-
mization with a method for estimating the states, e.g., via subspace methods [228] or a
maximum likelihood framework [220]. In general, subspace and maximum likelihood
methods do not provide state estimates that are consistent with a positive system
realization, even if one exists. It would be useful to develop subspace or maximum
likelihood methods that return a positive system realization.

An alternative approach to fitting models in the absence of state estimates is to use a
prediction error framework [127] using simulation error as a quality of fit criteria. It

7.1 Future Research Directions 204

should be noted, however, that in this case, each ADMM step becomes much slower,
which might complicate model fitting.

Finally, we note that the model set developed in this Chapter 6 is compatible with
the observer design approach from Chapter 5. This could be used for a data-driven
approach to design large-scale observers for positive/monotone systems.

7.1 Future Research Directions 205

[1] Behçet Açıkmeşe and Martin Corless. Observers for systems with
nonlinearities satisfying incremental quadratic constraints. Automatica, 47(7):
1339–1348, 2011.

[2] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh.
Online Control with Adversarial Disturbances. In International Conference on
Machine Learning, pages 111–119. PMLR, May 2019.

[3] Amir Ali Ahmadi and Bachir El Khadir. Learning dynamical systems with
side information. In Learning for Dynamics and Control, pages 718–727.
PMLR, 2020.

[4] Amir Ali Ahmadi, Alex Olshevsky, Pablo A Parrilo, and John N Tsitsiklis.
Np-hardness of deciding convexity of quartic polynomials and related
problems. Mathematical Programming, 137(1):453–476, 2013.

[5] Alessandro Alessio and Alberto Bemporad. A Survey on Explicit Model
Predictive Control. In Lalo Magni, Davide Martino Raimondo, and Frank
Allgöwer, editors, Nonlinear Model Predictive Control: Towards New
Challenging Applications, Lecture Notes in Control and Information Sciences,
pages 345–369. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-642-01094-1.

[6] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In
International Conference on Machine Learning, pages 146–155. PMLR, 2017.

[7] Martin S Andersen, Joachim Dahl, and Lieven Vandenberghe. Implementation
of nonsymmetric interior-point methods for linear optimization over sparse
matrix cones. Mathematical Programming Computation, 2(3-4):167–201, 2010.

[8] Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function
approximation. In International Conference on Machine Learning, pages
291–301. PMLR, 2019.

[9] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019.

[10] Murat Arcak, Chris Meissen, and Andrew Packard. Networks of dissipative
systems: compositional certification of stability, performance, and safety.
Springer, 2016.

[11] Alessandro Astolfi, Dimitrios Karagiannis, and Romeo Ortega. Nonlinear and
Adaptive Control with Applications. Springer Science & Business Media, 2007.

[12] Erin M Aylward, Pablo A Parrilo, and Jean-Jacques E Slotine. Stability and
robustness analysis of nonlinear systems via contraction metrics and sos
programming. Automatica, 44(8):2163–2170, 2008.

7.1 Future Research Directions 206

[13] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271, 2018.

[14] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In
Advances in Neural Information Processing Systems, pages 690–701, 2019.

[15] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium
models. arXiv preprint arXiv:2006.08656, 2020.

[16] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Stabilizing equilibrium
models by jacobian regularization. arXiv preprint arXiv:2106.14342, 2021.

[17] Nikita. E. Barabanov and Danil. V. Prokhorov. Stability analysis of
discrete-time recurrent neural networks. IEEE Transactions on Neural
Networks, 13(2):292–303, March 2002.

[18] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.
Spectrally-normalized margin bounds for neural networks. In Advances in
Neural Information Processing Systems, pages 6240–6249, 2017.

[19] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone
operator theory in Hilbert spaces, volume 408. Springer, 2011.

[20] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[21] Peter Benner. Solving large-scale control problems. IEEE Control Systems
Magazine, 24(1):44–59, 2004.

[22] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.
Safe model-based reinforcement learning with stability guarantees. In
Advances in Neural Information Processing Systems, pages 908–919, 2017.

[23] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media, 2011.

[24] Abraham Berman and Robert J Plemmons. Nonnegative matrices in the
mathematical sciences, volume 9. Siam, 1994.

[25] Pauline Bernard. Observer Design for Nonlinear Systems. Springer, 2019.

[26] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier
methods. Academic press, 2014.

7.1 Future Research Directions 207

[27] Michael J Best and Nilotpal Chakravarti. Active set algorithms for isotonic
regression; a unifying framework. Mathematical Programming, 47(1):425–439,
1990.

[28] Stephen A Billings. Nonlinear system identification: NARMAX methods in
the time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013.

[29] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[30] Bradley N Bond, Zohaib Mahmood, Yan Li, Ranko Sredojevic, Alexandre
Megretski, Vladimir Stojanovi, Yehuda Avniel, and Luca Daniel. Compact
modeling of nonlinear analog circuits using system identification via
semidefinite programming and incremental stability certification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
29(8):1149–1162, 2010.

[31] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[32] Stephen P Boyd and Craig H Barratt. Linear controller design: limits of
performance, volume 7. Citeseer, 1991.

[33] Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan.
High-performance large-scale image recognition without normalization. arXiv
preprint arXiv:2102.06171, 2021.

[34] M. Buehner and P. Young. A tighter bound for the echo state property. IEEE
Transactions on Neural Networks, 17(3):820–824, May 2006. ISSN 1941-0093.

[35] Felix Bünning, Adrian Schalbetter, Ahmed Aboudonia, Mathias Hudoba
de Badyn, Philipp Heer, and John Lygeros. Input convex neural networks for
building mpc. In Learning for Dynamics and Control, pages 251–262. PMLR,
2021.

