
Learning Stable Koopman Models

for Identification and Control of

Dynamical Systems

Fletcher Fan BE (Hons 1)

A thesis submitted in fulfillment
of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics
School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

Submitted December 2022; revised August 2023

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of the University or other institute of higher
learning, except where due acknowledgement has been made in the text.

Fletcher Fan

6 August 2023

Abstract
Learning models of dynamical systems from data is a widely-studied problem in con-
trol theory and machine learning. One recent approach for modelling nonlinear sys-
tems considers the class of Koopman models, which embeds the nonlinear dynamics
in a higher-dimensional linear subspace. Learning a Koopman embedding would al-
low for the analysis and control of nonlinear systems using tools from linear systems
theory. Many recent methods have been proposed for data-driven learning of such
Koopman embeddings, but most of these methods do not consider the stability of the
Koopman model.

Stability is an important and desirable property for models of dynamical systems.
Unstable models tend to be non-robust to input perturbations and can produce un-
bounded outputs, which are both undesirable when the model is used for prediction
and control. In addition, recent work has shown that stability guarantees may act
as a regularizer for model fitting. As such, a natural direction would be to construct
Koopman models with inherent stability guarantees.

Two new classes of Koopman models are proposed that bridge the gap between
Koopman-based methods and learning stable nonlinear models. The first model class
is guaranteed to be stable, while the second is guaranteed to be stabilizable with
an explicit stabilizing controller that renders the model stable in closed-loop. Fur-
thermore, these models are unconstrained in their parameter sets, thereby enabling
efficient optimization via gradient-based methods. Theoretical connections between
the stability of Koopman models and forms of nonlinear stability such as contrac-
tion are established. To demonstrate the effect of the stability guarantees, the stable
Koopman model is applied to a system identification problem, while the stabilizable
model is applied to an imitation learning problem. Experimental results show em-
pirically that the proposed models achieve better performance over prior methods
without stability guarantees.

Acknowledgements

First and foremost, thanks to David for your unwavering support and reliable advice.
There were many challenges throughout my research and they wouldn’t have been
overcome without your constant support and encouragement.

Thanks also to Ian, Guodong and Bowen. This thesis wouldn’t have been possible
without all of your technical input and research advice. I’ve learnt a lot from all of
you during all the fruitful and insightful discussions in our meetings.

Last but not least, thanks to everyone at ACFR and beyond who were there during
this long journey. In no particular order, Felix, Jack, Jacob, James, Jasper, Jen,
Johnny, Max, Tara, Vera, Wei, thanks to all of you for all the good times.

‘Real stupidity beats artificial intelligence every time.’
- Terry Pratchett, Hogfather

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents v

List of Figures ix

Nomenclature x

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Contributions . 4

1.3.1 Publications . 5

1.4 Structure of the Thesis . 5

2 Background 6

2.1 Learning from Data . 6

2.1.1 Regularization . 8

2.1.2 Numerical Optimization . 9

2.1.3 Model Classes . 14

2.1.4 Direct Parameterizations . 16

Contents vi

2.2 Stability of Dynamical Systems . 16

2.2.1 Stability of Linear Systems . 18

2.2.2 Contraction . 20

2.2.3 Control Contraction Metrics 21

2.3 Koopman Theory . 23

2.3.1 The Koopman Operator . 23

2.3.2 Equivalence of Contraction and Koopman Stability 26

2.3.3 Dynamic Mode Decomposition 29

2.3.4 Koopman Operator with Control 30

2.4 Summary . 32

3 Related Work 33

3.1 Learning Koopman Models . 33

3.1.1 Stable Koopman Models . 35

3.1.2 Koopman Models for Control 35

3.2 Imitation Learning . 36

3.2.1 Behavioural Cloning . 37

3.2.2 Inverse Reinforcement Learning 39

3.2.3 Stable Imitation Learning . 40

3.3 Summary . 41

4 Stable Koopman Models 42

4.1 Introduction . 42

4.2 Stability Criterion for Discrete-time Koopman Models 45

4.3 Model Set . 49

4.3.1 Parametrization of Koopman Matrix 49

4.3.2 Parametrization of Koopman Embedding 51

4.3.3 Overall Koopman Model . 52

4.4 Learning Framework . 52

Contents vii

4.4.1 Optimization Formulation . 52

4.4.2 Implementation Details . 54

4.5 Continuous-time Case . 55

4.5.1 Continuous-time Koopman Model 55

4.5.2 Learning Framework . 56

4.6 Experiments . 57

4.6.1 Comparison to Other Koopman Matrix Parameterizations . . 58

4.6.2 Robustness to Perturbations in Initial Conditions 59

4.7 Summary . 60

5 Imitation Learning with Koopman Models 64

5.1 Problem Statement . 65

5.2 Stabilizable Koopman Models . 67

5.2.1 Koopman Stabilizability . 68

5.3 Model Set . 70

5.3.1 Parameterization of Stabilizable Triples 71

5.3.2 Parameterization of ϕ . 72

5.3.3 Parameterization of α . 72

5.3.4 CCM Controller . 73

5.3.5 Connection to Inverse Optimal Control 74

5.4 Learning Framework . 75

5.4.1 Linear Case . 76

5.5 Experiments . 77

5.5.1 Linear Example . 77

5.5.2 Nonlinear Example . 83

5.6 Summary . 89

6 Conclusion 92

6.1 Summary . 92

6.2 Future Work . 93

Contents viii

List of References 94

A Additional Imitation Learning Trajectories 106

List of Figures

4.1 Koopman model . 45

4.2 NSE comparison . 60

4.3 Training loss boxplot . 61

4.4 SKEL simulations . 62

4.5 LKIS simulation . 63

5.1 Eigenvalue histogram . 80

5.2 NSE boxplot . 81

5.3 Controller fit boxplot . 82

5.4 Time per iteration . 83

5.5 Total time to convergence . 84

5.6 Diagram of robot arm . 85

5.7 NSE of imitation controllers . 87

5.8 Training error of controller output . 88

5.9 Test error of controller output . 89

5.10 Trajectories induced by learned CCM controller 90

5.11 Trajectories induced by behavioural cloning controller 91

Nomenclature

List of Symbols

R The set of real numbers
Rn The set of real-valued n-dimensional vectors
Rn×m The set of real-valued n×m matrices
A ≻ 0 The matrix A is positive-definite
A ⪰ 0 The matrix A is positive-semidefinite
A ≺ 0 The matrix A is negative-definite
A ⪯ 0 The matrix A is negative-semidefinite
A ≻ B The matrix A−B is positive-definite
∥x∥p The p-norm of the vector x
∥M∥p The matrix p-norm of the matrix M
M † The pseudoinverse of the matrix M

List of Acronyms

ADMM alternating direction method of multipliers
BC behavioural cloning
CCM control contraction metric
CT continuous-time
CL closed-loop
DMD dynamic mode decomposition
DOF degree(s) of freedom
DT discrete-time
EDMD extended dynamic mode decomposition
FCNN fully-connected neural network
GAIL generative adversarial imitation learning
IL imitation learning
IRL inverse reinforcement learning
LMI linear matrix inequality
LPV linear parameter-varying
LTI linear time-invariant

Nomenclature xi

LTV linear time-varying
MLP multilayer perceptron
NMPC nonlinear model predictive control
NN neural network
NSE normalized simulation error
ODE ordinary differential equation
OL open-loop
PGD projected gradient descent
ReLU rectified linear unit
SVD singular value decomposition
SOS sum-of-squares
UES universally exponentially stabilizable

Chapter 1

Introduction

Modelling dynamical systems is a ubiquitous problem across many domains in en-
gineering and science. Many important physical phenomena can be modelled as a
dynamical system to predict future behaviour, and many actuated systems can ben-
efit from a model of the dynamics of the system for control design. Deriving a model
of a dynamical system from first principles, such as physical laws, may be challenging
or even intractable for cases like human behaviour. This is where learning approaches
that produce a model from data are useful.

A central consideration for a learning algorithm is the structure of the model to
be learned. For modelling memoryless input-output mappings, deep neural networks
have achieved state-of-the-art results in many problem domains, including image clas-
sification (Krizhevsky et al., 2012), playing strategy games such as Go (Silver et al.,
2016) and robot control (Levine et al., 2016). However, choosing a suitable model
structure to model a dynamical system remains an open question.

In this work, the focus will be on Koopman models, a recently emerging class of
models that is both flexible and interpretable.

1.1 Motivation 2

1.1 Motivation

Koopman models are based on Koopman operator theory (Koopman, 1931), which
provides for the existence of an infinite-dimensional linear operator that describes
the dynamics of any nonlinear system. Through Koopman theory, nonlinear systems
can be studied via a spectral decomposition of the Koopman operator (Mezić, 2005),
akin to linear systems analysis. When learning a Koopman model, one attempts to
find a finite-dimensional representation of the Koopman operator, which amounts to
a linear matrix, along with a mapping that transforms the original state space of
the system to a so-called Koopman-invariant subspace on which the dynamics of the
system become linear. Koopman models hold the promise of linearising a nonlinear
system globally. This has huge potential in applying tools from linear systems theory
to nonlinear systems, including global stability analysis (Mauroy and Mezić, 2016; Yi
and Manchester, 2022) and linear control design methods such as the linear quadratic
regulator (Bevanda et al., 2022a).

An important consideration for models of dynamical systems is stability, which has
mostly been neglected in prior work on Koopman models. Unstable models tend to
be non-robust to input perturbations and can produce unbounded outputs, which
are both undesirable when the model is used for prediction and control. In addition,
there has been a significant amount of recent work on learning stable nonlinear mod-
els (Manek and Kolter, 2019; Neumann et al., 2013; Sindhwani et al., 2018; Singh
et al., 2021), where stability was used as a control-theoretic regularizer for model
learning. Note that the scope of the present work does not extend to considering
Koopman models in the context of general nonlinear models. Koopman models are
not necessarily superior in terms of numerical performance to other nonlinear mod-
els, but have qualitative benefits like ease of control design and stability analysis as
mentioned above.

1.2 Problem Statement 3

1.2 Problem Statement

The problems considered in this work are posed as questions that will be answered
using mathematical tools and simulated experimental results. The problems can be
divided into two categories: system identification and control.

For system identification problems, one is concerned with finding a model of the sys-
tem that accurately predicts its outputs. Some pertinent questions when identifying
a system using a Koopman model are:

• How can a Koopman model be parameterized such that it is guaranteed to be
stable?

• What does stability of the Koopman model imply about the stability of the
original nonlinear system being modelled?

• How can the model be optimized for a given dataset to identify the dynamics
of the underlying system?

• Does the stability guarantee improve the performance of the model for identifi-
cation problems?

In control problems, one is concerned with designing a controller that stabilizes a
given system. In particular, imitation learning is concerned with learning a controller
that replicates behaviour from a set of demonstrations. To apply Koopman model
learning to the imitation learning problem, some questions to be addressed are:

• How can the Koopman model be extended to incorporate control inputs?

• How can the controlled model be guaranteed to be stabilizable?

• How can the controller be optimized in an imitation learning framework?

• Does guaranteeing stabilizability of the model improve the performance of the
controller for imitation learning?

1.3 Contributions 4

1.3 Contributions

The main contributions of each chapter are stated in the following.

In Chapter 4:

1. A new model class is proposed for representing stable dynamical systems. Im-
portantly, this model class is unconstrained in its parameters, allowing for effi-
cient optimization by leveraging software tools for automatic differentiation.

2. A theoretical equivalence between stability of the Koopman model and contrac-
tion is proven, extending a result of Yi and Manchester (2022) to discrete-time
systems.

3. A learning framework is proposed to fit this model parameterization to data for
a system identification problem.

4. Numerical experiments on a real-world handwriting dataset show empirically
that the stable model parameterization improves performance compared to
models without stability guarantees, while not significantly increasing the com-
putational burden.

In Chapter 5:

1. A new model class is proposed for imitation learning. This model class comprises
of a open-loop dynamics model that is guaranteed to be stabilizable, and a
stabilizing controller that is guaranteed to induce a stable closed-loop model.
Similar to the stable Koopman model proposed in Chapter 5, this model is also
unconstrained in its parameters.

2. A theoretical equivalence between the stabilizability of the Koopman model and
the existence of a control contraction metric is proven.

3. A new imitation learning framework is proposed for the new model class. Unlike
many imitation learning algorithms, this framework only requires snapshots of
state transitions and control inputs as data.

1.4 Structure of the Thesis 5

4. Numerical experimental results on a simulated linear system demonstrate the
proposed model outperforms a prior stability-constrained imitation learning al-
gorithm as well as a baseline least-squares approach.

5. Further numerical experiments on a handwriting imitation problem with a sim-
ulated robotic manipulator show that the learned controller outperforms a base-
line imitation learning method.

1.3.1 Publications

Some of the work presented in this thesis was previously published in:

• Fletcher Fan, Bowen Yi, David Rye, Guodong Shi, and Ian R. Manchester.
Learning stable Koopman embeddings. In 2022 American Control Conference
(ACC 2022), pages 2742—2747, 2022.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows. In Chapter 2, the mathematical back-
ground on learning from data, stability of dynamical systems and Koopman theory is
presented. Chapter 3 reviews related work on learning Koopman models and imita-
tion learning, in particular works that consider stability constraints. In Chapter 4, the
first new parameterization of Koopman models is presented, along with theoretical
and experimental results. In Chapter 5, the second Koopman model class is pre-
sented and applied to the problem of imitation learning. Finally, Chapter 6 provides
a summary and concluding remarks, along with suggestions for future directions of
research.

Chapter 2

Background

In this chapter, the theoretical machinery that the rest of the thesis builds upon is
presented. The aim of this chapter is to define the mathematical tools required to
establish the arguments of the thesis. Review and discussion of prior works that
consider similar problems are deferred to Chapter 3.

To begin, the problem of statistical learning is discussed, which broadly covers the
problems that will be considered in Chapters 4 and 5. The focus is to present the
canonical optimization problems, together with their solution methods and solution
sets. In Section 2.2, the concept of stability is then defined for both linear and
nonlinear dynamical systems, which will enable establishing of theoretical properties
of the model classes that are proposed. Finally in Section 2.3, the fundamentals of
Koopman theory, which forms the theoretical basis of the proposed models, are briefly
presented,

2.1 Learning from Data

The problems considered in this work can be broadly described as learning models
from data, and specifically as learning models of dynamical systems given sequences
of measurements of those systems. Such problems have been widely studied across

2.1 Learning from Data 7

many fields and have a long history of research, with perhaps the most famous early
success being the method of least squares dating back to the 19th century. More
recently, fields such as machine learning, deep learning (Goodfellow et al., 2016) and
system identification (Ljung, 1998) all consider the model learning problem, with
differences in the assumptions made about the data and model class.

The learning problem can be broken down into three main components:

1. a set of pairs of input-output data {xi, yi}N
i=1, where x ∈ X and y ∈ Y can be

arbitrary data types including signals, sequences, categorical data and images,

2. a loss function l : X × Y → R that measures the discrepancy between the
observed and predicted outputs, and

3. a model f : X × Θ → Y parameterized by a set of parameters θ belonging to
the parameter set Θ (often called the feasible set). The dependence of f on θ

is usually denoted by subscripting fθ while only x is treated as an input to the
model.

The learning problem can be written succintly as:

θ⋆ = arg min
θ∈Θ

1
N

N∑
i=1

l(fθ(xi), yi). (2.1)

Roughly speaking, the aim of learning a model is to predict output values from input
values, given a set of input-output data. A model is said to be accurate if its output
predictions match the data. Often, the data are split into a training set and a test
set. The training set, as the name implies, are the data that the model is trained
on, while the test set is used to evaluate the model after training. Evaluating the
model on inputs unseen during training reveals the generalizability of the model. If
the model is able to make accurate predictions on the training inputs but not the test
inputs, then the model is said to overfit to the training set.

A fundamental assumption made when learning a model is that there is an underlying
but unknown relationship between the observed inputs and outputs in the dataset.

2.1 Learning from Data 8

This assumption is often represented as a joint probability distribution p(x, y) of the
inputs x ∈ X and outputs y ∈ Y 1. In order for the learned model to make accurate
predictions, it is important that the model is able to represent this input-output
relationship: that is, the model set contains the true model. One way to ensure this
is to use a model that is sufficiently expressive or complex to represent a wide range
of functions.

The expressivity of the model is a key factor in its generalizability and accuracy.
These two criteria usually cannot be achieved simultaneously, and this is commonly
known as the bias-variance trade-off (Hastie et al., 2009). A model is said to have
high variance if it overfits to the training set, while high bias refers to the model not
achieving sufficient accuracy on the training set (underfitting).

2.1.1 Regularization

A general method for reducing the variance of models is known as regularization
(Hastie et al., 2009). The main mechanism of regularization is to reduce the com-
plexity of the model, either explicitly by shaping the solution of Problem (2.1) via
constraints and additional losses, or implicitly by modifying the optimization proce-
dure. Reducing model variance through regularization usually comes at the cost of
increasing the bias of the model.

Common explicit regularization methods include:

• L2 regularization (sometimes called ridge regression) (Hastie et al., 2009), which
adds a term of the form ∥θ∥2

2, where ∥·∥2
2 is the squared L2 norm. This encour-

ages the model parameters to be small, and thus increases the smoothness of
the model.

• L1 regularization (sometimes called lasso regression) (Hastie et al., 2009), which
adds a term of the form ∥θ∥1, where ∥·∥1 is the L1 norm, which is simply the

1In this case, Problem (2.1) can be interpreted as a sampled estimate of Ex,y∼p(x,y) [l(f(x), y)],
the expectation of the loss over the joint distribution. This problem is known as empirical risk
minimization in statistical learning theory (Vapnik, 1991).

2.1 Learning from Data 9

absolute value of the elements of θ if they are real numbers. This encourages
sparsity of the model parameters.

One can also regularize model learning by constraining the space of solutions that
are optimized over. This can be effective when one has prior knowledge of the true
model. By encoding this prior in the optimization problem, models that are known to
be ‘bad’ can be avoided during optimization. However, introducing constraints often
comes at the cost of making the optimization problem more difficult to solve. One
particularly important constraint for models of dynamical systems is stability, which
forms a cornerstone of the thesis and will be discussed in Section 2.2.

Another way to regularize the learning problem is by using heuristics to modify the
optimization process itself. These implicit regularization techniques include early
stopping, gradient clipping (Pascanu et al., 2013), and dropout (Srivastava et al.,
2014). These are widely used in deep learning for training large models with up to
millions of parameters.

2.1.2 Numerical Optimization

Given an optimization problem (2.1), there exist many numerical algorithms for find-
ing a solution to it. The appropriate choice of algorithm depends on the loss function
and the parameter set Θ. For a smooth and continuously-differentiable nonlinear
loss function, gradient-based methods, also known as gradient descent, are commonly
used. Furthermore, if the loss function is convex, then gradient-based optimization
exhibits linear convergence to the global minimum (Boyd and Vandenberghe, 2004).
However, even for nonconvex loss functions, gradient methods can still find a locally
optimal solution. Additionally, with the recent proliferation of automatic differenta-
tion software packages, gradient methods are easy to implement and use on any
problem with a differentiable loss function.

At their core, gradient-based methods iteratively update the parameter vector θ via
the update rule:

θk+1 = θk − α∇θl(θk, X, Y), (2.2)

2.1 Learning from Data 10

where k denotes the iteration, α is the step size or learning rate, and the gradient
of the loss function ∇θl is computed over the entire set of training data X and Y .
The gradient indicates the direction that the parameters should be adjusted to reduce
the loss. When only the gradient, or first-order derivative, of the loss is used for the
descent direction, it is called a first-order method.

Second-order methods that also estimate the second-order derivative, or the Hessian,
can be used when the loss is locally well-approximated by a quadratic function at
its optimum. These methods, such as Newton’s method and the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm (Fletcher, 1987), tend to converge in fewer it-
erations than first-order methods, at the cost of increased computational complexity
and memory usage. For the large neural network models that are used in this work,
first-order methods are preferred for computational efficiency.

