12 research outputs found

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure

    Convex optimization methods for graphs and statistical modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 209-220).An outstanding challenge in many problems throughout science and engineering is to succinctly characterize the relationships among a large number of interacting entities. Models based on graphs form one major thrust in this thesis, as graphs often provide a concise representation of the interactions among a large set of variables. A second major emphasis of this thesis are classes of structured models that satisfy certain algebraic constraints. The common theme underlying these approaches is the development of computational methods based on convex optimization, which are in turn useful in a broad array of problems in signal processing and machine learning. The specific contributions are as follows: -- We propose a convex optimization method for decomposing the sum of a sparse matrix and a low-rank matrix into the individual components. Based on new rank-sparsity uncertainty principles, we give conditions under which the convex program exactly recovers the underlying components. -- Building on the previous point, we describe a convex optimization approach to latent variable Gaussian graphical model selection. We provide theoretical guarantees of the statistical consistency of this convex program in the high-dimensional scaling regime in which the number of latent/observed variables grows with the number of samples of the observed variables. The algebraic varieties of sparse and low-rank matrices play a prominent role in this analysis. -- We present a general convex optimization formulation for linear inverse problems, in which we have limited measurements in the form of linear functionals of a signal or model of interest. When these underlying models have algebraic structure, the resulting convex programs can be solved exactly or approximately via semidefinite programming. We provide sharp estimates (based on computing certain Gaussian statistics related to the underlying model geometry) of the number of generic linear measurements required for exact and robust recovery in a variety of settings. -- We present convex graph invariants, which are invariants of a graph that are convex functions of the underlying adjacency matrix. Graph invariants characterize structural properties of a graph that do not depend on the labeling of the nodes; convex graph invariants constitute an important subclass, and they provide a systematic and unified computational framework based on convex optimization for solving a number of interesting graph problems. We emphasize a unified view of the underlying convex geometry common to these different frameworks. We describe applications of both these methods to problems in financial modeling and network analysis, and conclude with a discussion of directions for future research.by Venkat Chandrasekaran.Ph.D

    HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation

    Full text link
    Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.Comment: Accepted by AAAI201

    Convex graph invariant relaxations for graph edit distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry

    Convex Relaxations for Graph and Inverse Eigenvalue Problems

    Get PDF
    This thesis is concerned with presenting convex optimization based tractable solutions for three fundamental problems: 1. Planted subgraph problem: Given two graphs, identifying the subset of vertices of the larger graph corresponding to the smaller one. 2. Graph edit distance problem: Given two graphs, calculating the number of edge/vertex additions and deletions required to transform one graph into the other. 3. Affine inverse eigenvalue problem: Given a subspace Δ ⊂ &#x1D54A;ⁿ and a vector of eigenvalues λ ∈ ℝⁿ, finding a symmetric matrix with spectrum λ contained in Δ. These combinatorial and algebraic problems frequently arise in various application domains such as social networks, computational biology, chemoinformatics, and control theory. Nevertheless, exactly solving them in practice is only possible for very small instances due to their complexity. For each of these problems, we introduce convex relaxations which succeed in providing exact or approximate solutions in a computationally tractable manner. Our relaxations for the two graph problems are based on convex graph invariants, which are functions of graphs that do not depend on a particular labeling. One of these convex relaxations, coined the Schur-Horn orbitope, corresponds to the convex hull of all matrices with a given spectrum, and plays a prominent role in this thesis. Specifically, we utilize relaxations based on the Schur-Horn orbitope in the context of the planted subgraph problem and the graph edit distance problem. For both of these problems, we identify conditions under which the Schur-Horn orbitope based relaxations exactly solve the corresponding problem with overwhelming probability. Specifically, we demonstrate that these relaxations turn out to be particularly effective when the underlying graph has a spectrum comprised of few distinct eigenvalues with high multiplicities. In addition to relaxations based on the Schur-Horn orbitope, we also consider outer-approximations based on other convex graph invariants such as the stability number and the maximum-cut value for the graph edit distance problem. On the other hand, for the inverse eigenvalue problem, we investigate two relaxations arising from a sum of squares hierarchy. These relaxations have different approximation qualities, and accordingly induce different computational costs. We utilize our framework to generate solutions for, or certify unsolvability of the underlying inverse eigenvalue problem. We particularly emphasize the computational aspect of our relaxations throughout this thesis. We corroborate the utility of our methods with various numerical experiments.</p

    Finding Planted Subgraphs with Few Eigenvalues using the Schur-Horn Relaxation

    Get PDF
    Extracting structured subgraphs inside large graphs---often known as the planted subgraph problem---is a fundamental question that arises in a range of application domains. This problem is NP-hard in general and, as a result, significant efforts have been directed towards the development of tractable procedures that succeed on specific families of problem instances. We propose a new computationally efficient convex relaxation for solving the planted subgraph problem; our approach is based on tractable semidefinite descriptions of majorization inequalities on the spectrum of a symmetric matrix. This procedure is effective at finding planted subgraphs that consist of few distinct eigenvalues, and it generalizes previous convex relaxation techniques for finding planted cliques. Our analysis relies prominently on the notion of spectrally comonotone matrices, which are pairs of symmetric matrices that can be transformed to diagonal matrices with sorted diagonal entries upon conjugation by the same orthogonal matrix

    Concentration of the Frobenius norm of generalized matrix inverses

    Get PDF
    Revised/condensed/renamed version of preprint "Beyond Moore-Penrose Part II: The Sparse Pseudoinverse"International audienceIn many applications it is useful to replace the Moore-Penrose pseudoinverse (MPP) by a different generalized inverse with more favorable properties. We may want, for example, to have many zero entries, but without giving up too much of the stability of the MPP. One way to quantify stability is by how much the Frobenius norm of a generalized inverse exceeds that of the MPP. In this paper we derive finite-size concentration bounds for the Frobenius norm of ℓp\ell^p-minimal general inverses of iid Gaussian matrices, with 1≀p≀21 \leq p \leq 2. For p=1p = 1 we prove exponential concentration of the Frobenius norm of the sparse pseudoinverse; for p=2p = 2, we get a similar concentration bound for the MPP. Our proof is based on the convex Gaussian min-max theorem, but unlike previous applications which give asymptotic results, we derive finite-size bounds
    corecore