[36] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm
for solving semidefinite programs via low-rank factorization. Mathematical
Programming, 95(2):329–357, 2003.

[37] Giuseppe Calafiore and Fabrizio Dabbene. Control design with hard/soft
performance specifications: A Q -parameter randomization approach.
International Journal of Control, 77(5):461–471, March 2004. ISSN 0020-7179,
1366-5820.

7.1 Future Research Directions 208

[38] Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Provably
minimally-distorted adversarial examples. arXiv preprint arXiv:1709.10207,
2017.

[39] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. In Advances in neural information
processing systems, pages 6571–6583, 2018.

[40] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience
of artificial neural networks. In International Symposium on Automated
Technology for Verification and Analysis, pages 251–268. Springer, 2017.

[41] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh.
Seq2sick: Evaluating the robustness of sequence-to-sequence models with
adversarial examples. In Association for the Advancement of Artificial
Intelligence, pages 3601–3608, 2020.

[42] Yun-Chung Chu and Keith Glover. Bounds of the induced norm and model
reduction errors for systems with repeated scalar nonlinearities. IEEE
Transactions on Automatic Control, 44(3):471–483, 1999.

[43] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial
robustness via randomized smoothing. In International Conference on
Machine Learning, pages 1310–1320, 2019.

[44] Guy W Cole and Sinead A Williamson. Avoiding resentment via monotonic
fairness. arXiv preprint arXiv:1909.01251, 2019.

[45] Patrick L Combettes and Jean-Christophe Pesquet. Deep neural network
structures solving variational inequalities. Set-Valued and Variational
Analysis, pages 1–28, 2020.

[46] Giacomo Como, Enrico Lovisari, and Ketan Savla. Throughput optimality
and overload behavior of dynamical flow networks under monotone distributed
routing. IEEE Transactions on Control of Network Systems, 2(1):57–67, 2015.

[47] Giacomo Como, Enrico Lovisari, and Ketan Savla. Convexity and robustness
of dynamic traffic assignment and freeway network control. Transportation
Research Part B: Methodological, 91:446–465, 2016.

[48] Samuel Coogan. A contractive approach to separable lyapunov functions for
monotone systems. Automatica, 106:349–357, 2019.

[49] Samuel Coogan and Murat Arcak. Dynamical properties of a compartmental
model for traffic networks. In American Control Conference (ACC), 2014,
pages 2511–2516. IEEE, 2014.

7.1 Future Research Directions 209

[50] Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, and Simon Kornblith.
Generalised lipschitz regularisation equals distributional robustness. In
International Conference on Machine Learning, pages 2178–2188. PMLR,
2021.

[51] Fernando J D’Amato, Mario A Rotea, AV Megretski, and UT Jönsson. New
results for analysis of systems with repeated nonlinearities. Automatica, 37(5):
739–747, 2001.

[52] Hennie Daniels and Marina Velikova. Monotone and partially monotone neural
networks. IEEE Transactions on Neural Networks, 21(6):906–917, 2010.

[53] Arne Dankers, Paul MJ Van den Hof, Xavier Bombois, and Peter SC
Heuberger. Identification of dynamic models in complex networks with
prediction error methods: Predictor input selection. IEEE Transactions on
Automatic Control, 61(4):937–952, 2016.

[54] Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow.
In Uncertainty in Artificial Intelligence, pages 1263–1273. PMLR, 2020.

[55] Patrick De Leenheer, David Angeli, and Eduardo D Sontag. Monotone
chemical reaction networks. Journal of mathematical chemistry, 41(3):
295–314, 2007.

[56] Sarah Dean, Nikolai Matni, Benjamin Recht, and Vickie Ye. Robust
guarantees for perception-based control. In Learning for Dynamics and
Control, pages 350–360. PMLR, 2020.

[57] Charles A Desoer and Mathukumalli Vidyasagar. Feedback systems:
input-output properties, volume 55. SIAM, 1975.

[58] Gunther Dirr, Hiroshi Ito, Anders Rantzer, and Björn Rüffer. Separable
Lyapunov functions for monotone systems: Constructions and limitations.
Discrete Contin. Dyn. Syst. Ser. B, 20(8):2497–2526, 2015.

[59] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann,
and Pushmeet Kohli. A dual approach to scalable verification of deep
networks. In UAI, volume 1, page 3, 2018.

[60] Bradley Efron and Trevor Hastie. Computer age statistical inference,
volume 5. Cambridge University Press, 2016.

[61] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural
networks. In International Symposium on Automated Technology for
Verification and Analysis, pages 269–286. Springer, 2017.

7.1 Future Research Directions 210

[62] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and
Alicia Y. Tsai. Implicit deep learning. arXiv:1908.06315, 2019.

[63] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia
Tsai. Implicit deep learning. SIAM Journal on Mathematics of Data Science,
3(3):930–958, 2021.

[64] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[65] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification
and robustness analysis of neural networks via quadratic constraints and
semidefinite programming. arXiv preprint arXiv:1903.01287, 2019.

[66] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and
George Pappas. Efficient and accurate estimation of lipschitz constants for
deep neural networks. In Advances in Neural Information Processing Systems,
pages 11427–11438, 2019.

[67] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification
and robustness analysis of neural networks via quadratic constraints and
semidefinite programming. IEEE Transactions on Automatic Control, 2020.

[68] Roy Featherstone. Rigid Body Dynamics Algorithms. Springer, 2014.

[69] F. Ferraguti, N. Preda, A. Manurung, M. Bonfè, O. Lambercy, R. Gassert,
R. Muradore, P. Fiorini, and C. Secchi. An Energy Tank-Based Interactive
Control Architecture for Autonomous and Teleoperated Robotic Surgery.
IEEE Transactions on Robotics, 31(5):1073–1088, October 2015. ISSN
1941-0468.