When the parameter set Θ is the space of real numbers, i.e. Θ = RM , then the model
set is said to be unconstrained. In this case, the optimization problem is immediately
amenable to being solved by gradient-based methods. When the parameter set is
instead constrained to a subset of the real number space, i.e. Θ ⊂ RM , then in
order to solve the optimization via gradient methods, one has to either convert the
constrained problem to an unconstrained one, or project the parameters onto the
feasible set Θ after every update step. In the following, variants of these gradient
methods will be discussed.

Extensions of Gradient Methods

There have been many extensions proposed to the update rule (2.2) to improve the
performance of the optimizer. One significant development is stochastic gradient de-
scent (SGD) (Bottou, 2004), which computes the gradient over batches of the data
rather than over the entire dataset. This significantly reduces the memory require-
ments of the optimizer at the small cost of increasing the variance of the gradient
estimates. In deep learning, batching the gradient computations has enabled tractable
training of models on extremely large datasets (Bottou, 2010).

2.1 Learning from Data 11

Recently, there has been a proliferation of software tools (e.g. PyTorch2, Tensorflow3)
that perform automatic differentiation (Griewank and Walther, 2008), which has
enabled gradient-based methods to be easily implemented for optimizing arbitrary
differentiable loss functions and differentiable models.

The optimizer used for training all of the models in the numerical experiments re-
ported here is the Adam optimizer proposed by Kingma and Ba (2014), described
in Algorithm 2.1. It uses an adaptive learning rate based on estimates of the first
and second moments of the gradient. It has been shown to be effective at optimiz-
ing large-scale learning problems involving high-dimensional neural networks, and is
relatively robust to hyperparameter choice.

When the model set is constrained, one can still optimize the constrained problem
using gradient descent via a modification to the update rule in Equation (2.2):

θk+1 = P(θk − α∇θl(θk, X, Y)), (2.3)

where P is a projection operator that finds the closest θ on the feasible set Θ in the
descent direction∇θl. This is known as projected gradient descent (PGD). Depending
on the shape of the feasible set, evaluating the projection operator may be intractable.
For convex feasible sets, projection would usually involve solving a semidefinite pro-
gram (SDP), which may only be tractable for moderately-sized problems. Compared
to an unconstrained problem, solving a constrained problem using PGD is more com-
putationally expensive and may be more susceptible to local minima.

Penalty Methods

Another approach to solving a constrained optimization problem is to replace the
constraints with additional terms in the loss function that penalize violations of the
constraints. One example is the quadratic penalty method, where the penalty terms
are positive when the constraint is violated and zero otherwise.

2https://pytorch.org/
3https://www.tensorflow.org/

2.1 Learning from Data 12

Algorithm 2.1: Adam optimizer (Kingma and Ba, 2014). Nominal values
of hyperparameters used were α = 10−3, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

Input: α: Learning rate
Input: β1, β2 ∈ [0, 1): Decay rates for moment estimates
Input: l(θ): Loss function with parameters θ
Input: θ0: Initial parameter vector
m0 ← 0 // Initialize first moment vector
v0 ← 0 // Initialize second moment vector
k ← 0 // Initialize iteration counter
while θk not converged do

k ← k + 1
gk ← ∇θlk(θk) // Compute gradient w.r.t. loss
mk ← β1mk−1 + (1− β1)gk // Update first moment estimate
vk ← β2vk−1 + (1− β2)g2

k // Update second moment estimate
m̂k ← mk/(1− βk

1) // Correct for bias
v̂k ← vk/(1− βk

2) // Correct for bias
θk ← θk−1 − αm̂k/(

√
v̂k + ϵ) // Update parameters

return θk

2.1 Learning from Data 13

For example, for a problem of the form:

min
θ

1
N

N∑
i=1

l(θ) subject to ce(θ) = 0, ci(θ) ≥ 0, (2.4)

with one equality constraint and one inequality constraint, the quadratic penalty loss
becomes:

lQ(θ) = l(θ) + µec
2
e(θ) + µi(max(−ci(θ), 0))2, (2.5)

where µe and µi are the penalty coefficients. At each iteration, an approximate
minimizer of lQ(θ) is found and the penalty coefficients are increased for the next
iteration, until convergence. It has been shown that the optimal solution of (2.4) is
attained in the limit as the coefficients approach infinity, if the exact minimizer of
lQ(θ) is found at each iteration (see (Nocedal and Wright, 1999, Chapter 17)). These
are strong conditions that are not attainable in general, and even convergence is not
guaranteed. Despite this, the quadratic penalty method is still widely used when only
an approximate solution is required, due to its ease of implementation. In fact, it can
be implemented to perform just one iteration of minimizing lQ with large values for
µ, for the sake of computational speed at the cost of the accuracy of the solution.

More sophisticated methods can be used to alleviate the disadvantages of the quadratic
penalty method. One example is the augmented Lagrangian method (Hestenes, 1969),
which introduces additional terms to explicitly estimate the Lagrange multiplier.
Compared to the quadratic penalty method, it better preserves the smoothness of
the problem and can achieve convergence without having the penalty coefficients ap-
proach infinity.

Often it may be desirable for all of the solutions at every iteration to be feasible
with respect to the constraints. The penalty methods described above do not possess
this property as constraints may be violated when only an approximate minimizer is
found. Interior point methods address this issue through the use of barrier functions,
which become infinite when constraints are violated. A backstepping line search
algorithm can then be used to find the nearest feasible solution along the search
direction. However, line searches can lead to poor convergence when the solution is

2.1 Learning from Data 14

near the boundary of the feasible set (see for example (Nocedal and Wright, 1999,
Chapter 19)).

2.1.3 Model Classes

A model class defines the space of models that are searched over during optimization,
in contrast to the feasible set which defines the space of parameters of the model. In
the following, the main model classes that are considered in this thesis are presented.

Neural Networks

Artificial neural networks have recently become the model class of choice for many
machine learning applications, from image classification (Krizhevsky et al., 2012) to
natural language processing (Brown et al., 2020). Their popularity has been spurred
on by developments in computing power and availability of large datasets in these
problem domains. On the theoretical side, neural networks have provable error bounds
for approximating any continuous function by the universal approximation theorem
(Hornik et al., 1989).

A neural network is composed of ‘neurons’ which contain an affine transformation
of the input followed by a nonlinear activation function. A standard fully-connected
neural network (FCNN), also known as a multilayer perceptron (MLP), can be written
as:

xi+1 = σ(Wixi + bi), i = 1, 2, . . . , L− 2,

xL = WL−1xL−1 + bL−1,
(2.6)

where x1 is the input to the network and xL is the output. The network has L layers
of neurons, with the last layer being an affine function. The parameters of the neural
network are the weight matrices Wi ∈ Rn×n and bias vectors bi ∈ Rn×1.

Common choices for the activation function σ(x) include

• the rectified linear unit (ReLU): max(x, 0),

2.1 Learning from Data 15

• hyperbolic tangent function: (ex − e−x)/(ex + e−x), and

• sigmoid function: 1/(1 + e−x).

More sophisticated layer and network structures have been developed to suit spe-
cific problems. These include convolutional neural networks (CNNs) for modelling
spatial relationships in the data, commonly used in image classification problems
(Krizhevsky et al., 2012), or recurrent neural networks (RNNs) which are often used
for modelling sequence-to-sequence mappings (Lipton et al., 2015). In the present
work, the functions to be modelled are all memoryless mappings, hence only FCNNs
are used.

State Space Models

State space models are widely used to describe the behaviour of dynamical systems.
They can be written in the form:

xt+1 = fθ(xt, ut),

yt = gθ(xt, ut),
(2.7)

where xt ∈ Rn is the internal state of the model, and ut ∈ Rm and yt ∈ Rny are the
model input and output respectively. The two parameterized functions of the model
are the dynamics function fθ : Rn×m → Rn, and the output function gθ : Rn×m →
Rny . A more general model can also have the timestep t as an input, making it a
time-varying model, however in this work, only time-invariant state space models are
considered.

When the model has no external input u, it is referred to as an autonomous model.
In this case, the only ‘input’ to the model is the initial condition of the state x.

State space models are a very general class of model that can represent many subsets
of models depending on the parameterizations of fθ and gθ. For example, if fθ is set
to zero—that is, the model has no internal dynamics—then the memoryless mapping
yt = gθ(x0, ut) is recovered. If fθ and gθ are linear functions, then (2.7) becomes a

2.2 Stability of Dynamical Systems 16

linear time-invariant (LTI) state space model. When fθ is a neural network, then the
model becomes a recurrent neural network.

2.1.4 Direct Parameterizations

To conclude the discussions of learning from data, some motivations for the model
class developed in this thesis are presented. As noted before, there are broadly two
approaches to solving constrained optimization problems, both with their shortcom-
ings.

Projected gradient descent methods ensure feasibility of the solution with respect to
the constraints, but are more computationally expensive than unconstrained gradient
methods, and may be more susceptible to local minima. On the other hand, penalty
methods do not introduce significant computational costs, but the constraints are
usually only approximately satisfied.

In this work, a different perspective is employed, where instead of enforcing constraints
during the optimization process, the constraints are directly included in the model
structure. In other words, the model is parameterized in a way that smoothly maps
from an unconstrained parameter set Θ = RM to the set of functions that satisfy
the constraints. This idea is referred to as a direct parameterization. It was used
in Revay et al. (2021b) to construct a general class of neural network models with
various desirable properties such as robustness in terms of a Lipschitz bound. In this
work, the focus is on models with stability and stabilizability properties, which will
be defined in the following section.

2.2 Stability of Dynamical Systems

As mentioned in Section 2.1, stability is an important and desirable property for
models of dynamical systems. Unstable models tend to be sensitive to perturbations
in the input, i.e. small changes in the input can produce large changes in the output

2.2 Stability of Dynamical Systems 17

(or internal state if there is no output function). This makes them unsuitable for
prediction tasks since small perturbations to the initial condition and input signal
can lead to diverging predictions.

In the following, the notion of stability is made precise. The focus will be on discrete-
time (DT) systems as DT models are more commonly used in system identification
problems than continuous-time (CT) models, since data used in learning usually
comes in the form of discrete sequences with a uniform time interval.

Consider a general nonlinear DT dynamical system of the form

x(t+ 1) = f(x(t), u(t)). (2.8)

There are many forms of stability for a system (2.8). One can consider the stability
of the homogeneous response of the system, i.e. stability of the system in the absence
of inputs, also known as Lyapunov stability. One can also consider input-to-state
stability for a uniformly bounded input signal (Sontag, 2008), or incremental stability
(Angeli, 2002) between pairs of trajectories.

In the following, the standard definitions of stability are first presented for the general
case, before discussing the special cases that are considered in this thesis.

Definition 2.1 (Lyapunov stability). For an autonomous system xt+1 = f(xt) with
equilibrium x⋆ such that f(x⋆) = x⋆, the equilibrium is said to be

1. Lyapunov stable if for each ϵ > 0, there exists δ > 0 such that if ∥x(0)− x⋆∥ <
δ, then ∥x(t)− x⋆∥ < ϵ for all t ≥ 0 (alternatively, one can say that the signal
x(t) is uniformly bounded),

2. locally asymptotically stable if in addition, there exists δ > 0 such that x(t)→
x⋆ as t→∞ for all trajectories satisfying ∥x(0)− x⋆∥ < δ,

3. locally exponentially stable if in addition, there exist c1, c2 > 0 such that

∥x(t)− x⋆∥ ≤ c1∥x(0)− x⋆∥e−c2t,

2.2 Stability of Dynamical Systems 18

for all trajectories satisfying ∥x(0)− x⋆∥ < δ, and

4. unstable if it is not stable.

The set of initial conditions x0 whose trajectory x(t) converges to x⋆ is called the
region of attraction of x⋆. An equilibrium is said to be globally (asymptotically or
exponentially) stable if its region of attraction is the whole state space of x.

Stability analysis of general nonlinear systems is often limited to local convergence
analysis, e.g. via local linearization, and can be complicated by the presence of
multiple equilibria or other asymptotic behaviour such as limit cycles. For certain
classes of systems, namely LTI systems and contracting systems, stability can be
verified globally and all unforced solutions converge to a single equilibrium.

2.2.1 Stability of Linear Systems

Consider a DT linear time-invariant (LTI) system of the form:

xt+1 = Axt +But. (2.9)

The stability of System (2.9) is completely characterized by the transition matrix A.
A square matrix M can therefore also be referred to as stable, where it is understood
that the stability of the matrix M refers to the stability of the linear system with M
as the transition matrix.

For a DT transition matrix M , stability is defined as follows:

Definition 2.2 (Schur stability). A square matrix M is Schur stable if and only if
all of its eigenvalues lie within the unit circle in the complex plane.

This definition of stability is easy to verify given a matrix but can be difficult to
enforce as a constraint in a learning problem, as the set of Schur stable matrices is
not convex. To find a convex stability condition, we can consider Lyapunov stability
for linear systems, which can be stated as follows.

2.2 Stability of Dynamical Systems 19

Definition 2.3 (Lyapunov stability for linear systems). For a DT LTI system xt+1 =
Axt, the following statements are equivalent:

1. The matrix A is Schur stable,

2. (Lyapunov equation) There exist P,Q ≻ 0 such that

P − A⊤PA = Q, (2.10)

3. (Lyapunov inequality) There exists P ≻ 0 such that

P − A⊤PA ≻ 0, (2.11)

4. The equilibrium x = 0 is globally exponentially stable.

For a controlled system of the form (2.9), Schur stability of A also implies bounded-
input bounded-output (BIBO) stability of (2.9).

The Lyapunov inequality (2.11) is a linear matrix inequality (LMI), and can be easily
verified by solving a convex feasibility problem when A is known. However, this LMI
is not jointly convex in A and P .

One can also consider an implicit model Ext+1 = Fxt + Gut for some invertible E.
This is equivalent to the LTI system (2.9) by writing A = E−1F and B = E−1G.
It can be shown (Manchester et al., 2021; Tobenkin et al., 2017) that this implicit
model is stable if and only if the following LMI is satisfied:

E + E⊤ − P F⊤

F P

 ≻ 0. (2.12)

This LMI is jointly convex and also sum-separable in E, F and P . The sum-
separability of this matrix will enable a direct parameterization of stable matrices
presented in Section 4.3.1. It is also worth noting that feasibility of this LMI guar-
antees that E is invertible.

2.2 Stability of Dynamical Systems 20

Continuous-time case

In continuous-time (CT), the analogous definition for a stable matrix is stated as
follows:

Definition 2.4 (Hurwitz matrix). A square matrix M is Hurwitz if and only if all
of its eigenvalues have strictly negative real parts.

The Lyapunov inequality in CT is given by:

A⊤P + PA+Q = 0, P,Q ≻ 0. (2.13)

2.2.2 Contraction

Contraction analysis (Lohmiller and Slotine, 1998) provides another way to study
nonlinear systems by means of linear systems theory exactly and globally. In contrac-
tion analysis, one is concerned with the differential dynamics of a given autonomous
system:

x(t+ 1) = f(x(t), t), (2.14)

where x ∈ Rn.

The differential dynamics of the model (2.14) are given by a linear time-varying (LTV)
system of the form

δx(t+ 1) = ∂f

∂x
(x(t))δx(t), (2.15)

with δx ∈ Rn representing the infinitesimal displacement. Informally, if the LTV
system (2.15) is exponentially stable along any feasible trajectories x(t), we can say
the system (2.14) is contracting. Its formal definition is given as follows.

Definition 2.5. Given the DT system (2.14), if there exists a uniformly bounded
metric M(x), i.e. a1In ⪯M(x) ⪯ a2In for some a2 ≥ a1 > 0, guaranteeing

∂f

∂x
(x(t))⊤M(x(t+ 1))∂f

∂x
(x(t))−M(x(t)) ⪯ −βM(x(t)), (2.16)

2.2 Stability of Dynamical Systems 21

with 0 < β < 1, then the given system is contracting. M(x) is a Riemannian metric
defined on the tangent space of the state manifold. If the left-hand side of (2.16) is
strictly negative definite, then the system is asymptotically contracting.

A central result of contraction analysis is that, for contracting systems, all trajectories
converge exponentially to a single trajectory, i.e., for any two trajectories xa and xb,

|xa(t)− xb(t)| ≤ a0β
t|xa(0)− xb(0)| (2.17)

for some a0 > 0.

Continuous-time case

Contraction analysis can also be applied to continuous-time systems of the form:

ẋ = f(x, t). (2.18)

The definition of contraction is analogous to that in the discrete-time case.

Definition 2.6. If there exists a uniformly bounded metric M(x, t) such that

Ṁ + ∂f

∂x

⊤
M +M

∂f

∂x
⪯ −2λM, (2.19)

where Ṁ = ∂M
∂t

+∑
i

∂M
∂xi
fi(x), then the system (2.18) is contracting with rate λ.

2.2.3 Control Contraction Metrics

The notion of contraction can be extended to the stabilizability of control-affine non-
linear systems of the form

x(t+ 1) = f(x(t)) + g(x(t))u(t). (2.20)

2.2 Stability of Dynamical Systems 22

For System (2.20), one can ask the question: when can this system be globally sta-
bilized? To answer this question, the definition of stabilizability first needs to be
clarified.

Definition 2.7 (Global exponential stabilizability (Manchester and Slotine, 2017)).
A target trajectory (x⋆, u⋆), where x⋆ and u⋆ are the desired states and inputs respec-
tively, is globally exponentially stabilizable if there exists a feedback controller such
that for any initial condition x(0), a unique solution x(t) of (2.20) exists for all t and
satisfies

∥x(t)− x⋆∥ ≤ e−λtR∥x(0)− x⋆(0)∥, (2.21)

with rate λ > 0 and overshoot R > 0.

A system is said to be universally exponentially stabilizable (UES) if every forward-
complete solution is globally exponentially stabilizable. One can verify that a system
is UES if there exists a control contraction metric (CCM) for that system (Manchester
and Slotine, 2017; Wei et al., 2021).

Definition 2.8 (Discrete Control Contraction Metric (Wei et al., 2021)). For system
(2.20) with differential dynamics

δxt+1 = F (xt)δxt +G(xt)δut, (2.22)

where F (xt) = ∂(f(xt)+g(xt)ut)
∂x

and G(xt) = ∂(f(xt)+g(xt)ut)
∂u

, if there exists a uniformly
bounded metric M(x) and a differential feedback controller δut = K(xt)δxt that satisfy

M(xt)− (F (xt) +G(xt)K(xt))⊤M(xt+1)(F (xt) +G(xt)K(xt)) ≻ βM(xt), (2.23)

then M(xt) is called a discrete control contraction metric for system (2.20).

Definition 2.8 provides a verifiable condition for a system to be UES, but does not
immediately provide a construction for a stabilizing controller. In Wei et al. (2021),
a sum-of-squares (SOS) problem is formulated to jointly search for a CCM and a
corresponding feedback controller, when the differential dynamics are known. In

2.3 Koopman Theory 23

Chapter 5, a framework is proposed to jointly learn a CCM controller and dynamics
model.

2.3 Koopman Theory

From the previous discussions, it is clear that stability analysis is significantly simpler
for linear systems than nonlinear systems. In particular, stability of a linear system
can be verified globally via its spectral decomposition (i.e. eigendecomposition).
Koopman spectral analysis (Koopman, 1931; Mezić, 2005) is an operator-theoretic
framework that studies nonlinear systems via an infinite-dimensional linear operator
that describes the evolution of measurement functions of the system states. The
Koopman operator enables the use of linear systems theory to study the behaviour of
nonlinear systems, including stability (Mauroy and Mezić, 2016). In the following, the
Koopman operator and its associated spectral properties are defined for continuous
and discrete time systems, along with numerical approximations of the Koopman
operator and extensions to controlled systems.

2.3.1 The Koopman Operator

The Koopman operator was first proposed in Koopman (1931) to study the flow of
continuous-time nonlinear systems from an operator-theoretic perspective. In this
work, the focus is on the discrete-time Koopman operator, since it is more suitable
for identification problems where data are usually discrete and uniformly-sampled.
The definition of the DT Koopman operator is given in the following.

Definition 2.9. (Discrete-time Koopman operator) Let F be a Hilbert space of
smooth real-valued scalar functions Rn → R. For the DT dynamical model (2.8),
the Koopman operator K : F → F is defined by

K[φ(x)] := φ ◦ f(x) (2.24)

2.3 Koopman Theory 24

for φ ∈ F , assuming that the system has a unique solution ∀t ∈ N. The scalar
real-valued function φ : Rn → R is termed an observable.

Since the Koopman operator is defined on the functional space, it is infinite-dimensional.
It is also easy to verify that the Koopman operator is linear, i.e. K[k1φ1 + k2φ2] =
k1K[φ1] + k2K[φ2] for any k1, k2 ∈ R and φ1, φ2 ∈ F . This property makes Koopman
methods widely popular in the analysis of dynamical models. Despite the infinite
dimension of the Koopman operator, some key properties of a given nonlinear dy-
namical model — e.g. stability (Mauroy and Mezić, 2016) and dynamical behaviours
— can be captured by a few particular functions, i.e. the Koopman eigenfunctions.

Definition 2.10 (Koopman eigenfunction). A Koopman eigenfunction is a non-zero
observable φλ ∈ F/{0} satisfying

K[φλ(x)] = λφλ(x) (2.25)

for some λ ∈ C, which is the associated Koopman eigenvalue.

A Koopman eigenfunction defines a coordinate in which the system trajectories behave
as a linear system. To be precise, define a coordinate change zλ = φλ(x), the dynamics
of which are given by zλ(t+ 1) = λzλ(t), with the initial condition zλ(0) = φλ(x(0)).
Indeed, the definition (2.25) is equivalent to solving the algebraic equation φλ(f(x)) =
λφλ(x), ∀x ∈ Rn if the DT dynamical model (2.8) is prior.

A Koopman operator will have infinitely many eigenfunctions, as a set of eigen-
functions can be used to construct more eigenfunctions. For example, given two
eigenfunctions φλ1(x) and φλ2(x), their product is also an eigenfunction:

K[φλ1(x)φλ2(x)] = λ1λ2φλ1(x)φλ2(x),

where λ1λ2 is the corresponding eigenvalue.

To obtain a tractable representation of the Koopman operator, one can consider a
finite set of Koopman eigenfunctions, which spans a Koopman invariant subspace.

2.3 Koopman Theory 25

Definition 2.11 (Koopman-invariant subspace). A Koopman-invariant subspace is
defined as G ⊂ F such that for all observables φ ∈ G, Kφ ∈ G.

If G is spanned by a finite set of observables {φk}K
k=1, then all linear combinations of

φk:
g(x) =

∑
k

akφk

remain in the subspace under the Koopman operator:

K[g(x)] =
∑

k

bkφk,

for some ak, bk ∈ R.

By restricting the Koopman operator to such a subspace, a finite-dimensional matrix
representation K of the Koopman operator can be obtained. This matrix K is referred
to as the Koopman matrix. The set of observables that span a Koopman-invariant
subspace can be written as a vector-valued function:

ϕ(x) = [φ1, . . . , φK]⊤ . (2.26)

The dynamics of ϕ(x) are linear and given by

ϕ(xt+1) = Kϕ(xt). (2.27)

Furthermore, if ϕ(x) is a homeomorphism (bijective, continuous and has a continuous
inverse), then the system (2.27) is topologically conjugate (Brunton et al., 2021) to
the original nonlinear system (2.8); that is, the two systems have equivalent dynamics.
More generally, the system (2.27) is topologically semi-conjugate to the system (2.8)
(the dynamics of (2.27) contain the dynamics of (2.8)) if ϕ(x) is injective (Bevanda
et al., 2021). As such, ϕ(x) is referred to as a Koopman embedding, in the topologic
sense.

To illustrate the idea of a Koopman embedding, consider the following example from
Brunton et al. (2016):

2.3 Koopman Theory 26

Example 2.1 (Koopman embedding). Consider the system:

ẋ =

 −x1

−x2 + x2
1

 . (2.28)

By augmenting the state vector x = [x1, x2]⊤ with the nonlinear observable x2
1, the

new coordinates y = [x1, x2, x
2
1]⊤ define a Koopman-invariant subspace with linear

dynamics:

dy

dt
=

−1 0 0
0 −1 1
0 0 −2

 y (2.29)

Continuous-time Koopman Operator

In this section, trhe definition of the continuous-time Koopman operator will be briefly
presented for completeness. For an autonomous system governed by an ordinary
differential equation (ODE)

ẋ = f(x), (2.30)

there exists a semigroup of Koopman operatorKt associated with the flow mapX(x, t)
of the system, defined as:

Ktϕ(x(t)) = ϕ(X(x, t)). (2.31)

The infinitesimal generator of this semigroup is referred to as the continuous-time
Koopman operator K̃ (Williams et al., 2015):

K̃ϕ(x(t)) = d

dt
ϕ(x(t)) = ∇ϕ · f(x(t)). (2.32)

2.3.2 Equivalence of Contraction and Koopman Stability

In Koopman analysis, a central question is whether a finite-dimensional Koopman
embedding exists for a given system that yields an exact linear representation of its
dynamics. Yi and Manchester (2022) showed that for continuous-time systems, such

2.3 Koopman Theory 27

an embedding is guaranteed to exist if the system is contracting. In Section 4.2, this
result is extended to discrete-time systems.

To illustrate the construction of this embedding, let us revisit the example system
(2.28). The following example from Yi and Manchester (2022) demonstrates how the
Koopman embedding can be analytically derived for a contracting system given its
dynamics.

Example 2.2 (Koopman embedding for contracting system). Consider again the
system:

ẋ =

 −x1

−x2 + x2
1

 . (2.33)

The Jacobian matrix F (x) is given by

F (x) := ∂f

∂x
(x) =

−1 0
2x1 −1

 .

By choosing the metric M(x) =
(

1+4x2 0
0 1

)
, we can verify that this system is contracting

by the CT contraction condition:

Ṁ(x) +M(x)F (x) + F (x)⊤M(x) =

−2− 16x2
1 2x1

2x1 −2

 ≺ 0.

From (Yi and Manchester, 2022, Theorem 2), there exists a Koopman embedding for
this system given by:

ϕ(x) = x+
∫ +∞

0
exp(F (x⋆)s)H(X̆(x,−s))ds, (2.34)

where H(x) = F (x⋆)x−f(x) and X̆(x, t) is the solution of modified dynamics defined
as:

ẋ = ρ(x)f(x), ρ(x) =

1, if x ∈ cl(X)

0, if x /∈ X ′
(2.35)

2.3 Koopman Theory 28

for some cl(X) ⊂ X ′ ⊂ Rn.

For System (2.33), F (x⋆) = F (0) = diag(−1,−1). The flow X(x, t) is given by:

X(x, t) =

 e−tx1

e−tx2
1 + e−tx2 − e−2tx2

1

 ,
and H(x) = [0,−x2

1]⊤. The system can be modified in the open set X := {0 < x1 < 1}
to yield the backward flow X̆1 as:

X̆1(x, t) =

e−tx1, ln x1 ≤ t ≤ 0

1, t < ln x1.

The Koopman embedding (2.34) is then given by:

ϕ(x) = x+
∫ 0

−∞

es 0
0 es

 0
−X̆1(x, s)2

ds
= x−

∫ 0

ln(x1)

 0
es(e−sx1)2

ds− ∫ ln(x1)

−∞

 0
es12

ds
=

 x1

−2x1 + x2
1 + x2

 ,
which satisfies

ϕ̇(x) = F (x⋆)ϕ(x) =

−1 0
0 −1

ϕ(x).

The result from Yi and Manchester (2022) shows that for CT contracting systems,
there always exists a Koopman embedding of the same dimensionality as the original
state space. However, analytically deriving such an embedding as in the example
above is not always possible, especially when the dynamics are unknown. In this work,
learning-based methods that approximate the Koopman embedding are considered
instead.

2.3 Koopman Theory 29

2.3.3 Dynamic Mode Decomposition

In the problem of system identification, we are interested in finding the Koopman
eigenfunctions and eigenvalues only from the collected data set {x̃t}T

t=0, for which
dynamic mode decomposition (DMD) provides an efficient data-driven approach to
approximate the Koopman operator (Schmid, 2010).

In DMD, usually some heuristically predetermined, sufficiently rich observables φ1, . . . φN

(N ≫ n)—rather than Koopman eigenfunctions—are involved to learn the nonlin-
earity in the dynamical model. The task in the DMD method is to seek a matrix
A ∈ RN×N in order to obtain a finite-dimensional approximation of K, which mini-
mizes

T∑
j=0
|ϕ(x(t+ 1))−Aϕ(x(t)))|22, (2.36)

where ϕ := [φ1, . . . , φN]⊤. The least square problem (2.36) has a unique solution

A = Y1Y
†

2 (2.37)

with Y1 := [ϕ(x(1)), . . . , ϕ(x(T))], Y2 := [ϕ(x(0)), . . . , ϕ(x(T − 1))] if Y2 is full row
rank. DMD is a simple, efficient method to approximate the Koopman operator, but
two issues arise:

1) In the DMD method, the observables φ are predetermined, which significantly
affects the learning accuracy, but in the literature the selection of observables
usually done in a heuristic manner Williams et al. (2015). Since these observ-
ables are closely connected to the Koopman eigenfunctions for a given dynamical
model, a natural question is: can the observables and the matrix A be learnt
concurrently to improve accuracy?

2) For a stable dynamical model, the above least square solution may yield an
unstable model due to various kinds of perturbations in the data set {x̃t}T

t=0,
which would be unacceptable in many applications. Hence, imposing stability
constraints is an important consideration in learning algorithms.

2.3 Koopman Theory 30

2.3.4 Koopman Operator with Control

There have been many frameworks proposed to extend Koopman operator theory to
include control.

Consider the discrete-time system

xt+1 = f(xt, ut) (2.38)

with x ∈ Rn and u ∈ Rm.

The Koopman with Inputs and Control (KIC) framework (Proctor et al., 2018) gener-
alizes the definition of the Koopman operator by defining a Hilbert spaceH containing
observables that are functions of both the state and input, ϕ : Rn × Rm → R. The
KIC operator K : H → H is defined as:

Kϕ(xt, ut) = ϕ(f(xt, ut), ut+1). (2.39)

This definition of K reduces to the autonomous case if the state vector is augmented
with the control input to form a new state y = [x⊤, u⊤]⊤. Furthermore, if u is
generated by a state feedback controller as ut = k(xt), then K is again equivalent to
the autonomous Koopman operator if k(x) is in the space of observables. However,
this formulation is not well-suited for control design due to the coupling between the
state and input in the augmented state y.

An alternative formulation transforms the system into a linear parameter-varying
(LPV) system via a lifting function composed of a set of observables of the state only,
that span a Koopman-invariant subspace (Iacob et al., 2022a,b). In order to separate
the state and input in the lifted space, first decompose the function f(xt, ut) into its
autonomous and forced dynamics:

f(xt, ut) = f(xt, 0) + g(xt, ut). (2.40)

2.3 Koopman Theory 31

Then given a lifting function ϕ : Rn → RnK , the LPV Koopman system is given by:

ϕ(xt+1) = Aϕ(xt) +B(xt, ut)ut, (2.41)

where

B(xt, ut) =
∫ 1

0

∂

∂u

((∫ 1

0

∂ϕ

∂x
(f(xt, 0) + λg(xt, µut))dλ

)
g(xt, µut)

)
dµ (2.42)

Continuous-time Case

A analogous formulation can be derived for a continuous-time system

ẋ = f(x, u) = f(x, 0) + g(x, u). (2.43)

Given a Koopman mapping ϕ(x), the dynamics of the lifted system is given by (Iacob
et al., 2022a):

ϕ̇(x) = Aϕ(x) +B(x, u)u, (2.44)

where
B(x, u) =

∫ 1

0

∂

∂u

(
∂ϕ

∂x
(x)g(x, λu)

)
dλ. (2.45)

For a control-affine system of the form ẋ = f(x) + g(x)u, the Koopman system (2.44)
is also a control-affine system (Surana, 2016):

ϕ̇(x) = Aϕ(x) + ∂ϕ

∂x
(x)g(x)u. (2.46)

Many prior works, e.g. (Folkestad et al., 2022; Goswami and Paley, 2017; Huang
et al., 2018; Surana, 2016), have also proposed a further simplifying assumption that
there exists a matrix Bi ∈ RnK×nK for each element ui in u, such that

∂ϕ

∂x
(x)gi(x) = Biϕ(x). (2.47)

2.4 Summary 32

Then the Koopman system takes on a bilinear form:

ϕ̇(x) = Aϕ(x) +
m∑

i=1
Biϕ(x)ui. (2.48)

By identifying a system of this form, one can then apply bilinear control methods to
control the original nonlinear system.

This bilinear form may be further simplified to a linear system (Yi and Manchester,
2022) by finding a transformation u = α(x, v) that satisfies:

Bvv =
m∑

i=1
Biϕ(x)αi(x, v), (2.49)

where αi are the components of the vector-valued function α. An LTI system is then
obtained:

ϕ̇(x) = Aϕ(x) +Bvv. (2.50)

2.4 Summary

To summarise, this chapter first discussed the problem of statistical learning in terms
of choice of models and optimization methods. Next, the notion of stability was
defined for linear systems and contracting systems. Finally, the underlying theory of
the Koopman operator was presented, and the relevant terminology was defined.

Chapter 3

Related Work

In this chapter, related work on the problems considered in this thesis, namely, the
problem of learning stable Koopman models in Chapter 4 and the problem of stable
imitation learning in Chapter 5, are reviewed.

3.1 Learning Koopman Models

The underlying theory of the Koopman operator was presented in Section 2.3. In
this section, methods for learning the Koopman matrix and/or embedding from data
will be presented. The literature on Koopman-based methods is vast, and readers are
referred to recent reviews by Bevanda et al. (2021); Brunton et al. (2021); Otto and
Rowley (2021) for more details.

As discussed in Section 2.3.3, dynamic mode decomposition (DMD) is a method
for estimating the Koopman operator for a pre-determined set of observables given
snapshots of the state transitions. The original DMD algorithm (Schmid, 2010) con-
sidered linear observables ϕ(x) = x to approximate the Koopman operator as a finite-
dimensional matrix. Linear observables were shown to be effective for analysing the
spectrum of high-dimensional fluid flows via a truncated singular value decomposi-
tion (SVD) of the Koopman matrix. Williams et al. (2015) proposed extended DMD

3.1 Learning Koopman Models 34

(EDMD) which used a dictionary of basis functions as nonlinear observables to bet-
ter model nonlinearities. Proctor et al. (2016) extended DMD to identify controlled
systems using the DMD with control (DMDc) framework.

For DMD methods, a central question is the selection of appropriate basis functions
that capture the nonlinear behaviour of the system being studied. In the case of
EDMD, the basis functions are usually chosen heuristically, such as monomials or
radial basis functions. Other bases such as time-delay coordinates (Brunton et al.,
2017) or an implicit basis defined by a kernel function (Williams et al., 2016) have
also been proposed.

Recently, many works have investigated data-driven methods for automatically ac-
quiring a set of observables, by modelling the Koopman embeddings as neural net-
works (Azencot et al., 2020; Erichson et al., 2019; Li et al., 2017a; Lusch et al., 2018;
Mardt et al., 2018; Otto and Rowley, 2019; Pan and Duraisamy, 2020; Takeishi et al.,
2017; Yeung et al., 2019). The neural networks typically have an encoder-decoder ar-
chitecture, with the encoder representing the Koopman embedding and the decoder
being an inverse mapping to map back to the original state space. Additionally,
there may be a linear model between the encoder and decoder to represent the linear
dynamics of the Koopman subspace.

One consideration in learning Koopman embeddings is the dimensionality of the
Koopman-invariant subspace compared to that of the original state space. If the
original state space is of very high-dimensional, for example as seen in fluid dynamics
problems (Erichson et al., 2019), then typically a lower dimensional Koopman sub-
space is desired, in order to obtain a reduced-order model of the system and identify
the dominant eigenfunctions of the Koopman operator. On the other hand, for lower-
dimensional, highly nonlinear systems such as the classic inverted pendulum, the goal
is to learn a higher-dimensional Koopman embedding that lifts the nonlinear system
onto a linear manifold. This high-dimensional lifting approach is the one taken in
this work as it is appropriate for the problems considered.

3.1 Learning Koopman Models 35

3.1.1 Stable Koopman Models

Relatively few works have considered stability of the Koopman model. Mamakoukas
et al. (2020) proposed to use a constrained parameterization of stable matrices to
represent the Koopman matrix, and optimized the model using a projected gradient
descent (PGD) algorithm. However, as discussed in Section 2.1.2, PGD optimiza-
tion methods suffer from scalability and convergence issues. Pan and Duraisamy
(2020) proposed a diagonal matrix parameterization for guaranteeing stability of the
continuous-time Koopman matrix while jointly learning an embedding. However, the
diagonal parameterization restricts the embedding to represent only eigenfunctions
and not generalized observables.

Following the publication of the work here in Fan et al. (2022), the stable parameteri-
zation proposed in Section 4.5 was used in Bevanda et al. (2022b) to learn a Koopman
model with a diffeomorphic embedding.

3.1.2 Koopman Models for Control

A strong motivation for identifying Koopman models is the benefit of applying linear
control design methods to nonlinear systems. To this end, many works have proposed
parameterizations of Koopman models for controlled systems (Bevanda et al., 2022a;
Folkestad et al., 2022; Han et al., 2020; Huang et al., 2018; Iacob et al., 2021; Kaiser
et al., 2021; Sinha et al., 2022; Zinage and Bakolas, 2022). Most methods identify a
latent Koopman space with dynamics that are linear in the latent state and either 1)
linear in the control, 2) bilinear in the control, or 3) control-affine. Models that are
linear in the control can be restrictive in terms of the classes of the systems they can
represent, but are still attractive as they are amenable to linear control methods such
as LQR (Bevanda et al., 2022a). Bilinear models are more flexible than linear models
but require more complex control methods like nonlinear model predictive control
(NMPC) (Folkestad et al., 2022) or control design via control Lyapunov functions
(Huang et al., 2018; Zinage and Bakolas, 2022) such as Sontag’s formula (Sontag,

3.2 Imitation Learning 36

1989). Finally, control-affine models most closely match the theoretical form (2.41),
but require linear parameter-varying control methods (Iacob et al., 2021).

The identification of Koopman models for control usually involves applying random
inputs to the system and recording the state trajectories. A controller is then designed
for the learned model after training. As such, these models are not immediately
applicable to the problem of imitation learning considered in this work, since the
model only represents the open-loop dynamics and does not explicitly contain the
controller. To the best of the writer’s knowledge, this is the first work to consider
applying Koopman models to the problem of imitation learning.

3.2 Imitation Learning

Imitation learning (IL), also known as learning from demonstrations, is a rapidly
growing field at the intersection of many disciplines including machine learning, con-
trol theory and human-robot interaction. Imitation learning considers the problem of
learning a control policy of an autonomous agent given demonstrations of the desired
actions or trajectories. These demonstrations can come from an unknown optimal
controller or an expert human operator. A comprehensive review of imitation learn-
ing methods is beyond the scope of the thesis. See Osa et al. (2018) for a recent review
of IL algorithms from a machine learning perspective. The focus for this section will
be on methods most similar to the one proposed in Chapter 5.

Imitation learning algorithms can be broadly classified by the function being learnt.
One class of IL algorithms known as behavioural cloning (BC) (Bain and Sammut,
1995) explicitly learns a control policy, which can be seen as a form of supervised
learning. Another approach is to assume that the observed controller is optimizing
some unknown reward (or negative cost) function:

u⋆ = arg max
uk

E
[

T∑
k=t

rθ(xk, uk)
]
, (3.1)

where u⋆ is the optimal control/action, and E
[∑T

k=t rθ(xk, uk)
]

is the expected return

3.2 Imitation Learning 37

of the policy from the current time t until the final time T . The imitation learn-
ing problem then becomes a problem of learning the reward function rθ(x, u). This
paradigm is referred to as inverse reinforcement learning (IRL) (Russell, 1998), and
is also closely related to inverse optimal control (IOC) (Kalman, 1964), with the two
terms sometimes used interchangeably. In this thesis, the behavioural cloning ap-
proach is considered, but the proposed method also has connections to IOC which
will be discussed in Section 5.3.5.