[70] Urban Forssell and Lennart Ljung. Closed-loop identification revisited.
Automatica, 35(7):1215–1241, 1999.

[71] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference on Learning
Representations, 2018.

[72] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics New York, 2001.

[73] Kenji Fujimoto and Toshiharu Sugie. Characterization of all nonlinear
stabilizing controllers via observer-based kernel representations. Automatica,
36(8):1123–1135, August 2000. ISSN 0005-1098.

[74] Brian H Gilding and Robert Kersner. Travelling Waves in Nonlinear
Diffusion-Convection Reaction, volume 60. Birkhauser, 2012.

7.1 Future Research Directions 211

[75] Fouad Giri and Er-Wei Bai. Block-oriented nonlinear system identification,
volume 1. Springer, 2010.

[76] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings, 2010.

[77] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent
sample complexity of neural networks. In Conference On Learning Theory,
pages 297–299. PMLR, 2018.

[78] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[79] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[80] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree.
Regularisation of neural networks by enforcing Lipschitz continuity. Machine
Learning, 110(2):393–416, 2021.

[81] Fangda Gu, He Yin, Laurent El Ghaoui, Murat Arcak, Peter Seiler, and Ming
Jin. Recurrent neural network controllers synthesis with stability guarantees
for partially observed systems. arXiv preprint arXiv:2109.03861, 2021.

[82] Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and
Kartik Yellepeddi. How to incorporate monotonicity in deep networks while
preserving flexibility? arXiv preprint arXiv:1909.10662, 2019.

[83] Aleksandar Haber and Michel Verhaegen. Subspace identification of
large-scale interconnected systems. IEEE Transactions on Automatic Control,
59(10):2754–2759, 2014.

[84] Wassim M Haddad, VijaySekhar Chellaboina, and Qing Hui. Nonnegative and
compartmental dynamical systems. Princeton University Press, 2010.

[85] Trevor J Hastie and Robert J Tibshirani. Generalized additive models,
volume 43. CRC press, 1990.

[86] Takeshi Hatanaka, Nikhil Chopra, Masayuki Fujita, and Mark W Spong.
Passivity-based control and estimation in networked robotics. Springer, 2015.

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

7.1 Future Research Directions 212

[88] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the
robustness of a classifier against adversarial manipulation. In NIPS, 2017.

[89] Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, and Franco
Blanchini. Discrete-time control for switched positive systems with application
to mitigating viral escape. International journal of robust and nonlinear
control, 21(10):1093–1111, 2011.

[90] Esteban A Hernandez-Vargas, Patrizio Colaneri, and Richard H Middleton.
Optimal therapy scheduling for a simplified HIV infection model. Automatica,
49(9):2874–2880, 2013.

[91] Joao P Hespanha. Linear Systems Theory. Princeton university press, 2018.

[92] Morris W Hirsch and Hal Smith. Monotone dynamical systems. In Handbook
of differential equations: ordinary differential equations, volume 2, pages
239–357. Elsevier, 2006.

[93] Sepp Hochreiter and Jurgen Schmidhuber. Long Short-Term Memory. Neural
computation, 9:1735–1780, 1997.

[94] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[95] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra
Peste. Sparsity in deep learning: Pruning and growth for efficient inference
and training in neural networks. arXiv preprint arXiv:2102.00554, 2021.

[96] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
Neural autoregressive flows. In International Conference on Machine
Learning, pages 2078–2087. PMLR, 2018.

[97] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the
Lipschitz constant as a defense against adversarial examples. In Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 16–29. Springer, 2018.

[98] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the
lipschitz constant as a defense against adversarial examples. In Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 16–29. Springer, 2018.

[99] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. arXiv
preprint arXiv:1810.07951, 2018.

[100] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

7.1 Future Research Directions 213

[101] Vanessa Jonsson, Anders Rantzer, and Richard M Murray. A scalable
formulation for engineering combination therapies for evolutionary dynamics
of disease. In American Control Conference (ACC), 2014, pages 2771–2778.
IEEE, 2014.

[102] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J
Kochenderfer. Policy compression for aircraft collision avoidance systems. In
2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pages
1–10. IEEE, 2016.

[103] Eugenius Kaszkurewicz and Amit Bhaya. Matrix Diagonal Stability in
Systems and Computation. Birkhäuser Basel, 2000.

[104] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization
in deep learning. arXiv preprint arXiv:1710.05468, 2017.

[105] Yu Kawano and Ming Cao. Design of Privacy-Preserving Dynamic
Controllers. IEEE Transactions on Automatic Control, 65(9):3863–3878,
September 2020. ISSN 1558-2523.

[106] Yu Kawano, Bart Besselink, and Ming Cao. Contraction analysis of monotone
systems via separable functions. IEEE Transactions on Automatic Control,
2019.

[107] R Bruce Kellogg. A nonlinear alternating direction method. Mathematics of
Computation, 23(105):23–27, 1969.

[108] Hassan K Khalil. Nonlinear systems. Prentice-Hall, 2002.

[109] Hassan K Khalil. High-Gain Observers in Nonlinear Feedback Control. SIAM,
2017.

[110] S Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transactions on
Robotics, 27(5):943–957, 2011.

[111] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic
gradient descent. In ICLR: International Conference on Learning
Representations, 2015.

[112] J. Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. In
Advances in Neural Information Processing Systems 32, pages 11128–11136.
Curran Associates, Inc., 2019.

[113] J Zico Kolter and Gaurav Manek. Learning stable deep dynamics models.
Advances in Neural Information Processing Systems, 32:11128–11136, 2019.

7.1 Future Research Directions 214

[114] Anders Krogh and John Hertz. A simple weight decay can improve
generalization. In J. Moody, S. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems, volume 4.
Morgan-Kaufmann, 1992.