Within these two paradigms, algorithms can be further divided by whether a forward
dynamics model is learned (model-based) or not (model-free). Model-free methods are
favoured when the dynamics may be difficult to model due to discontinuities or contact
forces. On the other hand, model-based methods can be useful when the system is
difficult to control, e.g. if it is underactuated. In this case, learning a dynamics model
can help ensure that the learned policy will produce feasible trajectories.

The learned policy can be either stochastic or deterministic. Deterministic policies
are a sensible choice when modelling an optimal policy of a deterministic dynamical
system. On the other hand, stochastic policies can be useful for modelling uncer-
tainty in observed demonstrations, or suboptimality of the demonstrations through
the principle of maximum entropy (Jaynes, 1957; Ziebart et al., 2008).

In the following, algorithms for each paradigm will be discussed separately, along with
a focused discussion on imitation learning algorithms that consider stability of the
learned controller.

3.2.1 Behavioural Cloning

One of the early successes of behavioural cloning was in autonomous driving (Pomer-
leau, 1991), where a neural network was trained to map from road images to steering
inputs of a car. Since then, BC has been successfully applied to many other problems
including autonomous helicopter flight (Abbeel et al., 2010) and robotic surgery (Osa
et al., 2017).

3.2 Imitation Learning 38

The policy representation is a central consideration for BC. In this work, the control
policy learned is a state-to-action mapping parameterized by θ:

u = πθ(x). (3.2)

Learning such a state-feedback controller enables the use of control-theoretic tools
such as contraction analysis to describe the interaction between the controller and
the system. An alternative policy representation is to map from initial conditions to
entire trajectories, assuming there is a pre-existing low-level controller for trajectory
tracking. Many trajectory-based models have been proposed, using Gaussian mixture
models (Calinon et al., 2007; Khansari-Zadeh and Billard, 2011), Gaussian processes
(Osa et al., 2017) or dynamic movement primitives (Ijspeert et al., 2013; Schaal et al.,
2005). Trajectory-based methods have the benefit of guaranteeing feasible and stable
trajectories, however, they tend to be less generalizable than methods that learn
state-feedback controllers.

One significant shortcoming of BC is the problem of covariate shift (Ross and Bagnell,
2010; Ross et al., 2011). Essentially, any errors in the learned policy’s predictions will
compound as the system deviates further from the states in the training data. In
reinforcement learning terms, this can be seen as an effect of off-policy learning,
where the policy that generates the training data is different to the policy executed
on the real system. From a supervised learning perspective, this can be described as
the policy overfitting to the training data.

Ross et al. (2011) proposed the DAgger algorithm to address covariate shift. DAgger
is an online learning algorithm that queries the expert for the correct controls at states
encountered by the learner. However, this approach may not always be practical for
physical systems.

Behavioural cloning is still widely used as a baseline for benchmarking IL algorithms,
due to its ease of implementation and relatively good performance on benchmark
problems such as the MuJoCo suite (Fu et al., 2020). One important advantage of
vanilla BC is that it only requires state-action pairs as data, and learning is done

3.2 Imitation Learning 39

entirely offline.

3.2.2 Inverse Reinforcement Learning

Early work on inverse reinforcement learning (IRL) focused on problems with discrete
action spaces (Abbeel and Ng, 2004; Ng and Russell, 2000), as the maximization in
Equation (3.1) can be easily solved for a discrete set of u to yield a tractable policy
representation.

For continuous action spaces, most recent methods are based on the framework of
maximum entropy IRL (MaxEntIRL) (Ziebart, 2010; Ziebart et al., 2008). It mod-
els the observed policy as an exponential distribution with the reward function as
the exponent, which admits a tractable likelihood maximization for discrete state
spaces. Guided cost learning (GCL) (Finn et al., 2016) extended MaxEntIRL to con-
tinuous domains using a sampling-based approximation to model the distribution.
A closely-related method proposed by Ho and Ermon (2016) is called generative
adversarial imitation learning (GAIL), named after generative adversarial networks
(GANs) (Goodfellow et al., 2014). In GAIL, the reward function acts as a discrimi-
nator for the policy, which serves as the generator, and the two functions are jointly
trained in an adversarial procedure. GAIL has been widely adopted as a benchmark
IRL method, and inspired many extensions (Dadashi et al., 2021; Duan et al., 2017;
Fu et al., 2017; Kostrikov et al., 2019; Li et al., 2017b; Wang et al., 2017). How-
ever, GAIL-based methods suffer from the same drawback that GANs have, which is
difficulty of adversarial training.

Ghasemipour et al. (2020) presented a unifying view of IL methods as minimizing the
probabilistic distance (known as f-divergence) between the demonstrator and learner
policies. They showed that different IL methods including BC, DAgger and GAIL
can be reformulated as minimizations of different types of f-divergences.

One disadvantage of IRL methods compared to BC methods is the fact that most IRL
methods are online algorithms, which means the policy is evaluated on the system

3.2 Imitation Learning 40

during learning to collect additional data. As such, although IRL methods are sample-
efficient in terms of expert data, they may require millions of timesteps of interaction
with the environment to reach a desired level of performance (Ho and Ermon, 2016).
Additionally, during online learning, the policy may exhibit unstable behaviour, which
would be a significant safety risk for a physical system.

3.2.3 Stable Imitation Learning

There have been relatively few works that consider the stability of the learned pol-
icy from a control-theoretic perspective (Havens and Hu, 2021; Palan et al., 2020;
Pfrommer et al., 2022; Tu et al., 2022; Yin et al., 2021).

Early work on stable IL considered the IL problem with known dynamics (Havens
and Hu, 2021; Palan et al., 2020; Tu et al., 2022; Yin et al., 2021), and proposed
methods to guarantee that the learned policy will be stabilizing for the real system.

Palan et al. (2020) and Havens and Hu (2021) only considered LTI systems with linear
controllers, and proposed to constrain the stability of the controller via LMIs. The
resulting constrained optimization problem is then be solved using the alternating
direction method of multipliers (ADMM) or projected gradient descent (PGD). Both
ADMM and PGD are iterative methods that have to solve semidefinite programs at
each iteration, hence may not be scalable to high-dimensional problems.

Yin et al. (2021) consider IL with neural network (NN) controllers applied to known
LTI systems. They derive an LMI condition for stability of the closed-loop system,
by bounding the nonlinearities of the NN using sector quadratic constraints. The
constrained optimization problem is then solved using ADMM. However, in order to
obtain a convex constraint, all of the bias terms in the NN are set to zero, which
severely reduces the expressivity of the NN.

Tu et al. (2022) consider discrete-time control-affine systems of the form (2.20) with
known dynamics. They show that the trajectory imitation error can be upper-
bounded by the cumulative controller prediction error, if the system is incrementally-

3.3 Summary 41

gain-stable, which includes contracting systems. They then propose an iterative on-
line learning algorithm similar to that of Ross and Bagnell (2010) to minimize the
controller error. Interestingly, they note in their experiments that hard stability con-
straints are not required to learn a stabilizing controller, and that optimal controllers
may be naturally stabilizing.

The stable IL methods discussed so far all assume knowledge of the dynamics, which
allows stability of the closed-loop system to be guaranteed. However, the assumption
of known dynamics limits their application to general problem settings where a model
of the dynamics may be difficult to derive analytically.

The recent method of Taylor series imitation learning (TaSIL) (Pfrommer et al., 2022)
proposed to upper-bound the trajectory imitation error using a Taylor series expan-
sion of the controller prediction error. Notably, TaSIL does not require knowledge of
the dynamics, but does require queries to the expert policy to estimate higher-order
derivatives of the Taylor series expansion. In many IL problems, the expert policy
would not be available for querying and only trajectory data is provided.

As can be seen, existing stable IL methods consider problems where prior knowledge
of the system/controller is used to guarantee stability of the learned policy. In this
work, the standard BC problem setting is considered, where only trajectory data
is available and no prior knowledge of the system is assumed. In such a setting,
the learned controller can only be guaranteed to be stable for a learned dynamics
model. However, such a stability guarantee may act as a regularizer to encourage the
controller to be stabilizing for the true system. This hypothesis is supported by the
observations made by Tu et al. (2022).

3.3 Summary

To summarise this chapter, prior work on learning Koopman models and imitation
learning were discussed, in particular methods that consider stability. Gaps in the
current literature were also identified and will be addressed in the following chapters.

Chapter 4

Stable Koopman Models

In this chapter, a new data-driven method for learning stable models of nonlinear
systems is presented. The proposed model lifts the original state space to a higher-
dimensional linear manifold using Koopman embeddings. It will be shown that every
discrete-time nonlinear contracting model can be learnt in our framework. Another
significant benefit of the proposed approach is that it allows for unconstrained opti-
mization over the Koopman embedding and operator jointly while enforcing stability
of the model, via a direct parameterization of stable linear systems, greatly simplifying
the computations involved. The proposed method is validated on a simulated system
and the advantages of the parameterization compared to alternatives are analyzed.

4.1 Introduction

Let us consider the problem of fitting models to data generated from dynamical
systems, known as system identification. One important consideration in system
identification is the stability of the model. In many applications, the fitted model is
used for prediction of future behaviors of the system, and an unstable model would
erroneously produce unbounded predictions.

There are many different forms of stability for nonlinear systems. Contraction, also
known as incremental stability, can be viewed as a “strong” type of stability for

4.1 Introduction 43

dynamical systems that studies the convergence between any two trajectories of the
given system (Lohmiller and Slotine, 1998). There has been much prior work on learn-
ing contracting models in system identification for various model classes, including
polynomial models (Tobenkin et al., 2017; Umenberger and Manchester, 2019), Gaus-
sian mixture models (Ravichandar et al., 2017) and neural network models (Manch-
ester et al., 2021; Revay et al., 2021a,b). In this chapter, a new class of contracting
nonlinear model is proposed that combines the expressiveness of neural networks with
the strong stability guarantees associated with linear systems. Furthermore, a learn-
ing framework is proposed that fits this class of models to data via an unconstrained
optimization problem.

The present work bridges the gap between learning stable nonlinear models and ap-
proximating the Koopman operator (Koopman, 1931), an infinite-dimensional linear
operator that can describe the dynamics of any nonlinear system by embedding it
in a higher-dimensional space. There has been growing interest in data-driven meth-
ods that estimate finite-dimensional approximations of the Koopman operator and
its eigenfunctions (Haseli and Cortes, 2021; Schmid, 2010; Williams et al., 2015),
motivated by the appeal of being able to apply linear systems analysis to complex
nonlinear systems. Due to this benefit, Koopman-based methods have been devel-
oped for system identification (Mauroy and Goncalves, 2020), state observation and
control (Korda and Mezić, 2018) of nonlinear systems.

In Koopman identification approaches, a central problem is how to learn the Koopman
embedding from data. Recently many methods (Li et al., 2017a; Lusch et al., 2018;
Mardt et al., 2018; Otto and Rowley, 2019; Pan and Duraisamy, 2020; Takeishi et al.,
2017; Yeung et al., 2019) have been proposed to address this problem, however most
of them do not consider the stability of the learned model. Unstable learned models
may have serious robustness issues, particularly when applied to dissipative physical
systems, making them unsuitable for practical use. The approach taken here to solve
this problem is to impose stability constraints on the Koopman model.

The proposed model class is motivated by recent work (Yi and Manchester, 2022)
showing that, for continuous-time (CT) nonlinear systems, there is an equivalence

4.1 Introduction 44

between the Koopman and contraction approaches for stability analysis under some
mild technical assumptions.This equivalence result is extended to discrete-time (DT)
systems in this chapter, and an algorithmic framework is provided for learning Koop-
man models with contracting properties.

Consider the identification of a Koopman embedding and operator for a discrete-time
(DT) autonomous state-space system:

x(t+ 1) = f(x(t)), (4.1)

where x ∈ Rn and t is the timestep. The system (4.1) is assumed to have a single
equilibrium at x⋆, i.e. f(x⋆) = x⋆. Further, the function f(x) is assumed to be
unknown, but the learning algorithm has access to full-state1 trajectory data {x̃t}T

t=0

generated by system (4.1), where x̃ denotes measured data. The problem considered
is to learn a function ϕ(x) (i.e. the Koopman embedding) that smoothly maps from
the original state space Rn to a possibly higher-dimensional space RN (N ≥ n), as
well as a linear matrix A ∈ RN×N (i.e. a finite-dimensional approximation of the
Koopman operator) that describes the evolution of ϕ(x) over time.

The Koopman embedding and the matrix A in fact form a predictive model of the
system (4.1), which is defined as a Koopman model.

Definition 4.1 (DT Koopman model). Given a Koopman embedding ϕ(x) and matrix
A, the corresponding Koopman model is:

x(t) = a(x0, t) = ϕL(Atϕ(x0)), (4.2)

where ϕL : RN → Rn is a left-inverse of ϕ(x) such that ϕL(ϕ(x)) = x, and x0 is an
1In the case when full-state measurements are not available and states are only partially ob-

served from some output function y = h(x), one can use time-delayed measurements as the state
representation, i.e. stack a sequence of past measurements to form the state vector:

x̃t = [ỹ⊤
t , ỹ⊤

t−1 . . . , ỹ⊤
t−τ],

where ỹt is the measured output and τ is a hyperparameter. This idea is well-known in system
identification (Ljung, 1998) and commonly used in Koopman learning (Korda and Mezić, 2018;
Takeishi et al., 2017; Tu et al., 2014).

4.2 Stability Criterion for Discrete-time Koopman Models 45

initial condition.

A diagrammatic representation of the discrete-time Koopman model is shown in Fig-
ure 4.1.

Figure 4.1 – Diagram of discrete-time Koopman model. The notation x1:T denotes
the state sequence {x1, . . . xT }, which is the output of the model.

The problem of jointly learning ϕ(x) and A can be treated as a minimization of the
prediction error of the Koopman model on the given data {x̃t}T

t=0.

4.2 Stability Criterion for Discrete-time Koopman

Models

In this section, the main result in Yi and Manchester (2022) is extended to DT sys-
tems. It will be proven that the Koopman and contraction approaches are equivalent
for nonlinear stability analysis. It will be shown that the model set proposed here
can provide sufficient degrees of freedom for learning nonlinear DT models.

Theorem 4.1. Consider the system (4.1). Suppose that there exists a mapping ϕ :
Rn → RN with N ≥ n such that

D1 There exists a Schur stable matrix A ∈ RN×N satisfying

ϕ(f(x)) = Aϕ(x). (4.3)

4.2 Stability Criterion for Discrete-time Koopman Models 46

D2 Φ(x) := ∇ϕ(x)⊤ has full column rank, and Φ(x)⊤Φ(x) is uniformly bounded.

Then system (4.1) is contracting with the contraction metric Φ(x)⊤PΦ(x), where P
is any positive-definite matrix satisfying P − A⊤PA ≻ 0. Conversely, if the system
(4.1) is contracting with the metric M(x) ∈ Rn×n

≻0 , and assuming that f is invertible
and its inverse f−1 is continuous. Then, in any invariant compact set X ⊂ Rn, there
exists a continuous Koopman mapping ϕ : Rn → Rn verifying D1 and D2.

Proof. (⇒) From D2 there exists a matrix P = P⊤ ≻ 0 satisfying the Lyapunov
condition

P −A⊤PA ≻ Q, (4.4)

for some constant positive definite matrix Q ≻ 0 without loss of generality. We define
a new coordinate z := ϕ(x) in which the infinitesimal displacement δzt ∈ RN at time
t is given by

δzt = Φ(xt)δxt, (4.5)

where δxt is an infinitesimal displacement in the x-coordinate.

The DT differential dynamics of x can be written as

δxt+1 = F (xt)δxt, (4.6)

where F (x) := ∇f(x)⊤.

Similarly, for z we have

δzt+1 = AΦ(xt)δxt = Φ(xt+1)F (xt)δxt, (4.7)

where we have used the relations zt+1 = Azt and zt+1 = ϕ(f(xt)) in their differential
forms. Hence, we obtain

Φ(xt+1)F (xt) = AΦ(xt).

Due to the full column rank of Φ(x) and (4.4), it follows that

Φ(xt)⊤(P −A⊤PA)Φ(xt) ≻ Φ(xt)⊤QΦ(xt). (4.8)

4.2 Stability Criterion for Discrete-time Koopman Models 47

Then, by substituting (4.7), we have

Φ(xt)⊤PΦ(xt)− F (xt)⊤Φ(xt+1)⊤PΦ(xt+1)F (xt)
(4.7)
≻ Φ⊤QΦ ⪰ λmin(Q)

λmax(P)Φ⊤PΦ.
(4.9)

Now since Φ has full column rank and P ≻ 0, we have M(x) := Φ⊤PΦ ≻ 0. Substi-
tuting into (4.9):

M(xt)− F (xt)⊤M(xt+1)F (xt) ≻ βM(xt), (4.10)

with β := λmin(Q)/λmax(P). By selecting Q = ρP with ρ ∈ (0, 1), we have β ∈ (0, 1).
This is exactly the contraction condition for the system (4.1) with respect to the
metric M .

(⇐) For the given DT system, from directly applying the Banach fixed-point theorem
we conclude that there exists a unique fixed-point x⋆ ∈ X , i.e. f(x⋆) = x⋆.

First, we parameterise the unknown mapping ϕ(x) as ϕ(x) := x + T (x), with a
new mapping T (x) to be searched for. Then, the algebraic equation (4.3) becomes
T (f(x)) + f(x) = Ax + AT (x). By fixing A = ∇f(x⋆)⊤, from the contraction as-
sumption, we have M(x⋆)−A⊤M(x⋆)A ⪰ βM(x⋆), thus A is Schur stable. We have
that

T (f(x)) = AT (x) +H(x), (4.11)

in which we have defined H(x) := Ax − f(x). We make the key observation that
the algebraic equation (4.11) exactly coincides with the one in the formulation of the
Kazantzis-Kravaris-Luenberger observer for nonlinear DT systems (Brivadis et al.,
2019, Eq. (7)). In our case, the function H(x) is continuous and, following (Brivadis

4.2 Stability Criterion for Discrete-time Koopman Models 48

et al., 2019, Theorem 2), we have a feasible solution2 to (4.11) as follows:

T (x) =
+∞∑
j=0
AjH(X(x,−j + 1)), (4.12)

with the definition

X(x, j) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
j times

(x), X(x,−j) = (f−1)j(x)

for j ∈ N+.

Although ϕ0(x) := x + T (x) with T defined above satisfies D1 in the entire set X ,
the condition D2 may be not true. Hence, we need to modify the obtained ϕ0(x).
By considering the evolution of the trajectories in the x- and z := ϕ(x)-coordinates
respectively, we have

z(tx) = ϕ0(x(tx)) = ϕ0(X(x, tx)) = Atxϕ0(x),

with tx ∈ N+, thus satisfying ϕ0(x) = A−txϕ0(X(x, tx)). Then, we modify ϕ0(x) into

ϕ(x) := A−tx [X(x, tx) + T (X(x, tx))] (4.13)

with a sufficiently large tx ∈ N+.

2The second assumption in Brivadis et al. (2019) holds true in any backward invariant compact
set. Since contracting systems generally cannot guarantee such invariance, we may modify the
dynamics as xt+1 = f̄(xt) with

f̄(x) =
{

f(x), if x ∈ cl(X)
x, if x /∈ X ′

with X ⊂ X ′, and then continue the analysis.

4.3 Model Set 49

Finally, let us check conditions D1 and D2. For the algebraic condition, we have

ϕ(f(x)) = A−txϕ0(X(f(x), tx))

= A−txϕ0(f(X(x, tx)))

= A−tx · Aϕ0(X(x, tx))

= Aϕ(x)

where we have used the fact

X(f(x), tx) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
(j+1) times

= f(X(x, tx))

in the second equation. Therefore, ϕ(x) defined in (4.13) satisfies the algebraic equa-
tion (4.3). Regarding D2, let us study the Jacobian of ϕ(x) in (4.13), which is given
by

∂ϕ

∂x
(x) = A−tx

[
I + ∂T

∂x
(X(x, tx))

]
∂X

∂x
(x).

On the other hand, we have that ∇xX is full rank and

H(x⋆) = 0, ∂H

∂x
(x⋆) = 0,

as a result ∇T (x⋆) = 0. If tx ∈ N+ is sufficiently large, the largest singular value of
∇T (X(x, tx)) would be very small, and then the identity part of ϕ(x) will dominate
∇ϕ(x). Hence, ϕ(x) is an injection for a large tx ∈ N+.

4.3 Model Set

4.3.1 Parametrization of Koopman Matrix

There are many equivalent conditions for enforcing stability of linear systems, includ-
ing the well-known Lyapunov inequality P − A⊤PA ≻ 0 for some P ≻ 0, and the

4.3 Model Set 50

recently proposed parameterization in Gillis et al. (2020), which was used to train
stable Koopman operators for fixed observables in Mamakoukas et al. (2020). How-
ever, solving optimization problems with these constraints in an efficient manner is
non-trivial, especially when jointly searching for the observables.

In the following, an unconstrained parameterization of A is presented, which is a
special case of the direct parameterization approach proposed in Revay et al. (2021b).

Proposition 4.1. Consider the parametric matrix A(L,R) as

A(L,R) = 2(M11 +M22 +R−R⊤)−1M21, (4.14)

where

M :=

M11 M12

M21 M22

 = LL⊤ + ϵI, (4.15)

with ϵ a small positive constant. Then for any real-valued L ∈ R2N×2N and R ∈
RN×N , A0 = A(L,R) is a necessary and sufficient condition for A0 to be Schur
stable.

Proof. (Sufficiency) Let E = (M11 +M22 +R−R⊤)/2, F = M21 and P = M22. Then
we have A(L,R) = E−1F and

M =

E + E⊤ − P F⊤

F P

 . (4.16)

It has been shown that M ≻ γI for some γ > 0 is necessary and sufficient for E−1F

to be Schur stable (Tobenkin et al., 2017). Hence if there exists L and R such that
(4.14) and (4.15) hold, then by choosing a sufficiently small ϵ, we have M ≻ γI. Thus
A(L,R) is Schur stable.

(Necessity) To prove necessity, it needs to be shown that there always exists L such
that M = LLT + ϵI satisfies M ≻ γI. By the continuity of eigenvalues of a ma-
trix with respect to its elements (Bhatia, 1996, Chapter 7), one has that M − ϵI is

4.3 Model Set 51

positive definite by choosing a sufficiently small positive ϵ≪ γ. Hence the Cholesky
factorization guarantees the existence of L such that M − ϵI = LLT , as required.

4.3.2 Parametrization of Koopman Embedding

The observables are proposed to be parameterized as:

ϕ(x) = Cx+ ψ(x, θNN), (4.17)

where C = [In, 0n×(N−n)]⊤. The nonlinear part ψ(x) can be any differentiable function
approximator, parameterized by θNN . For brevity, the dependence on θNN is dropped
in the notation. In this work, ψ(x) is chosen to be a feedforward neural network due
to its scalability, but any differentiable function approximator can be used.

The dimensionality of the observables N is a hyperparameter chosen by the user.
For N = n, the observables will be of the same form as the constructive mapping
ϕ0(x) = x + T (x) in Theorem 4.1. To reconstruct the original state x from the
observables, a separate function ϕL(z) has to be trained to compute the left-inverse
of ϕ(x). Indeed, the left invertibility of ϕ is necessary for condition D2. This left
inverse function is simply parameterized as another neural network ϕL(z, θL).

Remark 1. There are many possible parameterizations of the observables that are
compatible with the framework, with Equation (4.17) being just the one chosen to
mimic the constructive mapping from Theorem 4.1. For some parameterizations,
the left inverse may be computed analytically and does not have to be modelled as a
separate function. For example, if ϕ(x) = [x⊤, ψ(x)⊤]⊤, then the left inverse is simply
x = Cϕ(x), where C = [I, 0].

4.4 Learning Framework 52

4.3.3 Overall Koopman Model

It may be helpful to think of our model as a linear system with an output x̂ that is
an estimate of the original state:

z(t) = Az(t− 1),

x̂(t) = ϕL(z(t)),
(4.18)

where z(0) = ϕ(x0) and ϕL(·) is the left-inverse of ϕ(x). This system is equivalent to
(4.2). In this form, it is clear that as long as A is stable and ϕL is uniformly bounded,
then the output x̂ will always converge to a single equilibrium.

4.4 Learning Framework

4.4.1 Optimization Formulation

To fit the model parameters {θNN , θL, L,R} to data, the problem of minimizing the
simulation error in the embedding space is considered:

Jse := 1
T

T∑
t=0
∥z̃t − zt∥2

2, (4.19)

where z̃t = ϕ(x̃t), and zt = Atϕ(x̃0). While the simulation error in x could be
minimized instead, in practice this was found to produce poor results. The simulation
error in z can still be large when the simulation error in x is small, hence the Koopman
embedding may be fit poorly without including the excess coordinates of z in the
minimization.

The complete optimization problem is:

min
θ∈Θ

1
T

T∑
t=0

∥∥∥ϕ(x̃t)−A(L,R)tϕ(x̃0)
∥∥∥2

2
+ αJrec. (4.20)

4.4 Learning Framework 53

The reconstruction loss Jrec is defined as

Jrec = 1
T

T∑
t=0

∥∥∥x̃t − ϕL(ϕ(x̃t))
∥∥∥2

2
. (4.21)

Minimizing Jrec gives an approximate left-inverse ϕL for the Koopman mapping.
The loss Jrec can be thought of as a penalty term that relaxes the constraint x =
ϕL(ϕ(x)) ∀x, and the constant α is a hyperparameter that determines the weighting
of the penalty.

It is worth emphasizing two important properties of Problem (4.20). First, it is an
unconstrained optimization problem. The parameter set Θ is the space of real num-
bers of the appropriate dimensionality. Second, there exists a differentiable mapping
from the parameters θ to the objective for any choice of differentiable mapping ϕθ,
e.g. using the parameterization (4.17) with φθ as a neural network.

These two properties enable finding a local optimum to Problem (4.20) using any
off-the-shelf first-order optimizer in conjunction with an automatic differentiation
(autodiff) toolbox. This significantly simplifies the implementation of the framework.
Using an autodiff software package, one only needs to write code that evaluates the
objective function at each iteration of the optimization process, and the gradients
w.r.t. θ are automatically computed via the chain rule. In contrast, constrained
problems such as the one proposed in Mamakoukas et al. (2020) require specialized
algorithms to solve. Although the objective (4.20) is nonconvex, deep learning meth-
ods have been shown to be effective at finding approximate global minima for such
problems; see (Roughgarden, 2020, Chapter 21) for example. It is worth noting that
the model class is agnostic to the optimization problem. In fact, the model can be
optimized for any differentiable objective function. This is another advantage of an
unconstrained parameterization.

4.4 Learning Framework 54

4.4.2 Implementation Details

The learning framework was implemented in PyTorch3 and the Adam optimizer
Kingma and Ba (2014) was used to solve Problem (4.20). The neural network pa-
rameters θNN and θL are initialized using the default scheme in PyTorch, while L, R,
and b are initialized randomly from a uniform distribution.

Fast matrix power computation

As explained in Section 4.4.1, the only code that needs to be implemented for solving
Problem (4.20) is the evaluation of the objective function, which is also the main
computational bottleneck. In particular, repeatedly computing the matrix power At

for the same A and many t’s can be computationally inefficient. Here a simple trick is
presented to speed up matrix power computations. Consider the eigendecomposition
ofA given by V ΛV −1, where the columns of V are the eigenvectors and Λ is a diagonal
matrix of the eigenvalues. Then it is clear that

At = (V ΛV −1)t = V ΛtV −1 (4.22)

for integer t. Notice that Λt can be computed element-wisely for each eigenvalue on
the diagonal, which offers a significant speed-up over computing a matrix power. This
trick assumes A is diagonalizable, but this can easily be verified in code and, if the
condition is not satisfied, the original matrix power computation can be performed
instead.

3https://github.com/pytorch/pytorch

4.5 Continuous-time Case 55

4.5 Continuous-time Case

In this section, the continuous-time formulation of the learning framework is briefly
presented. Recall the definition of the CT Koopman operator in Equation (2.32):

K̃ϕ(x(t)) = ∇ϕ · f(x(t)).

4.5.1 Continuous-time Koopman Model

Definition 4.2 (CT Koopman model). The continuous-time Koopman model is given
by:

x(t) = ϕL(exp(Aθt)ϕ(x0)), (4.23)

where the Koopman mapping ϕ is parameterized as in (4.17), and the finite-dimensional
matrix Aθ is parameterized as:

Aθ = 1
2(NN⊤ + ϵI)−1(−QQ⊤ − ϵI + (R−R⊤)), (4.24)

with parameters N , Q and R, and a small constant ϵ.

Similar to the discrete-time case, this is an unconstrained parameterization of all
CT contracting models (Yi and Manchester, 2022, Theorem 1). Additionally, the A
matrix defined by Equation (4.24) parameterizes all Hurwitz (CT stable) matrices,
as shown by the following lemma.

Lemma 1. A matrix A is Hurwitz if and only if there exist N,Q,R ∈ Rn×n such that

A = 1
2(NN⊤ + ϵI)−1(−QQ⊤ − ϵI + (R−R⊤)). (4.25)

Proof. (Sufficiency) If there exist N,Q,R ∈ Rn×n such that Equation (4.25) holds,
then by choosing P = (NN⊤ + ϵI)−1, we have that

A⊤P + PA = −(QQ⊤ + ϵI) ≺ 0. (4.26)

4.5 Continuous-time Case 56

Hence P is a Lyapunov matrix and A satisfies the Lyapunov inequality, therefore A
is Hurwitz.

(Necessity) If A is Hurwitz, then there exists P = P⊤ ≻ 0 and W = W⊤ ≻ 0 such
that

A⊤P + PA+W = 0. (4.27)

By the Cholesky decomposition, there always exists triangular L ∈ Rn×n with strictly
positive diagonal elements such that P = LLT . For such L, there always exists some
positive ϵ such that L = N +

√
ϵI, i.e.

P = NN⊤ + ϵI. (4.28)

The same argument can be made for W = QQ⊤ + ϵI. The Lyapunov equation then
becomes:

A⊤(NN⊤ + ϵI) + (NN⊤ + ϵI)A+QQ⊤ + ϵI = 0. (4.29)

Therefore there exists N,Q,R such that

A = 1
2(NN⊤ + ϵI)−1(−QQ⊤ − ϵI + (R−R⊤)) (4.30)

satisfies Equation (4.29) as required.

4.5.2 Learning Framework

Given full-state trajectory data {x̃k}K
k=0 with corresponding time {tk}K

k=0, the simu-
lation error of the Koopman model is to be minimized. The optimization problem
is

min
θ∈Θ

1
K

K∑
k=0
∥ϕθ(x̃k)− exp(Aθtk)ϕθ(x̃0)∥2

2 + αJrec, (4.31)

where Jrec is as defined in Equation (4.21). Problem (4.31) is an unconstrained
optimization problem just like the discrete-time problem, hence a local minimum
can be obtained using a first-order optimizer and an autodiff software package. A

4.6 Experiments 57

Table 4.1 – Comparison of model sets for the proposed method and prior works.

Method
Learns

observables or
eigenfunctions

Continuous or
discrete time

Stability
con-

straint
Mamakoukas et al. (2020) Neither Discrete ✓

Takeishi et al. (2017) Observables Discrete ✗

Lusch et al. (2018) Eigenfunctions Discrete ✗

Pan and Duraisamy (2020) Eigenfunctions Continuous ✓

Our work Observables Both ✓

trick similar to that described in Section 4.4.2 can be used to compute the matrix
exponential in the objective in (4.31).

Note that in terms of the data required, the only difference between the DT and
CT learning frameworks is that the CT case requires the time corresponding to each
data point. The CT problem can be useful to consider when the data is sampled at
non-uniform time intervals, or when the sampling rate differs between the training
and test scenarios.

4.6 Experiments

The proposed framework was validated on the LASA handwriting dataset (Khansari-
Zadeh and Billard, 2011), which consists of human-drawn trajectories of various let-
ters and shapes4. This dataset has been widely used as a benchmark for learning
contracting dynamics in CT (Blocher et al., 2017; Khansari-Zadeh and Billard, 2011;
Mohammad Khansari-Zadeh and Billard, 2014; Neumann et al., 2013; Ravichandar
et al., 2017). In these results, discrete-time models were trained in order to compare
them with existing DT Koopman learning frameworks. Contraction is an important
constraint for this data set as unconstrained models can have spurious attractors
(Khansari-Zadeh and Billard, 2011), leading to poor generalization to unseen initial
conditions.

4https://cs.stanford.edu/people/khansari/download.html

4.6 Experiments 58

For each shape in the dataset, a discrete-time model was trained to regulate to the
desired equilibrium point from any initial condition. To prepare the data for learning
DT models, splines were fitted to the trajectories and the datapoints were re-sampled
at a uniform time interval. The state vector was chosen to be x̃t = [y⊤

t , ẏ
⊤
t]⊤ ∈ R4,

where yt and ẏt are the position and velocity vectors at time t. All data was scaled to
the range [−1, 1] before training. For each shape in the dataset, leave-one-out cross
validation was performed. The trained models were tested by simulating them forward
in time from the initial conditions of the trajectories in the test set, and computing
the error between the simulated and ground truth trajectories. The ground truth test
trajectories are plotted in Figure 4.4 as solid black lines for a subset of the shapes in
the dataset.

The metric used to compare different methods was normalized simulation error (NSE),
defined as:

NSE =
∑T

t=0∥x̂t − x̃t∥2
2∑T

t=0∥x̃t∥2
2

, (4.32)

where {x̂}T
t=0 is the simulated trajectory using the learned model, and {x̃}T

t=0 is the
true trajectory. In the following, the proposed framework is referred to as SKEL
(Stable Koopman Embedding Learning).

4.6.1 Comparison to Other Koopman Matrix Parameteriza-

tions

The proposed unconstrained stable parameterization of the Koopman operator was
compared against a constrained stable parameterization (SOC) (Mamakoukas et al.,
2020), and a unconstrained parameterization without stability guarantees (LKIS)
(Takeishi et al., 2017). The key differences of some recent frameworks are summarized
in Table 4.1.

The SOC parameterization is given by A = S−1OCS, where S is invertible, O is
orthogonal and C is positive-semidefinite with ∥C∥ ≤ 1. A projected gradient descent
method was used to solve the optimization problem. The LKIS parameterization is

4.6 Experiments 59

A = Y1Y
†

2 , where Y1 and Y2 are as defined in Equation (2.37), with parametric ϕ(x).

To make it a fair comparison, all other aspects of the optimization problem were
kept the same, i.e. using simulation error as the optimization objective and using
parametric observables of the form (4.17). The main point of comparisons was the
parameterizations of the Koopman operator as the proposed framework is agnostic to
choice of objective and observables, and these choices often depend on the particular
application.

All instances of φ(x) were fully-connected feedforward neural networks with ReLU
(rectified linear units) activation functions, 2 hidden layers with 50 nodes each and
an output dimensionality of 20. Hyperparameter values were chosen to be α = 103

and ϵ = 10−8.

A boxplot of the normalized simulation error for the three methods is shown in Fig-
ure 4.2. It is clear that SKEL achieves the lowest median NSE on the test set with
95% confidence, while also having few outliers. The number of outliers not shown in
the figure with NSE > 1 are: SKEL 1, LKIS 15, and SOC 0. From Figure 4.3, it can
be seen that LKIS actually attains the lowest training error, but does not generalize
to the test set as well as SKEL. This can be seen as a symptom of overfitting, and
shows that the stability guarantees of SKEL have a regularizing effect on the model.
With regards to SOC, it was observed that the constrained optimization problem
would often converge to poor local minima, which is reflected in the relatively high
training and test errors.

4.6.2 Robustness to Perturbations in Initial Conditions

A qualitative evaluation was performed to determine the robustness of the models to
small perturbations in the initial condition of the test trajectory. Only SKEL and
LKIS were compared as it was clear from Figure 4.2 that SOC underperformed in
this setting. The results are plotted in Figure 4.4 and Figure 4.5. It can be seen
that the SKEL models produce trajectories that converge to each other due to their
contracting property. On the other hand, the LKIS trajectories sometimes diverge

4.7 Summary 60

SKEL (ours) LKIS SOC

T
e
s
t
N

o
rm

a
liz

e
d
 S

im
u
la

ti
o
n
 E

rr
o
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2 – Comparison of SKEL with other Koopman learning methods. Outliers
were clipped for better visibility of boxes. Number of outliers with NSE > 1: SKEL
1, LKIS 15, and SOC 0

from each other with only small perturbations to the initial condition, indicating
instability of the model.

4.7 Summary

A new class of Koopman models has been proposed, which are guaranteed to be
contracting and can be optimized in an unconstrained manner. The regularizing effect
of the contraction property of the model was demonstrated in a system identification
problem.

4.7 Summary 61

SKEL (ours) LKIS SOC

T
ra

in
in

g
 L

o
s
s

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.3 – Training loss for each method

4.7 Summary 62

−40 −20 0
−10

0

10

20

30

40

−40 −20 0
−10

0

10

20

30

40

−20 0 20
−30

−20

−10

0

10

20

−10 0 10 20 30

−20

−10

0

10

20

30

−30 −20 −10 0

−10

0

10

20

30

40

50

−40 −20 0

−50

−40

−30

−20

−10

0

−20 0 20

−20

−10

0

10

20

30

0 20 40

0

10

20

30

40

50

0 20 40

0

10

20

30

40

50

x (mm)

y
(m

m
)

Figure 4.4 – Simulations of SKEL models on a subset of test data. Trajectories from
the models are shown as red dotted lines, while the true trajectory is shown as a
solid black line. Initial conditions were sampled from a square region of width 2
mm centered at the start point of the true trajectory. The target point is marked
by a black star.

4.7 Summary 63

−40 −20 0
−10

0

10

20

30

40

−40 −20 0
−10

0

10

20

30

40

−20 0 20
−30

−20

−10

0

10

20

−10 0 10 20 30

−20

−10

0

10

20

30

−30 −20 −10 0

−10

0

10

20

30

40

50

−40 −20 0

−50

−40

−30

−20

−10

0

−20 0 20

−20

−10

0

10

20

30

0 20 40

0

10

20

30

40

50

0 20 40

0

10

20

30

40

50

x (mm)

y
(m

m
)

Figure 4.5 – Simulations of LKIS models on a subset of test data. Trajectories from
the models are shown as red dotted lines, while the true trajectory is shown as a
solid black line. Initial conditions were sampled from a square region of width 2
mm centered at the start point of the true trajectory. The target point is marked
by a black star.

Chapter 5

Imitation Learning with Koopman

Models

In this chapter, the problem of learning stabilizing controllers using Koopman models
is considered. In particular, Koopman models are applied to the imitation learning
(IL) problem: the problem of learning a controller from trajectories demonstrated by
an expert. One well-studied and widely-used paradigm for IL frames it as a supervised
learning problem and directly fits a mapping from state to control input. This is
commonly referred to as behavioural cloning (Bain and Sammut, 1995). However,
many of these IL methods do not consider the dynamics of the system in their model
or optimization problem, which can lead to poor performance at test time (Ross and
Bagnell, 2010).

Recently, some works have studied enforcing certain dynamical constraints, such as
stability, on the controller during learning, under the assumption of known dynamics
(Havens and Hu, 2021; Palan et al., 2020; Tu et al., 2022; Yin et al., 2021). In the
present work, stability is used to regularize the imitation learning problem when the
dynamics are unknown, to encourage the learned controller to be stabilising. The
problem is approached from a system identification perspective, where the controller
and dynamics are jointly learnt in order to guarantee stability of the learned model.