[115] V. V. Kulkarni and M. G. Safonov. Incremental positivity nonpreservation by
stability multipliers. IEEE Trans. Autom. Control, 47(1):173–177, Jan. 2002.

[116] Vishwesh V Kulkarni and Michael G Safonov. All multipliers for repeated
monotone nonlinearities. IEEE Transactions on Automatic Control, 47(7):
1209–1212, 2002.

[117] Seth L Lacy and Dennis S Bernstein. Subspace identification with guaranteed
stability using constrained optimization. IEEE Transactions on automatic
control, 48(7):1259–1263, 2003.

[118] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[119] Benoît Legat, Chris Coey, Robin Deits, Joey Huchette, and Amelia Perry.
Sum-of-squares optimization in Julia. In The First Annual JuMP-dev
Workshop, 2017.

[120] Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural
networks. ICML, 2021.

[121] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning
Research, 17(1):1334–1373, 2016.

[122] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes.
Fisher-rao metric, geometry, and complexity of neural networks. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages
888–896. PMLR, 2019.

[123] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J
Kochenderfer. Algorithms for verifying deep neural networks. arXiv preprint
arXiv:1903.06758, 2019.

[124] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45(1):503–528, 1989.

[125] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic
neural networks. arXiv preprint arXiv:2011.10219, 2020.

[126] Zhang Liu and Lieven Vandenberghe. Interior-point method for nuclear norm
approximation with application to system identification. SIAM Journal on
Matrix Analysis and Applications, 31(3):1235–1256, 2009.

7.1 Future Research Directions 215

[127] Lennart. Ljung. System identification theory for the user. Prentice Hall,
Upper Saddle River, N.J, 2nd edition, 1999. ISBN 0-13-244193-4.

[128] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab.
In Computer Aided Control Systems Design, 2004 IEEE International
Symposium on, pages 284–289. IEEE, 2004.

[129] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683–696, 1998.

[130] Enrico Lovisari, Giacomo Como, and Ketan Savla. Stability of monotone
dynamical flow networks. In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pages 2384–2389. IEEE, 2014.

[131] J. M. Maciejowski. Guaranteed stability with subspace methods. Systems &
Control Letters, 26(2):153–156, September 1995. ISSN 0167-6911.

[132] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

[133] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against
the union of multiple perturbation models. In International Conference on
Machine Learning, pages 6640–6650. PMLR, 2020.

[134] Giorgos (’Yorgos’) Mamakoukas, Orest Xherija, and Todd Murphey.
Memory-Efficient Learning of Stable Linear Dynamical Systems for Prediction
and Control. Advances in Neural Information Processing Systems, 33:
13527–13538, 2020.

[135] Ian R Manchester. Contracting nonlinear observers: Convex optimization and
learning from data. In 2018 American Control Conference (ACC), pages
1873–1880. IEEE, 2018.

[136] Ian R Manchester and Jean-Jacques E Slotine. Control contraction metrics:
Convex and intrinsic criteria for nonlinear feedback design. IEEE
Transactions on Automatic Control, 62(6):3046–3053, 2017.

[137] Ian R Manchester and Jean-Jacques E Slotine. On existence of separable
contraction metrics for monotone nonlinear systems. IFAC-PapersOnLine, 50
(1):8226–8231, 2017.

[138] Ian R Manchester, Mark M Tobenkin, and Alexandre Megretski. Stable
nonlinear system identification: Convexity, model class, and consistency. IFAC
Proceedings Volumes, 45(16):328–333, 2012.

7.1 Future Research Directions 216

[139] Donatello Materassi and Giacomo Innocenti. Topological identification in
networks of dynamical systems. IEEE Transactions on Automatic Control, 55
(8):1860–1871, 2010.

[140] Donatello Materassi and Murti V Salapaka. On the problem of reconstructing
an unknown topology via locality properties of the wiener filter. IEEE
transactions on automatic control, 57(7):1765–1777, 2012.

[141] Donatello Materassi, Giacomo Innocenti, Laura Giarré, and M Salapaka.
Model identification of a network as compressing sensing. Systems & Control
Letters, 62(8):664–672, 2013.

[142] Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll,
and Jürgen Schmidhuber. A system for robotic heart surgery that learns to tie
knots using recurrent neural networks. Advanced Robotics, 22(13-14):
1521–1537, 2008.

[143] Alexandre Megretski. Positivity of trigonometric polynomials. In 42nd IEEE
International Conference on Decision and Control (IEEE Cat. No.
03CH37475), volume 4, pages 3814–3817. IEEE, 2003.

[144] Alexandre Megretski. Convex optimization in robust identification of
nonlinear feedback. In Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, pages 1370–1374. IEEE, 2008.

[145] Alexandre Megretski and Anders Rantzer. System analysis via integral
quadratic constraints. IEEE Transactions on Automatic Control, 42(6):
819–830, 1997.

[146] Thomas Meurer. On the extended luenberger-type observer for semilinear
distributed-parameter systems. IEEE Transactions on Automatic Control, 58
(7):1732–1743, 2013.

[147] Daniel N Miller and Raymond A De Callafon. Subspace identification with
eigenvalue constraints. Automatica, 49(8):2468–2473, 2013.

[148] John Miller and Moritz Hardt. Stable Recurrent Models. In Proceedings of
ICLR 2019, May 2018.

[149] Matthew Mirman, Timon Gehr, and Martin T Vechev. Differentiable abstract
interpretation for provably robust neural networks. In ICML, 2018.

[150] Ari S Morcos, Maithra Raghu, and Samy Bengio. Insights on representational
similarity in neural networks with canonical correlation. In NeurIPS, 2018.