5.1 Problem Statement 65

5.1 Problem Statement

Let us consider control-affine nonlinear systems of the form:

xt+1 = f(xt) + g(xt)ut. (5.1)

The objective of imitation learning is to learn a control policy that reproduces tra-
jectories of System (5.1) demonstrated by an expert policy ut = k⋆(xt). It is assumed
that the expert satisfies a notion of optimality, in the sense of a control contraction
metric.

Assumption 5.1. There exists a control contraction metric for System (5.1): that
is, there exists a feedback controller ut = k(xt) such that the closed loop system

xt+1 = f(xt) + g(xt)k(xt) := h(xt) (5.2)

is contracting.

The following quantifiable metric is defined to measure the discrepancy between the
demonstrated controller k⋆ and the learned controller k̂:

Definition 5.1 (Imitation Error).

T∑
t=1

∥∥∥ξt(k⋆, x0)− ξt(k̂, x0)
∥∥∥2

2
, (5.3)

where ξt(k, x0) is the state of the system at time t from some initial condition x0,
induced by the controller k on the system.

This metric is challenging to optimize directly as an objective function, as ξt(k̂, x0)
can only be evaluated by executing the controller on the real system during learning,
when the dynamics are unknown. Additionally, if gradient-based methods are used
for optimization, the gradient of ξt(k̂, x0) with respect to the parameters of k̂ can be
challenging to compute.

5.1 Problem Statement 66

Behavioural cloning addresses these challenges by solving a surrogate problem instead,
which can be stated as follows:

Problem 5.1 (Behavioural Cloning). Given a dataset of N state-control trajectories
{x̃i

t, ũ
i
t}i=1:N

t=1:T , learn a mapping k : Rn → Rm that satisfies:

min
θ∈Θ

N∑
i=1

T −1∑
t=1

∥∥∥ũi
t − kθ(x̃i

t)
∥∥∥2

2
+ r(θ), (5.4)

where Θ is the parameter set of k and r(·) is a regularization function.

It is clear that if the controller is fit perfectly, i.e. zero error is attained for Equa-
tion (5.4), then the imitation metric will also be minimized. However, this is often
unachievable in practice. Pfrommer et al. (2022) showed that the imitation error can
be upper-bounded by a behavioural cloning loss if the closed-loop system satisfies
an input-to-state stability assumption, which is also satisfied by contracting systems.
However, in the general case, this upper bound may not hold. In the experiments
here, it is shown that achieving a small behavioural cloning loss does not imply the
imitation error will also be small, in particular when the learned controller is not
stabilizing.

Since stability of the closed-loop system is an important consideration, a stability
constraint is proposed to act as a regularizer for the behavioural cloning problem.
The stability-regularized imitation learning problem is defined as follows:

Problem 5.2 (Stability-regularized imitation learning). Given a dataset of N state-
control trajectories {x̃i

t, ũ
i
t}i=1:N

t=1:T , learn mappings k : Rn → Rm, f : Rn → Rn and
g : Rm → Rn that satisfy:

min
θ∈Θ

N∑
i=1

T −1∑
t=1

∥∥∥ũi
t − kθ(x̃i

t)
∥∥∥2

2
+ c1

∥∥∥x̃i
t+1 − fθ(x̃i

t)− gθ(x̃i
t)ũi

t

∥∥∥2

2

+ c2

∥∥∥x̃i
t+1 − fθ(x̃i

t)− gθ(x̃i
t)kθ(x̃i

t)
∥∥∥,

s.t. the system xt+1 = f(xt) + g(xt)k(xt) is contracting.

(5.5)

In Problem (5.2), in addition to fitting the controller k, two other functions are mod-

5.2 Stabilizable Koopman Models 67

elled, namely the open-loop dynamics f and input-to-state mapping g. The second
term in the loss (5.5) represents the error of the open-loop dynamics model, while the
third term represents the closed-loop model error. These two terms can be regarded
as the regularization function r(θ) of behavioural cloning. The hyperparameters c1

and c2 determine the relative weightings of each loss term.

By solving Problem (5.2), a controller that is guaranteed to stabilize the learned
dynamics model is obtained. This in turn means that if the dynamics model is fit
perfectly, then the learned controller will stabilize the true system regardless of the
error in controller fit. However, even if the learned model does not match the true
system, the controller may still be stabilising if it is sufficiently robust to model
mismatch. This idea has previously been explored for linear systems and LQR con-
trollers (Dean et al., 2020), where the authors derive bounds on the LQR cost from
error bounds on the transition matrices [A,B], for a robust controller obtained using
system level synthesis (Wang et al., 2019).

To enforce the contraction condition for the closed loop dynamics, the stable Koopman
model proposed in Chapter 4 is built on.

5.2 Stabilizable Koopman Models

In this section, the model set used to represent k, f and g in Problem (5.2) is pre-
sented. The objective is to find a model class that implicitly satisfies the contraction
constraint in Problem (5.5), so that it can be optimized in an unconstrained manner.

To do so, let us again consider a Koopman embedding that lifts System (5.1) to
a linear manifold. It has already been shown in Section 4.2 that for a contracting
system xt+1 = h(xt), there exists a mapping ϕ : Rn → Rn that satisfies:

ϕ ◦ h(xt) = Aϕ(xt), (5.6)

where A ∈ Rn×n is Schur stable.

5.2 Stabilizable Koopman Models 68

For a controlled system (5.1), the dynamics of z := ϕ(xt) can be written as (Iacob
et al., 2022b):

zt+1 = Azt +B(xt, ut)ut, (5.7)

where
B(xt, ut) =

(∫ 1

0

∂ϕ

∂x
(f(xt) + λg(xt)ut)dλ

)
g(xt). (5.8)

The fact that the dynamics (5.7) are not affine with respect to u and B is not constant
both complicate our analysis. As such, an injective transformation of the control input
u = α(x, v) is considered such that the system becomes linear time-invariant:

zt+1 = Azt +Bvt. (5.9)

In the following, a discrete-time version of (Yi and Manchester, 2022, Proposition 4)
is presented. It is shown that if the Koopman system (5.9) exists and is stabilizable,
then the nonlinear system (5.1) admits a control contraction metric (CCM).

5.2.1 Koopman Stabilizability

Theorem 5.1. For system (5.1), if there exist injective mappings ϕ(x) and u =
α(x, v) such that

ϕ(f(xt) + g(xt)α(xt, vt)) = Aϕ(xt) +Bvt, (5.10)

where the dynamics of z := ϕ(x) are

zt+1 = Azt +Bvt, (5.11)

then

1. any stabilizing controller v = −Kz for (5.11) renders the closed-loop system

xt+1 = f(xt) + g(xt)α(xt,−Kϕ(xt)) (5.12)

contracting,

5.2 Stabilizable Koopman Models 69

2. M(xt) = Φ(xt)⊤PΦ(xt) is a control contraction metric for system (5.1).

Proof. First redefine system (5.1) in terms of the new input signal vt as

xt+1 = f(xt) + g(xt)α(xt, vt) := f̄(xt, vt). (5.13)

Substituting (5.13) and the stabilizing feedback controller v = −Kϕ(x) into (5.10):

ϕ(f̄(xt,−Kϕ(xt))) = (A−BK)ϕ(xt). (5.14)

Taking its partial derivative w.r.t. x,

Φ(xt+1)(F̄ (xt)− Ḡ(xt)K̄(xt)) = (A−BK)Φ(xt), (5.15)

where Φ(x) = ∂ϕ
∂x

(x), F̄ (x) = ∂f̄
∂x

(x), Ḡ(x) = ∂f̄
∂v

(x) and K̄(x) = KΦ(x).

Now the existence of a stabilizing controller for (5.9) implies the existence of a matrix
P = P⊤ ≻ 0 such that

P − (A−BK)⊤P (A−BK) ≻ Q, (5.16)

for some Q ≻ 0. Since ϕ(x) is assumed to be injective, Φ(x) will have full column
rank and hence we can write:

Φ(xt)⊤(P − (A−BK)⊤P (A−BK))Φ(xt) ≻ Φ(xt)⊤QΦ(xt). (5.17)

By choosing the metric:
M(x) := Φ(x)⊤PΦ(x), (5.18)

and substituting (5.15) into (5.17), we obtain

M(xt)− (F̄ (xt)− Ḡ(xt)K̄(xt))⊤M(xt+1)(F̄ (xt)− Ḡ(xt)K̄(xt))

≻Φ(xt)⊤QΦ(xt) ⪰
λmin(Q)
λmax(P)Mt.

(5.19)

5.3 Model Set 70

Without loss of generality, we can choose Q = ρP with ρ ∈ (0, 1) such that 0 <
λmin(Q)
λmax(P) < 1. Then Equation (5.19) corresponds to the discrete CCM condition (2.23),
and v = −Kz is a CCM controller for (5.1) as required.

The Koopman control model defined by Equation (5.10) is closely connected to feed-
back linearization, a nonlinear control method that finds a state and control input
transformation that linearizes the dynamics. Indeed, the existence of a CCM is nec-
essary for feedback linearizability (Manchester and Slotine, 2017). However, unlike in
feedback linearization, the state embedding of the Koopman model may be higher-
dimensional than the original state.

5.3 Model Set

The parameters of the Koopman control model consist of the Koopman matrices
(A,B) and parameters of the mappings z = ϕ(x) and u = α(x, v). The statements in
Theorem (5.1) suggest several implicit constraints on the parameters, which should
be considered when searching over the parameter space. Namely, these constraints
are

• (A,B) is stabilizable.

• ϕ(x) is injective.

• α(x, v) is bijective with respect to v.

• For any stabilizing controller v = Kz, the fixed point of the linear system (5.9)
is (z⋆, v⋆) = (0, 0), hence ϕ(x⋆) = 0 and u⋆ = α(x⋆, 0).

In the following, parameterizations are proposed that satisfy these constraints.

5.3 Model Set 71

5.3.1 Parameterization of Stabilizable Triples

Previous works on stable imitation learning have used linear matrix inequality (LMI)
constraints to guarantee stability (Havens and Hu, 2021; Palan et al., 2020; Yin
et al., 2021), however such constrained optimization problems become difficult to solve
when the dynamics have to be jointly estimated. In the following, an unconstrained
parameterization of the triple {Â, B̂, K̂} is proposed such that Â− B̂K̂ is guaranteed
to be stable.

First note that any open-loop transition matrix A can be re-written in terms of the
closed loop response as A = ACL + BK. Thus the stable matrix parameterization
proposed in Section 4.3.1 can be used to represent the closed-loop matrix.

The following parameterization for A is proposed.

Proposition 5.1 (Stabilizable Parameterization).

A(L,R,B) = ACL + 1
2BB

⊤M22ACL, (5.20)

with
ACL = 2(M11 +M22 +R−R⊤)−1M21 (5.21)

and

M :=

M11 M12

M21 M22

 = LL⊤ + ϵI, (5.22)

It can be shown that the parameterization (5.20) is sufficient for guaranteeing that
(A,B) is stabilizable.

Lemma 2. The pair (A,B) is stabilizable if A = A(L,R,B) and B = B.

Proof. Given A = A(L,R,B) and choosing K = 1
2B

⊤M22ACL, we have

A− BK = ACL = 2(M11 +M22 +R−R⊤)−1M21, (5.23)

which is Schur stable by Proposition 4.1. Hence (A,B) is stabilizable by definition.

5.3 Model Set 72

The sub-block M22 is a Lyapunov matrix P for the closed loop system, as it satisfies
M22 − (A− BK)⊤M22(A− BK) ≻ 0. The controller gain matrix K = 1

2B
⊤PACL is

an LQR controller gain, which can be seen from rearranging the DT infinite-horizon
LQR controller:

K = (R +B⊤PB)−1B⊤PA, (5.24)

using ACL = A − BK and having the control cost matrix R = 2I, where I is the
identity matrix. Although limiting the model parameterization to LQR controllers
is restrictive, it can be beneficial to learn an LQR controller as they have strong
robustness properties. As such, the controller may be robust to model mismatch,
which can be modelled as a disturbance signal on the dynamics.

5.3.2 Parameterization of ϕ

The same parameterization of ϕ as in the stable Koopman models is used:

ϕ(x) = Cx+ ψ(x), (5.25)

where C = [In, 0n×(N−n)]⊤. The nonlinear part ψ(x) is a feedforward neural network,
parameterized by θNN .

To reconstruct the original state x from the observables, a separate function ϕL(z) is
parameterized to compute the left-inverse of ϕ(x).

5.3.3 Parameterization of α

There are many possible ways to parameterize the bijective mapping α. In the nu-
merical experiments here, two choices of parameterizations are investigated.

The first parameterization is setting u = v, that is, α is fixed and not learned. This
means that the control input u will be affine with respect to the lifted Koopman state
z, that is,

zt+1 = Azt +But.

5.3 Model Set 73

This form of control-affine Koopman model will only yield an exact representation of
the nonlinear system if the matrix B in (5.8) is constant, which is difficult to achieve
in general. Nevertheless, this representation has been widely used in learning-based
control (Han et al., 2020; Kaiser et al., 2021; Korda and Mezić, 2018), as it readily
admits linear control design methods.

The second parameterization is to have u = α(x, v) in the form of an affine coupling
layer (Dinh et al., 2017):

u = v ⊙ exp(s(x)) + t(x), (5.26)

where ⊙ denotes the Hadamard product, and s(x) and t(x) can be arbitrary function
approximators. Equation (5.26) has an analytical inverse v = (u−t(x))⊙exp(−s(x)).
To ensure u⋆ = α(x⋆, 0), t(x) is represented as t(x)−t(x⋆)+u⋆. This parameterization
has the same form as the input transformation found in feedback linearization, which
is typically written as u = a(x)+b(x)v for some nonsingular function b (Khalil, 2002).

5.3.4 CCM Controller

Putting the components of the model together, one obtains an imitation controller of
the form

ut = α(xt, B
⊤PACLϕ(xt)). (5.27)

Equation (5.27) is henceforth referred to as the learned CCM controller.

Additionally, an open-loop and closed-loop dynamics model are also learned as byprod-
ucts of the stability-regularized imitation learning problem. The OL model is given
by:

z0 = ϕ(x0)

zt+1 = Azt +Bα−1(xt, ut)

xt = ϕL(zt).

(5.28)

The CL model is identical to the stable Koopman model (4.18). These dynamics
models can be used for future state prediction and trajectory planning, although

5.3 Model Set 74

they are not utilized in the experiments in this chapter. The OL model can also be
used to construct new controllers, e.g. using the SOS procedure in Wei et al. (2021).

5.3.5 Connection to Inverse Optimal Control

Inverse optimal control (IOC) poses the question: given an optimal controller, what
cost does it optimize (Kalman, 1964)?

Using the proposed model, it is possible to construct a cost function that is optimized
by the learned controller.

Firstly, the learned control contraction metric

M(xt) = Φ(xt)⊤PΦ(xt) (5.29)

is a Lyapunov function since it satisfies the Lyapunov condition (5.19).

Secondly, since the controller (5.27) is an infinite-horizon LQR controller in Koopman
coordinates, there exist corresponding cost matrices Q and R such that the controller
minimizes

∞∑
t=0

c(xt, ut) =
∞∑

t=0
z⊤

t Qzt + u⊤
t Rut, (5.30)

where zt = ϕ(xt). The state cost matrix Q can be computed using the model param-
eters as:

Q = P − 1
2A

⊤PACL −
1
2A

⊤
CLPA, (5.31)

where A and ACL are as defined in Proposition 5.1, and P = M22. It is straightforward
to derive Equation (5.31) from the DT algebraic Riccati equation.

For the particular choice of gain matrix K = 1
2B

⊤PACL, the control cost matrix R

is fixed as 2I. However, this is generally not restrictive, as any scaling of the control
input can be ‘absorbed’ by α, or the control data can be scaled before learning so
that all dimensions are standardized.

Since the cost function c(xt, ut) is independent of the dynamics, new controllers can
then be optimized for different dynamics models using the learned cost function, as is

5.4 Learning Framework 75

commonly done in inverse reinforcement learning (Fu et al., 2017). In a robot learning
context, this can be useful when the expert and learner have different embodiments,
e.g. when the expert is a human demonstrator.

5.4 Learning Framework

Given the stabilizable model set proposed in Section 5.2, let us now discuss how this
model set can be used to solve Problem 5.2. Similar to the autonomous case, the
stability constraint can simply be removed in Equation (5.5), and an unconstrained
optimization problem is obtained:

min
θ∈Θ

N∑
i=1

T −1∑
t=1

c1

∥∥∥z̃i
t+1 − Az̃i

t −Bṽi
t

∥∥∥2

2
+ c2

∥∥∥z̃i
t+1 − ACLz̃

i
t

∥∥∥2

2

+
∥∥∥∥ṽi

t −
1
2B

⊤PACLz̃
i
t

∥∥∥∥2

2
+ Jrec,

(5.32)

where z̃i
t = ϕ(x̃i

t) and ṽi
t = α−1(x̃i

t, ũ
i
t). The reconstruction loss Jrec is defined as

Jrec = 1
T

T∑
t=0

∥∥∥x̃t − ϕL(ϕ(x̃t))
∥∥∥2

2
. (5.33)

The parameter set Θ consists of {L,R,B, θNN}. Just like in the autonomous case, the
optimization problem (5.32) can be solved via first-order methods using automatic
differentiation software.

Notice that the first term in Eq.(5.32) can be rewritten as:

c1

∥∥∥∥z̃i
t+1 − ACLz̃

i
t −B(ṽi

t −
1
2B

⊤PACLz̃
i
t)
∥∥∥∥2

2
(5.34)

which is the difference between the closed-loop error and controller error scaled by B.
Thus the open-loop error can be seen as a coupling term for the problems of fitting a
controller and closed-loop model. Without this term, i.e. if c1 = 0, we are essentially
solving two decoupled problems (even though K shares parameters with ACL, B is

5.4 Learning Framework 76

a free parameter). This suggests that c1 should be chosen to be relatively large in
order to fit the open-loop dynamics accurately. Otherwise, the open-loop error may
appear to be small simply because the closed-loop and controller errors are small.

5.4.1 Linear Case

In the case when the dynamics of the system are linear, the optimization problem is
simplified since the mapping ϕ is just the identity map and the control input is not
transformed, i.e. u = v. The problem then becomes:

min
A,B,K

N∑
i=1

T −1∑
t=1

c1

∥∥∥x̃i
t+1 − Ax̃i

t −Bũi
t

∥∥∥2
+ c2

∥∥∥x̃i
t+1 − ACLx̃

i
t

∥∥∥2
+
∥∥∥ũi

t −Kx̃i
t

∥∥∥2
. (5.35)

In the linear case, an additional assumption on the rank of the data is required for
the learning problem to be well-posed. This can be stated as:

Assumption 5.2 (Persistence of excitation). Given trajectory data {x̃i
t, ũ

i
t}i=1:N

t=1:T , de-
fine the data matrices

X0 = [x̃1
0, . . . , x̃

N
0],

U =
[
vec([ũ1

1, . . . , ũ
1
T]), . . . , vec([ũN

1 , . . . , ũ
N
T])

]
.

These matrices should satisfy:

rank
([
X⊤

0 , U
⊤
]⊤)

= n+mT (5.36)

One has to be careful when U is generated by a linear state feedback controller, since
U will be linearly dependent on X0 and the rank condition will not be satisfied. In this
case, one can add an excitation signal to the controller to satisfy the rank condition.

5.5 Experiments 77

5.5 Experiments

Numerical experiments were performed on two simulated systems: an unstable linear
system and a nonlinear 2 degrees-of-freedom planar robot arm.

5.5.1 Linear Example

The learning framework was evaluated on the following linear system:

A =

1.01 0.01 0
0.01

. 0.01

0 0.01 1.01

, B = In. (5.37)

This system corresponds to an unstable graph Laplacian system, based on the example
used in Dean et al. (2020). The nodes form a weakly connected chain, and each node
can be controlled directly. For this example, the system dimensionality was chosen
to be n = 20.

To generate data for learning, a controller of the form

ut = Kxt + wt (5.38)

was used, where K is the gain obtained by solving the LQR problem with cost Q =
10−3In, R = In. The excitation signal wt ∼ N (0, I) ensures the system is identifiable,
and is unknown to the learning algorithm. Additionally, process noise pt ∼ N (0, σ2

pI)
(σp = 0.1) was injected into the dynamics. The data is then generated by recursively
computing:

x̃1 ∼ U(−10, 10),

x̃t+1 = Ax̃t +Bũt + pt,

ũt = Kx̃t + wt,

(5.39)

for t = 1, 2, . . . , T , T = 10, repeated for N = 20 trajectories.

5.5 Experiments 78

For these experiments, the learning framework was compared against behavioral
cloning, which only fits a mapping from the state to control input, without con-
sidering the dynamics of the system. In the linear case, this amounts to solving the
least squares problem:

KLS = arg min
N∑

i=1

T −1∑
t=1

∥∥∥ũi
t − K̂x̃i

t

∥∥∥2
, (5.40)

which gives
KLS = UX⊤(XX⊤)−1, (5.41)

where X =
[
x̃1

1, . . . , x̃
N
T −1

]
∈ Rn×N(T −1) and U =

[
ũ1

1, . . . , ũ
N
T −1

]
∈ Rm×N(T −1).

It has been shown that in Celi et al. (2022) that the least-squares solution (5.41)
converges to the true K matrix in the limit as T → ∞. However, in the low-data
regime, the least-squares estimate can be very noisy and possibly unstable, as will be
shown in the experiments.

A comparison was also made against a prior stability-constrained imitation learning
method (Havens and Hu, 2021) that assumes exact knowledge of the system matrices
A and B. Their method was applied to this problem setting by first estimating [A,B]
via least squares as:

[A,B] = Y X⊤
U (XUX

⊤
U)−1, (5.42)

where Y =
[
x̃1

2, . . . , x̃
N
T

]
and XU = [X⊤, U⊤]⊤. In the following, this method is

denoted as ‘AB’. However, it should be noted that this method of estimating the
open-loop dynamics will not work in the nonlinear case. As such, the algorithm of
Havens and Hu (2021) is not readily extendable to the nonlinear case.

The following metrics were used as a quantitative comparison of the different methods
and different weightings of each loss term in the proposed method.

Imitation error (normalized simulation error)

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥x̃i
t − (A+BK̂)t−1x̃i

1

∥∥∥2
/

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥x̃i
t

∥∥∥2
. (5.43)

5.5 Experiments 79

Controller error

∥∥∥K − K̂∥∥∥2

op

/
∥K∥2

op . (5.44)

Closed-loop stability

ρ(A+BK̂). (5.45)

The metric (5.43) is the normalized simulation error (NSE) for a set of test trajectories
measured against trajectories induced by the learned controller on the true system.
It was chosen for Ttest ≫ T , i.e. the time horizon for testing is much longer than
the training data. For testing, the noise signals pt and wt are set to zero, so that the
error will be zero when the controller is fit perfectly. The metric (5.45) is the spectral
radius of A+BK̂, which is the closed-loop system induced by the learned controller
on the real system. The system is stable if ρ < 1. The true spectral radius of the
system is 0.969.

Effect of c1

The first aim is to investigate how the weighting on the fit of the open-loop dynamics
affects the solution. As mentioned in the problem formulation, fitting the open-
loop dynamics is the proposed heuristic for encouraging the learned controller to be
stabilizing for the true system. As such, it needs to be verified if increasing c1 would
increase the likelihood of learning a stabilizing controller.

Fifty runs of the experiment were performed using the procedure described before,
with the only difference between each trial being the initial conditions and noise
signals wt and pt.

Figure 5.1 shows histograms of the maximum eigenvalue of the closed-loop matrix
A + BK̂, i.e. the estimated K applied to the true system. It can be seen that
as the weighting c1 on the open-loop loss increases, the distribution of closed-loop
eigenvalues shift towards stability and the true value.

5.5 Experiments 80

Figure 5.1 – Histogram of the maximum eigenvalue of A + BK̂. The histogram
shows how the distribution of eigenvalues shifts as c1 increases. The red vertical
line shows the boundary of stability; if the maximum eigenvalue is to the right of
the red line, then the system is unstable. The black vertical line shows the true
maximum eigenvalue of the closed-loop system. ‘AB’ shows the distribution for
the method of Havens and Hu (2021), while ‘least squares’ shows the distribution
for the baseline method (5.41).

A similar trend can be observed in the imitation error, also known as the normalized
simulation error, shown in Figure 5.2. All of the least-squares controllers are unstable,
whereas using the proposed parameterization, increasing c1 produces more stabilizing
controllers. The method of Havens and Hu (2021) (‘AB’) had slightly larger error.

On the other hand, Figure 5.3 shows that least squares attains the lowest error in
controller fit, which is directly correlated with the behavioural cloning loss in Problem
(5.4), while the other methods have relatively large K error. Despite that, least
squares performed the worst by the other metrics. This suggests that minimising

5.5 Experiments 81

LS c1=1 c1=10 c1=1e2 c1=1e3 c1=1e4 AB%
 u

n
s
ta

b
le

0

50

100

c1=1 c1=10 c1=1e2 c1=1e3 c1=1e4 AB

N
o
rm

a
li
z
e
d
 S

im
u
la

ti
o
n
 E

rr
o
r

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.2 – Top: Bar graph showing percentage of unstable controllers. The plot is
simply a different way of visualising Figure 5.1. Bottom: Boxplot of normalized
simulation error (5.43) for stable controllers. No boxplot for least squares is shown
as all LS controllers were unstable.

the K error alone, as in BC, may not result in the best performance in terms of the
imitation error.

Scalability

The scalability of the algorithm was evaluated by measuring computation time to
convergence of the optimization problem. For the proposed method, this corresponds
to the time taken to compute the gradient and update the parameters. In comparison,
the projected gradient descent (PGD) algorithm proposed by Havens and Hu (2021)
requires solving a semidefinite program at each iteration.

5.5 Experiments 82

LS c1=1 c1=10 c1=1e2 c1=1e3 c1=1e4 AB

N
o
rm

a
li
z
e
d
 K

 e
rr

o
r

0

20

40

60

80

100

120

Figure 5.3 – Boxplot of normalized 2-norm error (5.44) of K̂ matrix.

Figure 5.4 shows the computation time per iteration of each method and Figure 5.5
shows the total time to convergence. The slopes of the lines of best fit reveal how
the computation time scale with the dimensionality of the system. As can be seen
from Figure 5.4, the PGD algorithm scales more than cubically in terms of the com-
putation time per iteration, while the proposed method only scales super-linearly. A
similar trend is also seen for the total time to convergence. These results demon-
strate the advantage in scalability of optimizing an unconstrained model compared
to constrained models.

5.5 Experiments 83

Dimensionality of system (log
10

(n))

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

lo
g

1
0
(s

e
c
))

-3

-2

-1

0

1

2

3

Havens et al 2021

Proposed method

Slope 3.8

Slope 1.2

Figure 5.4 – Scatter plot of computation time per iteration of the proposed method
vs. the PGD algorithm of Havens and Hu (2021) in log-log scale. Lines of best fit
with slope magnitudes are also shown.

5.5.2 Nonlinear Example

Next, the algorithm was validated on a nonlinear problem. Data was obtained from
the LASA handwriting dataset (Khansari-Zadeh and Billard, 2011), which consists
of trajectories of various hand-drawn letters and symbols. Each datapoint comprises
of position, velocity and acceleration in Cartesian coordinates. To incorporate this
dataset into a control problem, a 2 DOF robot manipulator is introduced, and has to
be controlled such that its end-effector follows the trajectories in the dataset.

The robot dynamics are given by:

M(q)q̈ + C(q, q̇)q̇ = Bτ, (5.46)

5.5 Experiments 84

Dimensionality of system (log
10

(n))

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T
im

e
 t

o
 c

o
n

v
e

rg
e

n
c
e

 (
lo

g
1

0
(s

e
c
))

2

2.5

3

3.5

4

4.5

5

5.5

Havens et al 2021

Proposed method

Slope 4.4

Slope 1.3

Figure 5.5 – Scatter plot of total time to convergence for the proposed method vs.
the PGD algorithm of Havens and Hu (2021) in log-log scale. Lines of best fit with
slope magnitudes are also shown. The case of n = 100 for the PGD algorithm was
not evaluated due to time constraints.

where q = [q1, q2]⊤ and

M =

I1 + I2 +m2l
2
1 +m2l1l2 cos(q2) I2 + 1

2m2l1l2 cos(q2)
I2 + 1

2m2l1l2 cos(q2) I2

 , (5.47)

C =

−m2l1l2 sin(q2)q̇2 −1
2m2l1l2 sin(q2)q̇2

1
2m2l1l2 sin(q2)q̇1 0

 , (5.48)

B = I. (5.49)

I1 and I2 are the moments of inertia of each link. The nominal parameters of the
robot were chosen to be l1 = 0.2 m, l2 = 0.1 m, m1 = 1 kg, m2 = 1 kg.

5.5 Experiments 85

Figure 5.6 – Diagram of robot arm in the horizontal plane. l1 and l2 are the lengths
of each link.

The Cartesian coordinates of the data can be converted to polar coordinates q with
the base joint of the robot as the origin, via the inverse kinematics:

q2 = cos−1
(
x2 + y2 − l21 − l22

2l1l2

)

q1 = tan−1
(
y

x

)
− tan−1

(
l2 sin(q2)

l1 + l2 cos(q2)

) (5.50)

Additionally, the angular velocities q̇1 and q̇2 can be computed from ẋ and ẏ via the
chain rule. The torques associated with each datapoint can then be computed using
Equation (5.46).

The sampling rate of the system is assumed to be sufficiently small that zero-order
hold is valid, so that a discrete-time model can be fitted and the discrete-time con-
troller can be applied to the robot model (5.46).

Note that the dynamics model was only used to generate the dataset, and is un-
known to the learning algorithm. The scenario that this experiment simulates is
when demonstrations are provided by a human operator, and the robot states and
control torques are recorded.

Comparisons were made of the performance of the learned controller for various values
of c1 and choices of parameterization of α. A comparison was also made against the
vanilla behavioural cloning method, which is commonly used as a baseline for evalu-

5.5 Experiments 86

ating imitation learning algorithms (Fu et al., 2020; Ho and Ermon, 2016; Pfrommer
et al., 2022). Behavioural cloning was implemented as fitting a neural network map-
ping states to control inputs by minimizing a mean-squared error loss on the controller
output. The neural networks were chosen to have 2 hidden layers with 20 nodes and
tanh activations.

To evaluate the performance of the learned controllers, two quantitative metrics were
compared: imitation error and controller fit, which are defined in the following. Unlike
the linear case, global closed-loop stability is not trivial to verify.

These two metrics are defined as follows:

Imitation error (normalized simulation error)

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥x̃i
t − x̂i

t

∥∥∥2
/

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥x̃i
t

∥∥∥2
, (5.51)

where x̂t+1 = f(x̂t) + g(x̂t)k(x̂t) and x̂0 = x̃0.

Controller error

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥ũi
t − ûi

t

∥∥∥2
/

Ntest∑
i=1

Ttest−1∑
t=1

∥∥∥ũi
t

∥∥∥2
, (5.52)

where ût = k(x̃t).

Figure 5.7 shows the imitation error of the learned controllers. Firstly, it can be seen
that there is a threshold for c1 where imitation error is reduced, but performance does
not improve if c1 is further increased. This supports the intuition that the open-loop
dynamics error associated with c1 only acts as a coupling term for the controller and
closed-loop dynamics errors. As such, once c1 is sufficiently large for the corresponding
term to dominate the loss, increasing c1 further does not reduce the imitation error.

It can also be seen from Figure 5.7 that using the nonlinear parameterization for α
defined in Equation 5.26 leads to worse performance. This could be due to the linear
parameterization being sufficiently expressive to model the observed controller, hence

5.5 Experiments 87

CCM

c
1
=1

linear

CCM

c
1
=10

linear

CCM

c
1
=100

linear

CCM

c
1
=100

nonlinear

BC

Im
it
a
ti
o
n
 E

rr
o
r

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.7 – Imitation error (5.51) (aka normalized simulation error) of learned con-
trollers on the test set. From left to right: linear parameterization of α — c1 = 0,
c1 = 10 and c1 = 100, nonlinear parameterization of α — c1 = 100, behavioural
cloning (BC). Number of outliers from left to right: 4, 2, 1, 0, 5

adding more parameters through the nonlinear α only increases the variance of the
model and leads to overfitting.

Finally, behavioural cloning has the highest imitation error out of all the test cases.
This shows that the proposed model does indeed improve the performance of the
controller over the baseline.

Figure 5.8 and Figure 5.9 show the training and test error respectively of the controller
output. Interestingly, behavioural cloning achieves the lowest controller error on
the training data but has the highest error on the test set. This is a symptom of
overfitting, and also supports the claim that only minimizing the controller error
does not correlate with good imitation performance. This trend is also seen in the
nonlinear α case, which achieves slightly lower error than the linear parameterization
on the training set but has higher error on the test set.

5.5 Experiments 88

CCM

c
1
=1

linear

CCM

c
1
=10

linear

CCM

c
1
=100

linear

CCM

c
1
=100

nonlinear

BC

N
o

rm
a

liz
e

d
 c

o
n

tr
o

lle
r

tr
a

in
in

g
 e

rr
o

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.8 – Normalized controller error (5.52) for training data.

Figure 5.10 and Figure 5.11 show a qualitative comparison of the trajectories induced
by the CCM controller with linear α and c1 = 100, shown in Figure 5.10, and the
behavioural cloning controller, shown in Figure 5.11. It can be seen that the CCM
controller induces a (locally) contracting closed-loop system where nearby trajectories
converge to a single equilibrium, whereas the trajectories of the BC controller diverge
even for small perturbations of the initial condition, which is unacceptable when
controlling physical systems. Refer to Appendix A for more plots of the trajectories
of other shapes.

Although the learned CCM controller is not guaranteed to be stabilizing, it is clear
that it provides a clear improvement over behavioural cloning for the same require-
ments on the data and without significant increase in computational cost. The results
show that the proposed framework does have a regularizing effect on learning stabiliz-
ing controllers and outperforms behavioural cloning in terms of the imitation error.

5.6 Summary 89

CCM

c
1
=1

linear

CCM

c
1
=10

linear

CCM

c
1
=100

linear

CCM

c
1
=100

nonlinear

BC

N
o

rm
a

li
z
e

d
 c

o
n

tr
o

ll
e

r
te

s
t

e
rr

o
r

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.9 – Normalized controller error (5.52) for test data.

5.6 Summary

To summarize this chapter, a class of stabilizable Koopman models has been proposed
that is guaranteed to admit a CCM controller for the learned open-loop dynamics.
A stability-regularized imitation learning problem was proposed and it was shown
how the Koopman model class could be applied to solve this problem. Finally, it
was shown that solving this stability-regularized IL problem produces more stable
controllers with lower imitation error than unregularized behavioural cloning.

5.6 Summary 90

40 20 0

0

10

20

30

40

40 20 0

0

10

20

30

40

50

10 0 10 20 30

30

20

10

0

10

20

30

40 20 0
10

0

10

20

30

40

50

20 0 20

20

10

0

10

20

30

0 20 40

0

10

20

30

40

50

40 20 0

0

10

20

30

40

50

40 20 0

30

20

10

0

10

40 20 0

0

10

20

30

40

50

x (mm)

y
(m

m
)

Figure 5.10 – Examples of trajectories induced by learned CCM controller with linear
α and c1 = 100. The solid black line is the ground truth, while the dotted blue
lines are generated by sampling initial conditions in a small box of width 2 mm
around the true initial condition.

5.6 Summary 91

40 20 0

0

10

20

30

40

40 20 0

0

10

20

30

40

50

10 0 10 20 30

30

20

10

0

10

20

30

40 20 0
10

0

10

20

30

40

50

20 0 20

20

10

0

10

20

30

0 20 40

0

10

20

30

40

50

40 20 0

0

10

20

30

40

50

40 20 0

30

20

10

0

10

40 20 0

0

10

20

30

40

50

x (mm)

y
(m

m
)

Figure 5.11 – Examples of trajectories induced by behavioural cloning controller. The
solid black line is the ground truth, while the dotted blue lines are generated by
sampling initial conditions in a small box of width 2 mm around the true initial
condition.

Chapter 6

Conclusion

This chapter provides a summary of the contributions of this work as well as some
future directions for continuing this line of research.

6.1 Summary

In this thesis, two new classes of Koopman models were proposed and applied to
identification and control problems. The first model class is guaranteed to be sta-
ble, while the second is guaranteed to be stabilizable with an explicit stabilizing
controller that renders the model stable in closed-loop. Furthermore, these models
are unconstrained in their parameter sets, hence enabling efficient optimization via
gradient-based methods. Theoretical connections between the stability of Koopman
models and contraction analysis were established. Experimental results showed em-
pirically that the proposed models achieve better performance over prior methods
without stability guarantees.

6.2 Future Work 93

6.2 Future Work

The field of Koopman-based methods is rich with potential and many exciting direc-
tions of research remain to be explored.

Firstly, stable Koopman models can be considered in the context of general stable
nonlinear models, and comparisons can be made to prior model parameterizations
such as recurrent equilibrium networks (Revay et al., 2021b).

Additionally, the learned Koopman model can be used to analyse the nonlinear system
via its spectral decomposition. This can be useful, for example, to obtain a reduced-
order model from the dominant eigenfunctions.

The Koopman model can also be extended to represent nonlinear systems with other
asymptotic behaviour such as limit cycles, which can be described by contraction
in transverse coordinates (Manchester and Slotine, 2014). The connection between
transverse contraction and Koopman orbital stability has already been established in
Yi and Manchester (2022).

Finally, in the context of imitation learning, the connection of the proposed model
to inverse optimal control discussed in Section 5.3.5 can be explored further. The
learned cost function can be used to model the intent of the expert, and design new
controllers for a different system.

List of References

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the Twenty-first International Conference on Machine
Learning, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5.

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. The International Journal of Robotics Research,
29(13):1608–1639, 2010.

David Angeli. A Lyapunov approach to incremental stability properties. IEEE
Transactions on Automatic Control, 47(3):410–421, 2002.

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, and Michael Mahoney.
Forecasting sequential data using consistent Koopman autoencoders. In
Proceedings of the 37th International Conference on Machine Learning, number
119 in Proceedings of Machine Learning Research, pages 475–485. PMLR, 2020.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995.

Petar Bevanda, Stefan Sosnowski, and Sandra Hirche. Koopman operator
dynamical models: Learning, analysis and control. Annual Reviews in Control,
52:197–212, 2021. ISSN 1367-5788.

Petar Bevanda, Max Beier, Shahab Heshmati-Alamdari, Stefan Sosnowski, and
Sandra Hirche. Towards data-driven LQR with Koopmanizing flows. arXiv
preprint arXiv:2201.11640, 2022a.

Petar Bevanda, Max Beier, Sebastian Kerz, Armin Lederer, Stefan Sosnowski, and
Sandra Hirche. Diffeomorphically learning stable Koopman operators. IEEE
Control Systems Letters, 6:3427–3432, 2022b.

Rajendra Bhatia. Matrix Analysis. Graduate Texts in Mathematics, Vol. 169.
Springer, 1996.

Caroline Blocher, Matteo Saveriano, and Dongheui Lee. Learning stable dynamical
systems using contraction theory. In 14th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), pages 124–129, 2017.

List of References 95

Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg,
editors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial
Intelligence, LNAI 3176, pages 146–168. Springer Verlag, Berlin, 2004.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Yves Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010,
pages 177–186, Heidelberg, 2010. Physica-Verlag HD. ISBN 978-3-7908-2604-3.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

Lucas Brivadis, Vincent Andrieu, and Ulysse Serres. Luenberger observers for
discrete-time nonlinear systems. In 58th IEEE Conference on Decision and
Control (CDC 2019), pages 3435–3440. IEEE, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020.