[151] Jorge J Moré. The levenberg-marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105–116. Springer, 1978.

7.1 Future Research Directions 217

[152] U. Nallasivam, B. Srinivasan, V.Kuppuraj, M. N. Karim, and R. Rengaswamy.
Computationally Efficient Identification of Global ARX Parameters With
Guaranteed Stability. IEEE Transactions on Automatic Control, 56(6):
1406–1411, June 2011.

[153] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms
in convex programming. SIAM, 1994.

[154] An-phi Nguyen and María Rodríguez Martínez. Mononet: towards
interpretable models by learning monotonic features. arXiv preprint
arXiv:1909.13611, 2019.

[155] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In Proceedings of the 22nd international conference
on Machine learning, pages 625–632, 2005.

[156] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[157] J.P. Noël and M. Schoukens. F-16 aircraft benchmark based on ground
vibration test data. Workshop on Nonlinear System Identification
Benchmarks, pages 15–19, 2017.

[158] Chirag Pabbaraju, Ezra Winston, and J Zico Kolter. Estimating lipschitz
constants of monotone deep equilibrium models. In International Conference
on Learning Representations, 2020.

[159] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of
tricks for adversarial training. In International Conference on Learning
Representations, 2020.

[160] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and
P.A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB,
2013.

[161] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. PhD thesis, California Institute of
Technology, 2000.

[162] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical programming, 96(2):293–320, 2003.

[163] Patricia Pauli, Dennis Gramlich, Julian Berberich, and Frank Allgöwer.
Linear systems with neural network nonlinearities: Improved stability analysis
via acausal zames-falb multipliers. arXiv preprint arXiv:2103.17106, 2021.

7.1 Future Research Directions 218

[164] Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank
Allgower. Training robust neural networks using Lipschitz bounds. IEEE
Control Systems Letters, 2021.

[165] Allan Pinkus. Approximation theory of the mlp model in neural networks.
Acta numerica, 8(1):143–195, 1999.

[166] Imre Pólik and Tamás Terlaky. A survey of the s-lemma. SIAM review, 49(3):
371–418, 2007.

[167] VM Popov. Absolute stability of nonlinear systems of automatic control.
Automation and Remote Control, 22(8):857–875, 1962.

[168] Haifeng Qian and Mark N Wegman. L2-nonexpansive neural networks.
International Conference on Learning Representations (ICLR), 2019.

[169] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha
Sohl-Dickstein. On the expressive power of deep neural networks. In
international conference on machine learning, pages 2847–2854. PMLR, 2017.

[170] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses
against adversarial examples. In International Conference on Learning
Representations, 2018.

[171] Anders Rantzer. Distributed control of positive systems. In Decision and
Control and European Control Conference (CDC-ECC), 2011 50th IEEE
Conference on, pages 6608–6611. IEEE, 2011.

[172] Anders Rantzer. Scalable control of positive systems. European Journal of
Control, 24:72–80, 2015.

[173] Anders Rantzer and Bo Bernhardsson. Control of convex-monotone systems.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pages 2378–2383. IEEE, 2014.

[174] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel.
Foolbox native: Fast adversarial attacks to benchmark the robustness of
machine learning models in pytorch, tensorflow, and jax. Journal of Open
Source Software, 5(53):2607, 2020.

[175] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for
image classification: A comprehensive review. Neural computation, 29(9):
2352–2449, 2017.

[176] Max Revay and Ian R Manchester. Contracting implicit recurrent neural
networks: Stable models with improved trainability. L4DC 2020, 2020.

7.1 Future Research Directions 219

[177] Max Revay, Ruigang Wang, and Ian R Manchester. A convex parameterization
of robust recurrent neural networks. IEEE Control Systems Letters, 2020.

[178] Max Revay, Ruigang Wang, and Ian R. Manchester. Lipschitz bounded
equilibrium networks. arXiv:2010.01732, 2020.

[179] Antônio H. Ribeiro, Koen Tiels, Jack Umenberger, Thomas B. Schön, and
Luis A. Aguirre. On the smoothness of nonlinear system identification.
Automatica, 121:109158, 2020. ISSN 0005-1098.

[180] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforcement
learning policies. arXiv preprint arXiv:1907.13548, 2019.

[181] Alessio Russo and Alexandre Proutiere. Optimal Attacks on Reinforcement
Learning Policies. arXiv:1907.13548 [cs, stat], July 2019.

[182] Giovanni Russo, Mario di Bernardo, and Eduardo D Sontag. Stability of
networked systems: a multi-scale approach using contraction. In Decision and
Control (CDC), 2010 49th IEEE Conference on, pages 6559–6564. IEEE, 2010.

[183] Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods.
Appl. Comput. Math, 15(1):3–43, 2016.

[184] Sadra Sadraddini and Calin Belta. Formal synthesis of control strategies for
positive monotone systems. IEEE Transactions on Automatic Control, 64(2):
480–495, 2018.

[185] Borhan M Sanandaji, Tyrone L Vincent, and Michael B Wakin. Exact
topology identification of large-scale interconnected dynamical systems from
compressive observations. In Proceedings of the 2011 American Control
Conference, pages 649–656. IEEE, 2011.

[186] Thomas B Schön, Adrian Wills, and Brett Ninness. System identification of
nonlinear state-space models. Automatica, 47(1):39–49, 2011.

[187] M Schoukens and JP Noël. Wiener-hammerstein benchmark with process
noise. In Workshop on nonlinear system identification benchmarks, pages
15–19, 2016.

[188] Maarten Schoukens and Koen Tiels. Identification of block-oriented nonlinear
systems starting from linear approximations: A survey. Automatica, 85:
272–292, 2017. ISSN 0005-1098.

[189] Maarten Schoukens, Anna Marconato, Rik Pintelon, Gerd Vandersteen, and
Yves Rolain. Parametric identification of parallel wiener–hammerstein
systems. Automatica, 51:111–122, 2015.

7.1 Future Research Directions 220

[190] E. Shahriari, A. Kramberger, A. Gams, A. Ude, and S. Haddadin. Adapting
to contacts: Energy tanks and task energy for passivity-based dynamic
movement primitives. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 136–142, November 2017.

[191] Jinglai Shen and Xiao Wang. Estimation of shape constrained functions in
dynamical systems and its application to gene networks. In Proceedings of the
2010 American Control Conference, pages 5948–5953. IEEE, 2010.

[192] Jinglai Shen and Xiao Wang. Estimation of monotone functions via p-splines:
A constrained dynamical optimization approach. SIAM Journal on Control
and Optimization, 49(2):646–671, 2011.

[193] Humberto Stein Shiromoto, Max Revay, and Ian R Manchester. Distributed
nonlinear control design using separable control contraction metrics. IEEE
Transactions on Control of Network Systems, 6(4):1281–1290, 2018.

[194] Naum Z Shor. Class of global minimum bounds of polynomial functions.
Cybernetics, 23(6):731–734, 1987.

[195] Dragoslav D Siljak. Decentralized control of complex systems. Courier
Corporation, 2011.

[196] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[197] Max Simchowitz, Karan Singh, and Elad Hazan. Improper Learning for
Non-Stochastic Control. In Conference on Learning Theory, pages 3320–3436.
PMLR, July 2020.

[198] John W Simpson-Porco and Francesco Bullo. Contraction theory on
riemannian manifolds. Systems & Control Letters, 65:74–80, 2014.

[199] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and
Martin T Vechev. Fast and effective robustness certification. NeurIPS, 1(4):6,
2018.

[200] Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard
Delyon, Pierre-Yves Glorennec, Håkan Hjalmarsson, and Anatoli Juditsky.
Nonlinear black-box modeling in system identification: a unified overview.
Automatica, 31(12):1691–1724, 1995.

[201] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume
199. Prentice hall Englewood Cliffs, NJ, 1991.

7.1 Future Research Directions 221

[202] Hal L Smith. Monotone dynamical systems: an introduction to the theory of
competitive and cooperative systems. American Mathematical Soc., 2008.

[203] Vera L. J. Somers and Ian R. Manchester. Priority maps for surveillance and
intervention of wildfires and other spreading processes. 2019 IEEE
International Conference on Robotics and Automation (ICRA), 2019.

[204] Eduardo D Sontag. Input to state stability: Basic concepts and results. In
Nonlinear and optimal control theory, pages 163–220. Springer, 2008.

[205] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[206] Mario Stylianou and Nancy Flournoy. Dose finding using the biased coin
up-and-down design and isotonic regression. Biometrics, 58(1):171–177, 2002.

[207] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction, volume 2. MIT press, 2018.

[208] Andreas Svensson and Thomas B Schön. A flexible state–space model for
learning nonlinear dynamical systems. Automatica, 80:189–199, 2017.

[209] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In ICLR: International Conference on Learning Representations,
2014.

[210] Danielle C. Tarraf, William Shelton, Edward Parker, Brien Alkire, Diana
Gehlhaus, Justin Grana, Alexis Levedahl, Jasmin Leveille, Jared Mondschein,
James Ryseff, Ali Wyne, Daniel Elinoff, Edward Geist, Benjamin N. Harris,
Eric Hui, Cedric Kenney, Sydne Newberry, Chandler Sachs, Peter Schirmer,
Danielle Schlang, Victoria M. Smith, Abbie Tingstad, Padmaja Vedula, and
Kristin Warren. The Department of Defense Posture for Artificial
Intelligence: Assessment and Recommendations. RAND Corporation, Santa
Monica, CA, 2019.

[211] Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluating robustness of
neural networks with mixed integer programming. In International Conference
on Learning Representations, 2018.

[212] M. M. Tobenkin, I. R. Manchester, J. Wang, A. Megretski, and R. Tedrake.
Convex optimization in identification of stable non-linear state space models.
In 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010.

7.1 Future Research Directions 222

[213] Mark M Tobenkin, Ian R Manchester, and Russ Tedrake. Invariant funnels
around trajectories using sum-of-squares programming. IFAC Proceedings
Volumes, 44(1):9218–9223, 2011.

[214] Mark M Tobenkin, Ian R Manchester, and Alexandre Megretski. Convex
parameterizations and fidelity bounds for nonlinear identification and
reduced-order modelling. IEEE Transactions on Automatic Control, 62(7):
3679–3686, 2017.

[215] Duc N Tran, Björn S Rüffer, and Christopher M Kellett. Convergence
properties for discrete-time nonlinear systems. IEEE Transactions on
Automatic Control, 64(8):3415–3422, 2018.

[216] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training:
Scalable certification of perturbation invariance for deep neural networks. In
Advances in neural information processing systems, pages 6541–6550, 2018.

[217] Jack Umenberger and Ian R Manchester. Scalable identification of stable
positive systems. In Decision and Control (CDC), 2016 IEEE 55th
Conference on, pages 4630–4635. IEEE, 2016.

[218] Jack Umenberger and Ian R Manchester. Convex bounds for equation error in
stable nonlinear identification. IEEE control systems letters, 3(1):73–78, 2018.

[219] Jack Umenberger and Ian R Manchester. Specialized interior-point algorithm
for stable nonlinear system identification. IEEE Transactions on Automatic
Control, 64(6):2442–2456, 2018.