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz.
Koopman invariant subspaces and finite linear representations of nonlinear
dynamical systems for control. PloS One, 11(2):e0150171, 2016.

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika Kaiser, and
J. Nathan Kutz. Chaos as an intermittently forced linear system. Nature
Communications, 8(1):1–9, 2017.

Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern
Koopman theory for dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and
generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 37(2):286–298, 2007.

Federico Celi, Giacomo Baggio, and Fabio Pasqualetti. Closed-form estimates of the
LQR gain from finite data. In 61st IEEE Conference on Decision and Control
(CDC 2022), 2022.

List of References 96

Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal
Wasserstein imitation learning. In International Conference on Learning
Representations, 2021.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the
sample complexity of the linear quadratic regulator. Foundations of
Computational Mathematics, 20(4):633–679, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real NVP. In 5th International Conference on Learning Representations (ICLR
2017). OpenReview.net, 2017.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation
learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30 (NIPS 2017). Curran Associates, Inc., 2017.

N. Benjamin Erichson, Michael Muehlebach, and Michael W. Mahoney.
Physics-informed autoencoders for Lyapunov-stable fluid flow prediction. arXiv
preprint arXiv:1905.10866, 2019.

Fletcher Fan, Bowen Yi, David Rye, Guodong Shi, and Ian R. Manchester. Learning
stable Koopman embeddings. In 2022 American Control Conference (ACC 2022),
pages 2742–2747, 2022.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33rd International Conference on Machine
Learning, number 48 in Proceedings of Machine Learning Research, pages 49–58,
New York, New York, USA, 20–22 June 2016. PMLR.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

Carl Folkestad, Skylar X. Wei, and Joel W. Burdick. Koopnet: Joint learning of
Koopman bilinear models and function dictionaries with application to quadrotor
trajectory tracking. In Proceedings of the 2022 IEEE International Conference on
Robotics and Automation (ICRA), pages 1344–1350. IEEE, 2022.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial
inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl:
Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

List of References 97

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence
minimization perspective on imitation learning methods. In Leslie Pack Kaelbling,
Danica Kragic, and Komei Sugiura, editors, Proceedings of the 3rd Conference on
Robot Learning (CoRL 2019), number 100 in Proceedings of Machine Learning
Research, pages 1259–1277. PMLR, 30 October–1 November 2020.

Nicolas Gillis, Michael Karow, and Punit Sharma. A note on approximating the
nearest stable discrete-time descriptor systems with fixed rank. Applied
Numerical Mathematics, 148:131–139, 2020. ISSN 0168-9274.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27 (NIPS 2014),
pages 2672–2680. Curran Associates, Inc., 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016.

Debdipta Goswami and Derek A. Paley. Global bilinearization and controllability of
control-affine nonlinear systems: A Koopman spectral approach. In 56th IEEE
Conference on Decision and Control (CDC 2017), pages 6107–6112. IEEE, 2017.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics.
SIAM, 2nd edition, 2008. ISBN 978-0-89871-659-7.

Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of Koopman
representation for control. In 59th IEEE Conference on Decision and Control
(CDC 2020), pages 1890–1895. IEEE, 2020.

Masih Haseli and Jorge Cortes. Learning Koopman eigenfunctions and invariant
subspaces from data: Symmetric subspace decomposition. IEEE Transactions on
Automatic Control, 67(7):3442–3457, 2021.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer Series in Statistics. Springer, 2nd edition, 2009.

Aaron Havens and Bin Hu. On imitation learning of linear control policies:
Enforcing stability and robustness constraints via LMI conditions. In 2021
American Control Conference (ACC 2021), pages 882–887. IEEE, 2021.

Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization
Theory and Applications, 4(5):303–320, 1969.

List of References 98

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29 (NIPS 2016). Curran Associates,
Inc., 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

Bowen Huang, Xu Ma, and Umesh Vaidya. Feedback stabilization using Koopman
operator. In 67th IEEE Conference on Decision and Control (CDC 2018), pages
6434–6439. IEEE, 2018.

Lucian Cristian Iacob, Gerben Izaak Beintema, Maarten Schoukens, and Roland
Tóth. Deep identification of nonlinear systems in Koopman form. In 60th IEEE
Conference on Decision and Control (CDC 2021), pages 2288–2293, 2021.

Lucian Cristian Iacob, Roland Tóth, and Maarten Schoukens. Koopman form of
nonlinear systems with inputs. arXiv preprint arXiv:2207.12132, 2022a.

Lucian Cristian Iacob, Roland Tóth, and Maarten Schoukens. Optimal synthesis of
LTI Koopman models for nonlinear systems with inputs. arXiv preprint
arXiv:2206.07534, 2022b.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Computation, 25(2):328–373, February 2013. ISSN 0899-7667.

E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106:
620–630, May 1957.

Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of
Koopman eigenfunctions for control. Machine Learning: Science and Technology,
2(3):035023, 2021.

R. E. Kalman. When is a linear control system optimal? Journal of Basic
Engineering, 86(1):51–60, March 1964. ISSN 0021-9223.

Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear
dynamical systems with Gaussian mixture models. IEEE Transactions on
Robotics, 27(5):943–957, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

List of References 99

B. O. Koopman. Hamiltonian systems and transformation in Hilbert space.
Proceedings of the National Academy of Sciences of the United States of America,
17(5):315–318, May 1931. ISSN 1091-6490.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160, 2018.
ISSN 0005-1098.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and
Jonathan Tompson. Discriminator-actor-critic: Addressing sample inefficiency
and reward bias in adversarial imitation learning. In International Conference on
Learning Representations, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25 (NIPS 2012), pages 1097–1105. Curran Associates, Inc., 2012.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. Journal of Machine Learning Research, 17
(39):1–40, 2016.

Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended
dynamic mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the Koopman operator. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 27(10):103111, 2017a.

Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL: Interpretable imitation
learning from visual demonstrations. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30 (NIPS 2017). Curran Associates, Inc.,
2017b.

Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

Lennart Ljung. System Identification, pages 163–173. Birkhäuser Boston, Boston,
MA, 1998. ISBN 978-1-4612-1768-8.

Winfried Lohmiller and Jean-Jacques E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683–696, 1998. ISSN 0005-1098.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for
universal linear embeddings of nonlinear dynamics. Nature Communications, 9
(1):4950, November 2018. ISSN 2041-1723.

List of References 100

Giorgos Mamakoukas, Orest Xherija, and Todd Murphey. Memory-efficient learning
of stable linear dynamical systems for prediction and control. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems 33 (NeurIPS 2020), pages 13527–13538. Curran
Associates, Inc., 2020.

Ian R Manchester and Jean-Jacques E Slotine. Transverse contraction criteria for
existence, stability, and robustness of a limit cycle. Systems & Control Letters,
63:32–38, 2014.

Ian R. Manchester and Jean-Jacques E. Slotine. Control contraction metrics:
Convex and intrinsic criteria for nonlinear feedback design. IEEE Transactions on
Automatic Control, 62(6):3046–3053, 2017.

Ian R. Manchester, Max Revay, and Ruigang Wang. Contraction-based methods for
stable identification and robust machine learning: A tutorial. In 60th IEEE
Conference on Decision and Control (CDC 2021), pages 2955–2962, 2021.

Gaurav Manek and J. Zico Kolter. Learning stable deep dynamics models. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. VAMPnets for deep
learning of molecular kinetics. Nature Communications, 9(1):5, January 2018.
ISSN 2041-1723.

Alexandre Mauroy and Jorge Goncalves. Koopman-based lifting techniques for
nonlinear systems identification. IEEE Transactions on Automatic Control, 65(6):
2550–2565, 2020.

Alexandre Mauroy and Igor Mezić. Global stability analysis using the
eigenfunctions of the Koopman operator. IEEE Transactions on Automatic
Control, 61(11):3356–3369, 2016.

Igor Mezić. Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dynamics, 41(1):309–325, 2005.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching motions.
Robotics and Autonomous Systems, 62(6):752–765, 2014. ISSN 0921-8890.

Klaus Neumann, Andre Lemme, and Jochen J. Steil. Neural learning of stable
dynamical systems based on data-driven Lyapunov candidates. In Proceedings of
the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1216–1222, 2013.

List of References 101

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning.
In Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, pages 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-707-2.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.

Takayuki Osa, Naohiko Sugita, and Mamoru Mitsuishi. Online trajectory planning
and force control for automation of surgical tasks. IEEE Transactions on
Automation Science and Engineering, 15(2):675–691, 2017.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter
Abbeel, and Jan Peters. An algorithmic perspective on imitation learning.
Foundations and Trends® in Robotics, 7(1–2):1–179, 2018.

Samuel E. Otto and Clarence W. Rowley. Linearly recurrent autoencoder networks
for learning dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):
558–593, 2019.

Samuel E. Otto and Clarence W. Rowley. Koopman operators for estimation and
control of dynamical systems. Annual Review of Control, Robotics, and
Autonomous Systems, 4:59–87, 2021.

Malayandi Palan, Shane Barratt, Alex McCauley, Dorsa Sadigh, Vikas Sindhwani,
and Stephen Boyd. Fitting a linear control policy to demonstrations with a
Kalman constraint. In 2nd Annual Conference on Learning for Dynamics and
Control, number 120 in Proceedings of Machine Learning Research, pages
374–383. PMLR, 2020.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of
linear embeddings of nonlinear dynamics with guaranteed stability. SIAM Journal
on Applied Dynamical Systems, 19(1):480–509, 2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning,
pages 1310–1318. PMLR, 2013.

Daniel Pfrommer, Thomas T. C. K. Zhang, Stephen Tu, and Nikolai Matni. TaSIL:
Taylor series imitation learning. arXiv preprint arXiv:2205.14812, 2022.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Dynamic mode
decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):
142–161, 2016.

List of References 102

Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing Koopman
theory to allow for inputs and control. SIAM Journal on Applied Dynamical
Systems, 17(1):909–930, 2018.

Harish Ravichandar, Iman Salehi, and Ashwin Dani. Learning partially contracting
dynamical systems from demonstrations. In Proceedings of the 1st Conference on
Robot Learning (CoRL 2017), number 78 in Proceedings of Machine Learning
Research, pages 369–378. PMLR, 13–15 November 2017.

Max Revay, Ruigang Wang, and Ian R. Manchester. A convex parameterization of
robust recurrent neural networks. IEEE Control Systems Letters, 5(4):1363–1368,
2021a.

Max Revay, Ruigang Wang, and Ian R. Manchester. Recurrent equilibrium
networks: Unconstrained learning of stable and robust dynamical models. In 60th
IEEE Conference on Decision and Control (CDC 2021), pages 2282–2287, 2021b.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, number 9 in Proceedings of Machine Learning Research, pages
661–668. JMLR Workshop and Conference Proceedings, PMLR, 2010.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Geoffrey
Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the 14th
International Conference on Artificial Intelligence and Statistics (AISTATS
2011), number 15 in Proceedings of Machine Learning Research, pages 627–635,
Fort Lauderdale, FL, USA, 11–13 April 2011. PMLR.

Tim Roughgarden. Beyond the Worst-case Analysis of Algorithms. Cambridge
University Press, 2020.

Stuart Russell. Learning agents for uncertain environments (extended abstract). In
Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, pages 101–103, 1998.

Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning movement
primitives. In Paolo Dario and Raja Chatila, editors, Robotics Research: The
Eleventh International Symposium, pages 561–572, Berlin, Heidelberg, 2005.
Springer. ISBN 978-3-540-31508-7.

Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656:5–28, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

List of References 103

Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529:484, January 2016.

Vikas Sindhwani, Stephen Tu, and Mohi Khansari. Learning contracting vector
fields for stable imitation learning. 2018. arXiv preprint 1804.04878v1.

Sumeet Singh, Spencer M Richards, Vikas Sindhwani, Jean-Jacques E Slotine, and
Marco Pavone. Learning stabilizable nonlinear dynamics with contraction-based
regularization. The International Journal of Robotics Research, 40(10-11):
1123–1150, 2021.

Subhrajit Sinha, Sai Pushpak Nandanoori, Jan Drgona, and Draguna Vrabie.
Data-driven stabilization of discrete-time control-affine nonlinear systems: A
Koopman operator approach. arXiv preprint arXiv:2203.14114, 2022.

Eduardo D. Sontag. A ‘universal’ construction of Artstein’s theorem on nonlinear
stabilization. Systems & Control Letters, 13(2):117–123, 1989.

Eduardo D. Sontag. Input to state stability: Basic concepts and results. In
Nonlinear and Optimal Control Theory, pages 163–220. Springer, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Amit Surana. Koopman operator based observer synthesis for control-affine
nonlinear systems. In 55th IEEE Conference on Decision and Control (CDC
2016), pages 6492–6499. IEEE, 2016.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning Koopman
invariant subspaces for dynamic mode decomposition. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30 (NIPS 2017),
pages 1130–1140. Curran Associates, Inc., 2017.

Mark M. Tobenkin, Ian R. Manchester, and Alexandre Megretski. Convex
parameterizations and fidelity bounds for nonlinear identification and
reduced-order modelling. IEEE Transactions on Automatic Control, 62(7):
3679–3686, 2017.

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton,
and J. Nathan Kutz. On dynamic mode decomposition: Theory and applications.
Journal of Computational Dynamics, 1(2):391–421, 2014. ISSN 2158-2491.

List of References 104

Stephen Tu, Alexander Robey, Tingnan Zhang, and Nikolai Matni. On the sample
complexity of stability constrained imitation learning. In Learning for Dynamics
and Control Conference, pages 180–191, 2022.

J. Umenberger and I. R. Manchester. Convex bounds for equation error in stable
nonlinear identification. IEEE Control Systems Letters, 3(1):73–78, 2019.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody,
S. Hanson, and R.P. Lippmann, editors, Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann, 1991.

Yuh-Shyang Wang, Nikolai Matni, and John C. Doyle. A system-level approach to
controller synthesis. IEEE Transactions on Automatic Control, 64(10):4079–4093,
2019.

Ziyu Wang, Josh S. Merel, Scott E. Reed, Nando de Freitas, Gregory Wayne, and
Nicolas Heess. Robust imitation of diverse behaviors. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30 (NIPS 2017),
pages 5324–5333. Curran Associates, Inc., 2017.

Lai Wei, Ryan McCloy, and Jie Bao. Control contraction metric synthesis for
discrete-time nonlinear systems. arXiv preprint arXiv:2104.10352, 2021.

M. O. Williams, Clarence W. Rowley, and I. G. Kevrekidis. A kernel-based method
for data-driven Koopman spectral analysis. Journal of Computational Dynamics,
2(2):247–265, 2016.

Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A
data-driven approximation of the Koopman operator: Extending dynamic mode
decomposition. Journal of Nonlinear Science, 25(6):1307–1346, December 2015.
ISSN 1432-1467.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network
representations for Koopman operators of nonlinear dynamical systems. In 2019
American Control Conference (ACC 2019), pages 4832–4839, 2019.

Bowen Yi and Ian R. Manchester. On the equivalence of contraction and Koopman
approaches for nonlinear stability and control. In 61st IEEE Conference on
Decision and Control (CDC 2022), 2022.

He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with stability
and safety guarantees. IEEE Control Systems Letters, 6:409–414, 2021.

Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of
maximum causal entropy. PhD thesis, Carnegie Mellon University, 2010.

List of References 105

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum
entropy inverse reinforcement learning. In Proceedings of the 23rd National
Conference on Artificial Intelligence, volume 3, pages 1433–1438. AAAI Press,
2008. ISBN 978-1-57735-368-3.

Vrushabh Zinage and Efstathios Bakolas. Neural Koopman Lyapunov control.
arXiv preprint arXiv:2201.05098, 2022.

Appendix A

Additional Imitation Learning

Trajectories

The following figures show some additional results from the experiments in Sec-
tion 5.5.2. In each figure, the blue dotted lines are trajectories induced by the control
contraction metric (CCM) controller on the true system dynamics, while the red dot-
ted lines are produced by the behavioural cloning (BC) controller. The solid black
line is the ground truth, while the dotted lines are generated by sampling initial con-
ditions in a small box of width 2 cm around the true initial condition. The final goal
state for all of the shapes is at (0.2, 0.0).

Additional Imitation Learning Trajectories 107

(a) CCM (b) BC

Figure A.1

(a) CCM (b) BC

Figure A.2

(a) CCM (b) BC

Figure A.3

Additional Imitation Learning Trajectories 108

(a) CCM (b) BC

Figure A.4

(a) CCM (b) BC

Figure A.5

(a) CCM (b) BC

Figure A.6

Additional Imitation Learning Trajectories 109

(a) CCM (b) BC

Figure A.7

(a) CCM (b) BC

Figure A.8

(a) CCM (b) BC

Figure A.9

Additional Imitation Learning Trajectories 110

(a) CCM (b) BC

Figure A.10

(a) CCM (b) BC

Figure A.11

(a) CCM (b) BC

Figure A.12

Additional Imitation Learning Trajectories 111

(a) CCM (b) BC

Figure A.13

(a) CCM (b) BC

Figure A.14

(a) CCM (b) BC

Figure A.15

Additional Imitation Learning Trajectories 112

(a) CCM (b) BC

Figure A.16

(a) CCM (b) BC

Figure A.17

(a) CCM (b) BC

Figure A.18

Additional Imitation Learning Trajectories 113

(a) CCM (b) BC

Figure A.19

(a) CCM (b) BC

Figure A.20

(a) CCM (b) BC

Figure A.21

Additional Imitation Learning Trajectories 114

(a) CCM (b) BC

Figure A.22

(a) CCM (b) BC

Figure A.23

(a) CCM (b) BC

Figure A.24

Additional Imitation Learning Trajectories 115

(a) CCM (b) BC

Figure A.25

(a) CCM (b) BC

Figure A.26

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions
	1.3.1 Publications

	1.4 Structure of the Thesis

	2 Background
	2.1 Learning from Data
	2.1.1 Regularization
	2.1.2 Numerical Optimization
	2.1.3 Model Classes
	2.1.4 Direct Parameterizations

	2.2 Stability of Dynamical Systems
	2.2.1 Stability of Linear Systems
	2.2.2 Contraction
	2.2.3 Control Contraction Metrics

	2.3 Koopman Theory
	2.3.1 The Koopman Operator
	2.3.2 Equivalence of Contraction and Koopman Stability
	2.3.3 Dynamic Mode Decomposition
	2.3.4 Koopman Operator with Control

	2.4 Summary

	3 Related Work
	3.1 Learning Koopman Models
	3.1.1 Stable Koopman Models
	3.1.2 Koopman Models for Control

	3.2 Imitation Learning
	3.2.1 Behavioural Cloning
	3.2.2 Inverse Reinforcement Learning
	3.2.3 Stable Imitation Learning

	3.3 Summary

	4 Stable Koopman Models
	4.1 Introduction
	4.2 Stability Criterion for Discrete-time Koopman Models
	4.3 Model Set
	4.3.1 Parametrization of Koopman Matrix
	4.3.2 Parametrization of Koopman Embedding
	4.3.3 Overall Koopman Model

	4.4 Learning Framework
	4.4.1 Optimization Formulation
	4.4.2 Implementation Details

	4.5 Continuous-time Case
	4.5.1 Continuous-time Koopman Model
	4.5.2 Learning Framework

	4.6 Experiments
	4.6.1 Comparison to Other Koopman Matrix Parameterizations
	4.6.2 Robustness to Perturbations in Initial Conditions

	4.7 Summary

	5 Imitation Learning with Koopman Models
	5.1 Problem Statement
	5.2 Stabilizable Koopman Models
	5.2.1 Koopman Stabilizability

	5.3 Model Set
	5.3.1 Parameterization of Stabilizable Triples
	5.3.2 Parameterization of
	5.3.3 Parameterization of
	5.3.4 CCM Controller
	5.3.5 Connection to Inverse Optimal Control

	5.4 Learning Framework
	5.4.1 Linear Case

	5.5 Experiments
	5.5.1 Linear Example
	5.5.2 Nonlinear Example

	5.6 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	List of References
	A Additional Imitation Learning Trajectories