[220] Jack Umenberger, Johan Wågberg, Ian R Manchester, and Thomas B Schön.
Maximum likelihood identification of stable linear dynamical systems.
Automatica, 96:280–292, 2018.

[221] Jack Umenberger, Johan Wagberg, Ian R Manchester, and Thomas B Schön.
Maximum likelihood identification of stable linear dynamical systems.
Automatica, 96:280–292, 2018.

[222] Jonas Umlauft, Armin Lederer, and Sandra Hirche. Learning stable gaussian
process state space models. In 2017 American Control Conference (ACC),
pages 1499–1504. IEEE, 2017.

[223] Paul MJ Van den Hof, Arne Dankers, Peter SC Heuberger, and Xavier
Bombois. Identification of dynamic models in complex networks with
prediction error methods—basic methods for consistent module estimates.
Automatica, 49(10):2994–3006, 2013.

7.1 Future Research Directions 223

[224] Paul M.J. Van den Hof, Arne G. Dankers, and Harm H.M. Weerts.
Identification in dynamic networks. Computers & Chemical Engineering, 109:
23–29, 2018. ISSN 0098-1354.

[225] Arjan van der Schaft. L2-Gain and Passivity in Nonlinear Control.
Springer-Verlag, third edition, 2017.

[226] Tony Van Gestel, Johan AK Suykens, Paul Van Dooren, and Bart De Moor.
Identification of stable models in subspace identification by using
regularization. IEEE Transactions on Automatic control, 46(9):1416–1420,
2001.

[227] Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the
identification of combined deterministic-stochastic systems. Automatica, 30
(1):75–93, 1994.

[228] Peter Van Overschee and BL De Moor. Subspace identification for linear
systems: Theory - Implementation - Applications. Springer Science & Business
Media, 2012.

[229] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a
least squares approach. Cambridge university press, 2007.

[230] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural
networks: analysis and efficient estimation. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[231] Andreas Wächter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 106(1):25–57, 2006.

[232] B. Wahlberg and P. M. Mäkilä. On approximation of stable linear dynamical
systems using Laguerre and Kautz functions. Automatica, 32(5):693–708, May
1996. ISSN 0005-1098.

[233] Yuh-Shyang Wang, Nikolai Matni, and John C Doyle. Separable and localized
system-level synthesis for large-scale systems. IEEE Transactions on
Automatic Control, 63(12):4234–4249, 2018.

[234] Harm HM Weerts, Paul MJ Van den Hof, and Arne G Dankers. Identifiability
of linear dynamic networks. Automatica, 89:247–258, 2018.

[235] Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural
networks. Advances in Neural Information Processing Systems, 32:1545–1555,
2019.

7.1 Future Research Directions 224

[236] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng
Gao, Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural
networks: An extreme value theory approach. In International Conference on
Learning Representations, 2018.

[237] Jan C Willems. Dissipative dynamical systems part i: General theory. Archive
for rational mechanics and analysis, 45(5):321–351, 1972.

[238] Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks.
In Advances in Neural Information Processing Systems, volume 33, pages
10718–10728, 2020.

[239] Eric Wong and Zico Kolter. Provable defenses against adversarial examples
via the convex outer adversarial polytope. In International Conference on
Machine Learning, pages 5286–5295. PMLR, 2018.

[240] Weiming Xiang, Patrick Musau, Ayana A Wild, Diego Manzanas Lopez,
Nathaniel Hamilton, Xiaodong Yang, Joel Rosenfeld, and Taylor T Johnson.
Verification for machine learning, autonomy, and neural networks survey.
arXiv preprint arXiv:1810.01989, 2018.

[241] VA Yakubovich. Frequency conditions for the absolute stability of control
systems with several nonlinear or linear nonstationary blocks. Avtomatika i
telemekhanika, 6:5–30, 1967.

[242] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov,
and Kamalika Chaudhuri. A closer look at accuracy vs. robustness. In
NeurIPS, 2020.

[243] Bowen Yi, Ruigang Wang, and Ian R Manchester. Reduced-order nonlinear
observers via contraction analysis and convex optimization. In 2020 American
Control Conference (ACC). IEEE, 2020.

[244] Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the echo state
property. Neural networks, 35:1–9, 2012.

[245] He Yin, Peter Seiler, and Murat Arcak. Stability analysis using quadratic
constraints for systems with neural network controllers. IEEE Transactions on
Automatic Control, 2021.

[246] He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with
stability and safety guarantees. IEEE Control Systems Letters, 2021.

[247] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? In Proceedings of the 27th International
Conference on Neural Information Processing Systems-Volume 2, pages
3320–3328, 2014.

7.1 Future Research Directions 225

[248] D. Youla, H. Jabr, and J. Bongiorno. Modern Wiener-Hopf design of optimal
controllers–Part II: The multivariable case. IEEE Transactions on Automatic
Control, 21(3):319–338, June 1976. ISSN 2334-3303.

[249] C. Yu and M. Verhaegen. Subspace identification of 1d large-scale
heterogeneous network. In 2017 13th IEEE International Conference on
Control Automation (ICCA), pages 218–223, 2017.

[250] Chengpu Yu, Jie Chen, and Michel Verhaegen. Subspace identification of
individual systems in a large-scale heterogeneous network. Automatica, 109:
108517, 2019.

[251] G. Zames. Realizability Condition for Nonlinear Feedback Systems. IEEE
Transactions on Circuit Theory, 11(2):186–194, 1964.

[252] George Zames. On the input-output stability of time-varying nonlinear
feedback systems part I: Conditions derived using concepts of loop gain,
conicity, and positivity. IEEE transactions on automatic control, 11(2):
228–238, 1966.

[253] George Zames. On the input-output stability of time-varying nonlinear
feedback systems–part II: Conditions involving circles in the frequency plane
and sector nonlinearities. IEEE transactions on automatic control, 11(3):
465–476, 1966.

[254] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning (still) requires rethinking generalization.
Communications of the ACM, 64(3):107–115, 2021.

[255] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving
the robustness of deep neural networks via stability training. In Proceedings of
the ieee conference on computer vision and pattern recognition, pages
4480–4488, 2016.

[256] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and Optimal
Control, volume 40. Prentice hall New Jersey, 1996.

[257] SiQi Zhou and Angela P Schoellig. An analysis of the expressiveness of deep
neural network architectures based on their Lipschitz constants. arXiv
preprint arXiv:1912.11511, 2019.

	Declaration
	Abstract
	Acknowledgements
	Contents
	Nomenclature
	1 Introduction
	1.1 Learning Stable and Robust Models
	1.2 Publications

	2 Background
	2.1 Learning from Data
	2.2 Model Structures
	2.2.1 Static Models
	2.2.2 Dynamic Model Structures

	2.3 Behavioral Constraints
	2.3.1 Robustness
	2.3.2 Monotonicity
	2.3.3 Stability of Discrete Time Systems

	2.4 Relaxations
	2.4.1 Convex Relaxations of Dissipation Inequalities
	2.4.2 Integral Quadratic Constraints
	2.4.3 Sum of Squares Programming

	2.5 Numerical Methods
	2.5.1 Unconstrained Optimization Methods
	2.5.2 Constrained Optimization
	2.5.3 Operator Splitting and ADMM

	3 Robust Recurrent Neural Networks
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Robust RNNs
	3.3.1 Model Structure
	3.3.2 Description of by Incremental Quadratic Constraints
	3.3.3 Convex Parametrization of Robust RNNs
	3.3.4 Contracting Implicit Recurrent Neural Networks
	3.3.5 Expressivity of the Robust RNN Model Set

	3.4 Numerical Example
	3.4.1 Training Procedure and Model Evaluation
	3.4.2 Results

	3.5 Proofs

	4 Lipschitz Bounded Equilibrium Networks
	4.1 Introduction
	4.2 Related work
	4.3 Problem Formulation and Preliminaries
	4.3.1 Problem statement
	4.3.2 Preliminaries

	4.4 Main Results
	4.4.1 Direct Parameterization for Unconstrained Optimization
	4.4.2 Monotone Operator Perspective
	4.4.3 Contracting Neural ODEs
	4.4.4 Model Expressivity

	4.5 Experiments
	4.5.1 MNIST Experiments with Fully-Connected Networks
	4.5.2 CIFAR-10 Experiments With Convolutional Networks

	4.6 Experimental Results on MNIST & CIFAR Image Classification
	4.7 Proofs
	4.7.1 Proof of Proposition 4.3

	4.8 Training Details
	4.8.1 MNIST Example
	4.8.2 CIFAR-10 Example

	5 Recurrent Equilibrium Networks
	5.1 Introduction
	5.1.1 Learning and Identification of Stable Models
	5.1.2 Robustness Certification of Neural Networks
	5.1.3 Applications of Stable and Robust Models in Data-Driven Control and Estimation
	5.1.4 Convex and Direct Parameterizations

	5.2 Learning Stable and Robust Models
	5.3 Recurrent Equilibrium Networks
	5.3.1 Flexibility of Equilibrium Networks
	5.3.2 Acyclic RENs and Well-Posedness
	5.3.3 Computational Details of RENs
	5.3.4 Contracting and Robust RENs

	5.4 Convex Parameterizations of RENs
	5.5 Direct Parameterizations of RENs
	5.5.1 Direct Parameterizations of Contracting RENs
	5.5.2 Direct Parameterizations of Robust RENs
	5.5.3 Random Sampling of Nonlinear Systems and Echo State Networks

	5.6 Expressivity of REN Model Class
	5.7 Use Case: Stable and Robust Nonlinear System Identification
	5.7.1 Benchmark Datasets and Training Details
	5.7.2 Results and Discussion

	5.8 Use Case: Learning Nonlinear Observers
	5.8.1 Example: Reaction-Diffusion PDE

	5.9 Use Case: Data-Driven Feedback Control Design
	5.9.1 Echo State Network and Convex Optimization
	5.9.2 Example

	5.10 Conclusions and Future Work
	5.11 Proofs

	6 Distributed Identification Of Monotone and/or Contracting Networks
	6.1 Introduction
	6.1.1 Identification of Networked Systems
	6.1.2 Identification of Stable and Contracting Models
	6.1.3 Monotone and Positive Systems
	6.1.4 Model Quality-of-Fit Criteria

	6.2 Preliminaries and Problem Setup
	6.2.1 Behavioural Properties via Differential Dynamics
	6.2.2 Network Structure
	6.2.3 Separable Optimization using ADMM
	6.2.4 Problem Statement

	6.3 A Model Class with Convex Behavioural Constraints
	6.3.1 Stability and Monotonicity Constraints
	6.3.2 Specific Model Parametrizations

	6.4 Distributed Identification
	6.4.1 Distributed Model
	6.4.2 Convex Bounds for Equation Error
	6.4.3 Alternating Directions Method of Multipliers (ADMM)

	6.5 Discussion
	6.5.1 Conservatism of the Separable Model Structure
	6.5.2 Consistency
	6.5.3 Iteration Complexity of Distributed Algorithm
	6.5.4 Other Quality of Fit Criteria

	6.6 Numerical Experiments
	6.6.1 Identification of Linear Positive Systems
	6.6.2 Identification of Nonlinear Models
	6.6.3 Identification of Traffic Networks

	6.7 Conclusion
	6.8 Proofs

	7 Conclusion
	7.1 Future Research Directions

	List of References

